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Abstract – Unit Commitment (UC) is an important problem in 

power system operations. It is traditionally planned for 24 hours 

with one-hour time intervals. To accommodate the increasing net-

load variability, sub-hourly UC has been suggested for improved 

system flexibility. Such a problem is larger and more complicated 

than hourly UC because of the increased number of periods and 

reduced unit ramping capabilities per period. The computational 

burden is further exacerbated for systems with large numbers of 

virtual transactions leading to dense transmission constraint 

matrices. Consequently, the state-of-the-art and practice method, 

branch-and-cut (B&C), suffers from poor performance. In this 

paper, our recent Surrogate Absolute-Value Lagrangian Relaxation 

(SAVLR) is enhanced by embedding ordinal-optimization concepts 

for a drastic reduction in subproblem solving time. Rather than 

formally solving subproblems by using B&C, subproblem solutions 

satisfying SAVLR’s convergence condition are obtained by 

modifying solutions from previous iterations or solving crude 

subproblems. All virtual transactions are included in each 

subproblem to reduce major changes in solutions across iterations. 

A parallel version is also developed to further reduce the 

computation time. Testing on MISO’s large cases demonstrates that 

our ordinal-optimization embedded approach obtains near-optimal 

solutions efficiently, is robust, and provides a new way of solving 

other MILP problems. 

 

Index Terms -- Ordinal Optimization, Parallel Processing, 

Surrogate Absolute-Value Lagrangian Relaxation, Sub-hourly 

Unit Commitment 

NOMENCLATURE 

Index 

i index for conventional units 

v index for virtual transactions 
y index for dispatchable demand bids 

n index for nodes 

z index for three types of reserves 
l index for transmission lines 

t Index for time periods 

s index for three types of start-ups 

j index for subproblems 

Parameters 

𝐷𝑛,𝑡 system demand at node 𝑛 at time t 

𝑅𝑧,𝑡 required amount for reserve type z at time t 

𝐹𝑙, 𝐹𝑙 maximum and minimum transmission capacities of line l 

𝛼𝑛,𝑙 generation shift factor at node n for line l 

𝑇𝑖
𝑀𝑈 minimum up time of unit i 

𝑇𝑖
𝑀𝐷 minimum down time of unit i 
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𝑃𝑖,𝑡, 𝑃𝑖,𝑡 maximum and minimum power output for unit i at time t 

𝑅𝑅𝑖  ramp rate for unit i 

𝑇𝐸𝑖 maximum daily energy of unit i 

𝑇𝑆𝑖 maximum daily start-up times of unit i 

𝑀𝑣,𝑡, 𝑀𝑣,𝑡 minimum and maximum generations (or demands) of virtual 

transaction v at time t 

𝐷𝑦,𝑡 maximum level of dispatchable demand bid y at time t 

𝐶𝑖,𝑠,𝑡
𝑆𝑡𝑎𝑟𝑡 cost coefficient for start-up s of unit i at time t 

𝐶𝑖,𝑡
𝑁𝐿 no-load cost coefficient of unit i at time t 

𝐶𝐸 piece-wise linear generation cost of unit i 

𝐶𝑖,𝑧,𝑡
𝑅  cost coefficient for reserve z of unit i at time t 

𝐶𝑣,𝑡
𝑉  cost coefficient of virtual transactions v at time t 

𝐶𝑦,𝑡
𝑌  cost coefficient of dispatchable demand bid y at time t 

𝑐𝑇 penalty coefficient of transmission capacity constraints’ 
violations 

𝑐𝐷 penalty coefficient of system demand constraints’ violations 

𝑐𝑅 penalty coefficient of system reserve constraints’ violations 

Decision Variables 

𝑥𝑖,𝑡 commitment status of unit i at time t 

𝑢𝑖,𝑡 start-up status of unit i at time t 

𝑤𝑖,𝑡 shut-down status of unit i at time t 

𝑏𝑖,𝑠,𝑡 three types (hot, intermediate and cold) of start-ups  

𝑝𝑖,𝑡 generation level of unit 𝑖 at time t 

𝑚𝑣,𝑡 generation level of virtual transaction 𝑣 at t 

𝑑𝑦,𝑡 power required by dispatchable demand bid y at time t 

𝑟𝑖,𝑧,𝑡 reserve contribution for type z of unit 𝑖 at time t 

𝑓𝑡,𝑙 power flow through line l at time t 

𝜆𝑡 Lagrangian multipliers for system demand constraints 

𝑠𝑡,𝑙, 𝑠𝑡,𝑙 non-negative slack variables for transmission constraints 

𝑠𝑧,𝑡
𝑅  slack variables for system-wide reserve constraints 

𝑞𝑡
𝐷,+

, 𝑞𝑡
𝐷,−

 non-negative variables for linearization  

I. INTRODUCTION 

NIT Commitment (UC) is an important problem in 

power system operations – it identifies how to meet the 

system demand by committing units and deciding generation 

levels while minimizing the total cost of production subject to 

individual unit constraints and system-wide reserve and 

transmission capacity constraints. A UC problem is generally 

formulated as a Mixed-Integer Linear Programming (MILP) 

problem over a 24-hour horizon with one hour as the time 

interval. Increasing dynamics on the grid prompted the industry 

to consider whether UC with sub-hourly intervals would 

increase system performance [1]. Sub-hourly UC has thus been 

suggested as a way to improve system flexibility and reliability 
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because it can accommodate greater intra-hour net load 

variability [2]-[7]. Sub-hourly UC, however, is much more 

complex than hourly UC because of 1) the increased number of 

periods leading to larger problem sizes, and 2) the much 

reduced unit ramping capabilities per period resulting in more 

complicated convex hulls (the smallest convex set enclosing all 

feasible solutions) as presented in Figure 9 of [8]. The 

computational burden is further exacerbated for systems with a 

large number of virtual transactions and dispatchable demand 

bids which cause dense transmission capacity constraint 

matrices [9]. As a result, even without explicitly modeling of 

uncertainties caused by, e.g., intermittent renewables, 

deterministic sub-hourly UC is difficult to solve. In this paper, 

deterministic sub-hourly UC with large numbers of units, 

virtual transactions and dispatchable demand bids is considered 

with 15 minutes as the time interval, and the goal is to obtain 

near-optimal solutions within 30 minutes.  

 As will be reviewed in Section II, branch-and-cut (B&C) 

[10], the state-of-the-art and practice method for hourly UC, 

cannot handle the increased complexity and suffers from poor 

performance for sub-hourly UC. Lagrangian Relaxation (LR) 

[11][12] was one of the earlier methods for hourly UC. It 

reduces complexity by relaxing coupling constraints and 

decomposing the relaxed problem into subproblems. Standard 

LR, however, has several major difficulties, such as high 

computational requirements, zigzagging of multipliers, and the 

need to adaptively guesstimate the unknown optimal dual value. 

Surrogate Lagrangian Relaxation (SLR) overcame these major 

difficulties [13]. Its convergence has then been accelerated by 

adding absolute-value penalty terms in our recent Surrogate 

Absolute-Value Lagrangian Relaxation (SAVLR) method [14]. 

Within SAVLR, MILP subproblems are normally solved by 

using B&C. Subproblem solving, however, may still be time-

consuming for sub-hourly UC with large numbers of units, 

virtual transactions and dispatchable demand bids.  

In Section III, the deterministic sub-hourly UC formulation, 

which is the same as that of hourly UC but with 15 minutes as 

the time interval, is briefly presented. System demand 

constraints and reserve requirements should be strictly satisfied. 

Transmission capacity constraints, however, are modeled as 

“soft” and allowed to be violated with a predetermined penalty 

coefficient. Additionally, although uncertainties are not 

explicitly modeled, three types of reserves are included. This is 

the current standard practice for Independent System Operators 

(ISOs) to manage uncertainties. 

In Section IV, our solution methodology is presented. To 

avoid introducing too many multipliers, only system demand 

constraints are relaxed. System reserve constraints are 

converted to soft constraints following the approach of [15], 

which, together with soft transmission capacity constraints, are 

not relaxed. More importantly, inspired by the Ordinal 

Optimization (OO) concepts that an “order” is easier to obtain 

than “values” and a problem with a softened goal is easier to 

solve than the original problem, a novel approach is developed 

by embedding the OO concepts within SAVLR. Specifically, 

rather than formally solving a subproblem by using B&C, “good 

enough” feasible subproblem solutions that satisfy the SAVLR 

convergence condition are obtained by modifying solutions from 

previous iterations or solving crude subproblems following OO 

concepts [16][17]. B&C is called to solve a subproblem only 

when such a good-enough solution cannot be obtained. This 

novel idea leads to a drastic reduction in CPU times because 

B&C is rarely called. Virtual transactions and dispatchable 

demand bids are included in all subproblems to reduce 

multiplier zigzagging and improve convergence. Finally, a 

parallel version is also developed to further reduce the CPU time. 

In Section V, multiple Midcontinent ISO (MISO)’s “hard” 

cases, whose solutions are difficult to obtain within 20 or 30 

minutes even for hourly UC by using B&C [9], are tested with 15 

minutes as the time interval over a horizon of 36 hours. Results 

demonstrate that our approach obtains high-quality solutions in a 

computationally efficient way, significantly outperforms existing 

methods, and is robust.  

 This manuscript is a major improvement over our 

preliminary results presented at the 2020 IEEE Power and 

Energy Society General Meeting [18]. Key enhancements 

include: 1) the specific use of OO concepts in SAVLR for sub-

hourly UC is elaborated; 2) a parallel version is developed to 

further reduce the CPU time; 3) more MISO’s hard cases are 

tested and analyzed to demonstrate the performance and 

robustness of our method; and 4) the reasons why B&C is rarely 

used to solve subproblems are examined. Our approach presents 

a new optimization concept to solve subproblems by not using 

standard MILP methods, and lead to significant reduction of 

computational requirements. It will have vital implications on 

solving other complex MILP problems in power systems and 

beyond. 

II. LITERATURE REVIEW 

Subsection II.A reviews the literature on sub-hourly UC. In 

subsection II.B, branch-and-cut (B&C), the standard method to 

solve hourly UC, is presented. Decomposition and coordination 

approaches based on Lagrangian Relaxation are reviewed in 

subsection II.C. In subsection II.D, the Ordinal Optimization 

(OO) concepts are presented. 

A. Sub-hourly unit commitment 

 With the increasing dynamics on the grid, hourly UC cannot 

capture the sub-hourly net load variability [1]. Sub-hourly UC 

has thus been suggested as a way to improve system flexibility 

and reliability [2]. In [3] and [4], deterministic sub-hourly UC 

is compared with hourly UC. With the increased number of time 

intervals, sub-hourly UC captures more variability in system 

demand, leading to more economic solutions than hourly UC. 

In [5], both deterministic and stochastic sub-hourly UC are 

compared with hourly UC. It is shown that sub-hourly dispatch 

results have lower costs. In [6], reserves are shown to be 

significantly lowered for sub-hourly UC than hourly UC under 

high penetration of intermittent renewables. The impacts of 

sub-hourly UC on power system dynamics are analyzed in [7]. 

It was shown that long-term frequency deviation is reduced for 

sub-hourly UC, leading to improved reliability. However, in 

view that sub-hourly UC is much more difficult to solve than 

hourly UC as explained earlier, it is mostly used in near real-

time markets looking ahead 1-3 hours. It is relatively new to 

apply it in day-ahead markets with a horizon of 24-36 hours. 
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B. Branch-and-cut (B&C)  

 UC problems are generally formulated as MILP problems, 

and solved by using B&C [10]. For a given problem, the method 

applies “valid cuts” and tries to delineate the convex hull of 

feasible solutions. If the convex hull or its facets adjacent to the 

optimal solution are obtained, then the optimal solution can be 

quickly obtained by solving the corresponding Linear 

Programming (LP) problem. If the above is difficult to achieve 

as explained in Section I, then the method relies on time-

consuming branch-and-bound. In [3] and [6], B&C is used to 

solve small sub-hourly UC problems with less than 100 units. 

For large sub-hourly UC problems, however, B&C suffers from 

poor performance when directly applied. In [19], solutions of 

MISO hourly UC from B&C are used to provide initial 

solutions for sub-hourly UC. Good solutions are then obtained 

by a “polishing” method, which adaptively fixes binary and 

continuous variables while filtering out the constraints that are 

unlikely to be violated.  

C. Decomposition and coordination approaches  

 Lagrangian Relaxation (LR) is a price-based decomposition 

and coordination method, and was one of the early methods to 

solve UC problems [12]. It reduces complexity by relaxing 

coupling constraints and decomposing the relaxed problem into 

subproblems, which are coordinated by iteratively updating 

Lagrangian multipliers based on subgradient directions. The 

standard LR methods, however, have several major difficulties: 

1) significant efforts to obtain a subgradient – requiring solving 

all subproblems optimally; 2) zigzagging of multipliers in view 

of the geometry of the dual function for MILP problems; and 3) 

the need to guesstimate the unknown optimal dual value.  

 All the major difficulties mentioned above have recently 

been overcome in the Surrogate Lagrangian relaxation (SLR) 

method [13]. SLR updates Lagrangian multipliers based on 

“surrogate” subgradients [20], which are obtained by solving 

one or a few subproblems not to optimality, but as long as the 

“surrogate optimality condition” (see (29) in subsection IV.B) 

is satisfied. Since only a subset of subproblems needs to be 

solved to update multipliers, the computational requirements 

are much reduced; and the changing of surrogate subgradient 

directions across iterations is also reduced as compared to that 

of the traditional LR, leading to much smoothened multiplier 

trajectories. Moreover, unlike previous LR-based methods, 

SLR does not require the knowledge of the unknown optimal 

dual value for convergence proof as well as for practical 

implementations. Recently, the convergence of SLR has been 

significantly improved by introducing absolute-value terms, 

which are exactly linearizable, to penalize the violations of 

relaxed system-wide constraints in the Surrogate Absolute-

Value Lagrangian Relaxation (SAVLR) method [14]. 

Subproblems in SLR and SAVLR are generally solved as MILP 

problems by using B&C. This, however, may still take a long 

time for sub-hourly UC problems with large numbers of units, 

virtual transactions and dispatchable demand bids.  

D. Ordinal Optimization 

Ordinal Optimization (OO) has been effectively used in 

computationally intensive simulation-based optimization, and 

has two major concepts [17]. The first is that an “order” is easier 

to obtain than “values.” Taking two objects A and B as an 

example, it is easier to know which object is heavier than to 

know the exact weights of A and B. Second, a problem with a 

softened goal is easier to solve than the original problem. For 

example, it is easier to obtain a solution that falls within top the 

5% of all solutions than to obtain the optimal solution. OO thus 

uses crude models and quick simulation runs to roughly order 

solution candidates, and then select solutions that are good 

enough with high probabilities for further exploration. OO has 

recently been used to solve subproblems in generalized 

assignment problems [21].  

III. PROBLEM FORMULATION  

This section considers a power system with I conventional 

units, V virtual transactions, Y dispatchable demand bids, N 

nodes, Z types of reserves, and L transmission lines, which are 

distributed among J areas. The 15-minute UC is formulated as 

an MILP problem following [22]. The formulation is the same 

as that for hourly UC, except that 15 minutes are used as the 

time interval over T periods (or T/4 hours). Constraints include 

(1) system-wide demand, reserve, and transmission capacity 

constraints; (2) individual unit-level constraints, e.g., 

generation capacity and ramp-rate constraints for conventional 

units; and capacity constraints for virtual transactions and 

dispatchable demand bids as presented below. 

Constraints 

System Demand Constraints. The total generation from all 

resources should equal system demand at each period, i.e.,  

, , , ,

1 1 1 1

  ,,
I V Y N

i t v t y t n t

i v y n

p m d tD
   

                        (1)                    

where the continuous generation level of unit 𝑖 (1 ≤ 𝑖 ≤ 𝐼) at 

time t (1 ≤ 𝑡 ≤ 𝑇) is denoted as 𝑝𝑖,𝑡, the continuous generation 

level of virtual transaction 𝑣 (1 ≤ 𝑣 ≤ 𝑉)  at t is denoted as 

𝑚𝑣,𝑡 , and the continuous power required by dispatchable 

demand bid 𝑦 (1 ≤ 𝑦 ≤ 𝑌) at t is denoted as 𝑑𝑦,𝑡. The system 

demand at node 𝑛 (1 ≤ 𝑛 ≤ 𝑁) at t is denoted as 𝐷𝑛,𝑡.  

System Reserve Constraints. In the current standard practice for 

ISOs, to maintain reliability, reserves are used to manage 

uncertainties.  Following [23], three types of reserves including 

regulation, regulation plus spinning, and operating reserve are 

considered, indexed by z = 1, 2, and 3, respectively: 

, , ,

1

,  , ,

I

i z t z t

i

r R z t


                           (2)  

where the amount of reserve contribution of unit 𝑖 at time t for 

type z of reserve is denoted as the continuous variable 𝑟𝑖,𝑧,𝑡, and 

the required amount of type z reserve at time t is denoted as 𝑅𝑧,𝑡.    

Transmission Capacity Constraints. DC power flow is 

considered, and the flow in line 𝑙 (1 ≤ 𝑙 ≤ 𝐿) at t, 𝑓𝑡,𝑙, cannot 

exceed the line’s capacities at each period:  

, , , , t l t l lf s F t l    ,                         (3)  

, , ,  , t l t l lf s F t l    , with                        (4) 

, , , ,, ,
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N
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n i I v V y Y

f m d Dp t l
   

 
 


   



     (5)                                       

In the above, transmission capacities of line l are denoted as 𝐹𝑙 

and 𝐹𝑙; the sets of units, virtual transactions and dispatchable 
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demand bids at node n are denoted as 𝐼𝑛 , 𝑉𝑛 , and 𝑌𝑛 , 

respectively. The generation shift factor 𝛼𝑛,𝑙  indicates the 

change of power flow through line l with respect to a change in 

injection at node n. Following [15], the above transmission 

capacity constraints (3) and (4) are modeled as “soft” 

constraints, and are allowed to be violated by non-negative 

continuous variables 𝑠𝑡,𝑙  and 𝑠𝑡,𝑙  with a fixed penalty 

coefficient 𝑐𝑇 as will be seen in (18).  

Individual unit-level constraints. Minimum up/down-time 

constraints follow Equations (6)-(7) of [22]:  

 
, , , [ , ], ,

i

t
MU

i i t i
t MU

u u t T T i
  

     (6) 

 
, ,1 , [ , ], ,

i

t
MD

i i t i
t MD

w u t T T i
  

      (7) 

where start-up and shut-down statuses for unit i at time t are 

denoted as binary variables 𝑢𝑖,𝑡  and 𝑤𝑖,𝑡 , respectively; and 

minimum up and down times are denoted as 𝑇𝑖
𝑀𝑈  and 𝑇𝑖

𝑀𝐷 , 

respectively. The following logical constraints guarantee that 

𝑢𝑖,𝑡 and 𝑤𝑖,𝑡 take the appropriate values when unit i starts up or 

shuts down:  

 , , 1 , , , , ,i t i t i t i tx x u w i t       (8) 

where commitment status for unit i at time t is denoted as the 

binary variable 𝑥𝑖,𝑡. Capacity constraints, ramping constraints, 

and reserve limits are given in (A9)-(A10), (A11) and (A12) of 

[24], respectively. They are described as follows: 
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In the above, the maximum and minimum power output for unit 

i at time t are denoted as 𝑃𝑖,𝑡 and 𝑃𝑖,𝑡, respectively. The ramp 

rate for unit i is denoted as 𝑅𝑅𝑖. For a certain unit, the energy 

generated within 24 hours (or 96 periods) is limited by its 

maximum daily energy available 𝑇𝐸𝑖: 
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Similarly, the daily start-up times are limited by 𝑇𝑆𝑖: 
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,
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   (14) 

 Virtual transactions include virtual generations and virtual 

demands. They are subject to capacity constraints:  

, ,0 ,  , ,v t v tm M v VG t                          (15)   

, , ,0,  ,v t v tM m v VD t                          (16) 

where VG and VD are the sets of virtual generations and virtual 

demands, respectively. The generation level (or demand) of 

virtual transaction v at time t is denoted by 𝑚𝑣,𝑡, and is limited 

by 𝑀𝑣,𝑡 (or 𝑀𝑣,𝑡). Similarly, dispatchable demand bid y has a 

maximum limit 𝐷𝑦,𝑡 on its level 𝑑𝑦,𝑡 at period t. 

, ,0 ,  [1, ], .y t y td D y Y t                       (17) 

 Virtual transactions and dispatchable demand bids are related 

to continuous variables only and have linear costs 𝐶𝑣,𝑡
𝑉 𝑚𝑣,𝑡 and 

𝐶𝑦,𝑡
𝑌 𝑑𝑦,𝑡, respectively.  

Objective Function 

 The objective function is formulated as:  
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(18) 

In the above, three types of start-ups (hot, intermediate and 

cold) indexed by 𝑠 (1 ≤ 𝑠 ≤ 𝑆) are represented by the binary 

variable 𝑏𝑖,𝑠,𝑡, which is selected according to the values of 𝑢𝑖,𝑡 

and 𝑤𝑖,𝑡 based on Equations (2)-(3) of [22]. Costs and penalties 

within (18) include costs from conventional units (start-up costs 

{𝐶𝑖,𝑠,𝑡
𝑆𝑡𝑎𝑟𝑡𝑏𝑖,𝑠,𝑡} , no-load costs {𝐶𝑖,𝑡

𝑁𝐿𝑥𝑖,𝑡} , piece-wise linear 

generation costs {𝐶𝐸(𝑝𝑖,𝑡)} , and reserve costs {𝐶𝑖,𝑧,𝑡
𝑅 𝑟𝑖,𝑧,𝑡 }); 

costs from virtual transactions {𝐶𝑣,𝑡
𝑉 𝑚𝑣,𝑡}  and dispatchable 

demand bids {𝐶𝑦,𝑡
𝑌 𝑑𝑦,𝑡}; and linear soft transmission capacity   

penalties. The problem is subject to system demand constraints 

(1), system reserve constraints (2), transmission capacity 

constraints (3)-(5), and all unit-level constraints (6)-(17). The 

overall problem is an MILP problem since the objective 

function and all constraints are linear, and both binary and 

continuous variables are included.  

IV. SOLUTION METHODOLOGY  

Subsection IV.A presents the key steps of decomposing the 

problem into subproblems based on SAVLR with a few major 

modifications. In subsection IV.B, ordinal optimization 

concepts are introduced to provide “good enough” feasible 

subproblem solutions so as to avoid solving subproblems as 

MILP problems. In subsection IV.C, coordination of 

subproblem solutions, algorithm initialization, and finding 

feasible solutions are presented. Subsection IV.D presents a 

parallel version of the method to further reduce the CPU time. 

A. Problem decomposition  

This subsection presents the decomposition process based on 

SAVLR. The system-wide constraints are firstly relaxed or 

softened, and then the relaxed problem is decomposed into 

subproblems by properly grouping conventional units, virtual 

transactions and dispatchable demand bids.  

Relaxing or softening system-wide constraints  

 Unlike the approach presented in [14], not all system-wide 

constraints are relaxed here. Instead, only system demand 

constraints are relaxed by using the Lagrangian multipliers 𝜆 =
 (𝜆1, … , 𝜆𝑇)′,  where each element t is a scalar; and their 

violations are penalized with the adjustable penalty coefficient 

𝑐𝐷. To avoid having an excessive number of multipliers, soft 

transmission capacity constraints are not relaxed, but are 

allowed to be violated with a fixed penalty coefficient 𝑐𝑇 

following the approach of [15]. As for system reserve 

constraints, although they are modeled as hard constraints in (2), 

they are also treated as soft during the iterative multiplier 
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updating process and are not relaxed. Specifically, the non-

negative slack variable 𝑠𝑧,𝑡
𝑅  is introduced, and the original 

system reserve constraints (2) are softened as:  
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i z t z tt
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                  (19) 

Here, an adjustable penalty coefficient 𝑐𝑅  is used to penalize 

the positive value of slack variable 𝑠𝑧,𝑡
𝑅 , slightly different from 

the approach of [15]. By dynamically increasing 𝑐𝑅 when the 

original system reserve constraints are violated, feasibility can 

be emphasized. At the final stage of the solution process to find 

feasible solutions, the original system reserve constraints (2) 

are required to be satisfied.  

 With the above, the relaxed problem is:  

, , , , , , ,

1 1 1

, , , , , , , ,

1 1 1 1 1

, , , ,

1

,

, , ,

1

1 1

,

min

( , , ) | ( , )

)

,

(

|

I T S
Start NL E
i s t i s t i t i t i t

i t s
Z V T Y T

R V Y
i z t i z t v t v t y t y t

z v t y t
Tu p

r x y s
t t t

R

T
D

t
Z T

R T
z tt

t

z

l

t

C C C

C r C C

g p m d g p m d

c s c s s

m

b x p

d

c
 



  

    

 

 













  













 







  



  
1

,

1

,

t

L

l

l

T

t 

 
 
 
 
 
 
 
 
 
 
 
 
 



 (20) 

where  

 , , , ,

1 1 1 1
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         (21) 

is the violation of demand constraints, and is penalized with the 

coefficient 𝑐𝐷 . The relaxed problem is subject to softened 

system reserve constraints (19), transmission capacity 

constraints (3)-(5), and unit-level constraints (6)-(17).  

Formulating subproblems 

  Following [14], conventional units in the relaxed problem 

(20) are divided into J subproblems based on areas (a 

subproblem j is formed by collecting all terms in (20) related to 

area 𝑗 (1 ≤ 𝑗 ≤ 𝐽) ). Virtual transactions and dispatchable 

demand bids can also be divided into these subproblems based 

on areas. This, however, will cause subproblem solutions to 

drastically change across iterations because virtual transactions 

and dispatchable demand bids do not have discrete decision 

variables and are only subject to simple bounds (15)-(17). 

Consequently, their solutions are sensitive to the values of 

Lagrangian multipliers. This, in turn, may cause significant 

changes of multipliers across iterations, resulting in slow 

convergence. Therefore, different from conventional units, all 

virtual transactions and dispatchable demand bids are included 

in every subproblem. The objective function of a subproblem is 

formed by collecting all the terms in (18) associated with 

decision variables belonging to that subproblem while fixing 

decision variables of conventional units belonging to other 

subproblems at their latest available values. For compactness of 

expression, subscripts “j” and “-j” are used to indicate whether 

variables belong to subproblem j or not. For example, 𝐼𝑗 is the 

set of conventional units belonging to subproblem j, and 𝐼−𝑗 is 

the set of conventional units not belonging to subproblem j. The 

objective function of subproblem j at iteration k is thus as 

follows:  
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In the above, 
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indicates the violation of demand constraints. The associated 

absolute-value penalty term is linearized with the introduction 

of the non-negative continuous variables 𝑞𝑡
𝐷,+

 and 𝑞𝑡
𝐷,−

 and the 

following constraint as explained on the page 63 of [25]: 
, , 1( , , , ) .,D D k k k k

t t t j jq q g p p m d t  
               (24) 

In the above, 𝑞𝑡
𝐷,+

 and 𝑞𝑡
𝐷,−

 represent the violation of demand 

constraint at the positive and negative side, respectively. For 

system reserve and transmission capacity constraints, the 

decision variables of units belonging to other subproblems are 

fixed at their latest available values, and constraints (19) and 

(3)-(5) are rewritten as:  
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This subproblem is subject to the updated system reserve 

constraints (25), transmission capacity constraints (26)-(28), 

and unit-level constraints (6)-(17). It is still an MILP problem. 

B. Quick searching process for good-enough feasible 

subproblem solutions  

 In SAVLR, subproblems are solved to satisfy the following 

surrogate optimality condition (Equation (14) of [14]): 
1
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where
1( , , , , , , )k k k k k k k

j j j jL b x p p m d 

 is the “surrogate dual value” 

at iteration k, and is given by:  
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(30) 

The right-hand side of (29) is similarly defined.  
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To satisfy (29), subproblems are normally solved by using 

B&C. This is generally acceptable from the computational 

standpoint, since subproblems are much smaller than the 

original problem. However, for large sub-hourly subproblems, 

e.g., MISO’s, B&C may suffer from poor performance. This 

difficulty is resolved by a novel exploitation of the Ordinal 

Optimization concepts.  

Inspired by the OO concepts introduced in subsection II.D, a 

novel idea to significantly speed up the subproblem solving 

process is as follows. Rather than solving a subproblem by 

using an MILP method such as B&C, “good-enough” feasible 

solutions that satisfy the surrogate optimality condition (29) can 

be quickly obtained through “ordering” solution candidates. 

These candidates can be derived, for example, by modifying 

solutions obtained in the previous iterations for feasibility using 

heuristics, e.g., neighborhood search [19]. They can also be 

obtained by solving a crude subproblem, e.g., an LP relaxed 

version, and then making solutions feasible to the subproblem 

using heuristics. Solution candidates are arranged base on the 

ascending order of the associated surrogate dual values. A good 

enough subproblem solution is then obtained if the solution 

candidate with smallest surrogate dual value satisfies (29) the 

surrogate optimality condition. These ways to obtain 

subproblem solutions are much more computationally efficient 

than by using B&C. Only when good-enough solutions cannot 

be obtained, B&C is used. This approach is therefore much 

faster than solving subproblems exclusively by using B&C as 

will be demonstrated in Section V. 

C. Coordination of subproblem solutions, initialization and 

finding feasible solutions  

This subsection presents the coordination of subproblem 

solutions through updating multipliers and penalty coefficients; 

initialization of subproblem solutions, multipliers and penalty 

coefficients; and finding feasible solutions at the termination of 

iterative subproblem solving and multiplier updating process. 

Updating multipliers and penalty coefficients  

If the surrogate optimality condition (29) is satisfied by the 

solution obtained from the OO concepts, the surrogate 

subgradient is obtained as the values of 1( , , , )k k k k
t j jg p p m d

 in 

(23), and multipliers 𝜆 are updated following (17) of [14]: 

 1 1( , , , ), .t

k k

j

k k k

t

k k

t jg p p m d ts  

    (31) 

In (31), the step size 𝑠𝑘 is obtained following (18-19) of [14]. 

The penalty coefficient 𝑐𝐷 is updated based on (20) of [14]: 

 
, 1 , , 1.D k D kc c      (32) 

When (29) is not satisfied by the solution obtained from the OO 

concepts, B&C is used to solve the problem. If (29) is satisfied 

by the B&C solution, the multipliers 𝜆 and penalty coefficient 

𝑐𝐷  are updated by (31)-(32). Otherwise, the above updating 

process is skipped, and the next subproblem is solved. 

However, if (29) cannot be satisfied for all the J subproblems 

within a major iteration (i.e., all subproblems are solved once), 

then the penalty coefficient 𝑐𝐷 is deemed to be too large, and is 

reduced by following (21) of [14].  

 
,
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As mentioned in subsection IV.A, the penalty coefficient on 

transmission capacity constraints 𝑐𝑇  is a fixed value, and the 

penalty coefficient on system reserve constraints 𝑐𝑅  is 

dynamically increased to minimize the violation of original 

reserve constraints. If any slack variable 𝑠𝑧,𝑡
𝑅  is positive, 𝑐𝑅 is 

increased by multiplying a constant α (>1); and remains the 

same otherwise, i.e.,  
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The above process will lead to the convergence of multipliers 𝜆 

to the optimal 𝜆∗ as presented in Theorem 1 of [14]. 

Initializing subproblems solutions, multipliers and penalty 

coefficients 

The initialization of SAVLR parameters is also implemented 

by using the “good enough” concept. Before the iterative 

subproblem solving process, the hourly LP-relaxed UC 

problem is solved. Its solution is rounded and duplicated to all 

15-minute intervals within the same hour as the initial 

subproblem solutions. They are modified to provide solution 

candidates for the first major iteration as presented in 

subsection IV.B. Lagrangian multipliers are initialized by using 

the results obtained from the hourly LP relaxed UC problem as 

well. The initial penalty coefficients are set to be an order of 

magnitude higher than multiplier values.   

Finding feasible solutions 

The iterative subproblem solving and multiplier updating 

process terminates when stopping criteria are satisfied, e.g., the 

gap calculated against a lower bound is less than a certain 

percentage, the time limit is reached, or each subproblem has 

been solved for a certain number of times. With system-level 

constraints relaxed or softened, subproblem solutions, when put 

together, may not satisfy the original constraints (1)-(17). A 

feasible solution is then constructed by using heuristics. For 

example, subproblem solutions are adjusted by using 

neighborhood search (e.g., the one embedded in Gurobi or 

CPLEX); or a portion of the binary variables is fixed at 

subproblem solution values, and the remaining decision 

variables are solved by using B&C. To measure the quality of a 

feasible solution, the best known lower bound obtained by 

using B&C in advance is used to calculate the optimality gap 

Surrogate optimality 
condition satisfied? 
 

Time limit, or other 

criteria reached? 

Fig. 1. Flowchart of the sequential SAVLR+OO+B&C 
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following (17) in [15]. 

The above approach synergistically incorporates SAVLR, 

Ordinal Optimization, and B&C (SAVLR+OO+B&C), and the 

flow chart is presented in Figure 1. With the unique feature of 

SAVLR that subproblems are not required to be fully 

optimized, the OO concepts significantly speed up the 

subproblem solving process by not using the MILP methods 

unless needed. Furthermore, with the convergence condition  

(29) satisfied at most iterations, the quality of the feasible 

solution obtained at the end is generally good – similar to that 

of solutions obtained by using B&C to solve subproblems, even 

though the quality of subproblem solutions may not be as good 

as that obtained by using B&C. This will be demonstrated in 

numerical testing of Section V. 

D. Parallelization of the method 

 To further reduce the CPU time, a parallel version of the 

approach is developed. The idea is to build subproblem models 

in parallel, and solve them in parallel at each iteration. Results 

from subproblems at each iteration are then merged to form a 

combined solution to update Lagrangian multipliers and penalty 

coefficients. There are, however, several difficulties. First, 

solving all subproblems in parallel at an iteration may lead to 

significant zigzagging of multipliers. This is precisely one of 

the major difficulties of the traditional LR: when all 

subproblems are solved, subgradient, rather than surrogate 

subgradient, are obtained. With “ridges” in the dual function, 

subgradient may change drastically across iterations, leading to 

multiplier zigzagging across ridges and slow convergence. 

Second, as explained in subsection IV.A, all virtual transactions 

and dispatchable demand bids are included in each subproblem. 

There are thus multiple values for each transaction or bid after 

solving multiple subproblems in parallel. Which one should be 

used? Finally, even if each subproblem solved in parallel 

satisfies the surrogate optimality condition, the merged solution 

might not, leading to convergence difficulties.   

 To overcome the above-mentioned difficulties, the following 

steps are taken. First, a small subset of subproblems (10% to 

40% based on testing experience) is solved in parallel in a batch 

in a round-robin manner following the suggestion of [15]. To 

resolve the second and third difficulties identified above, a 

solution checking process is developed when merging 

subproblem results to form a combined solution. The results for 

conventional units from subproblems in the batch are combined 

in multiple ways. By fixing virtual transactions and 

dispatchable demand bids at the values obtained from the 

previous batch of subproblems, the merged solutions can be 

checked whether the surrogate optimality condition (29) is 

satisfied. If (29) is satisfied, values of virtual transactions and 

dispatchable demand bids are then determined by solving an 

extra LP problem with all units’ variables fixed. If no combined 

solution satisfies (29), the solution of the subproblem with the 

lowest surrogate dual value (30) is selected, and there is no need 

to solve the extra LP problem. For example, suppose that three 

subproblems are solved in a batch. A combined solution 

obtained by merging three subproblem results is first checked 

to see if the surrogate optimality condition is satisfied. If so, the 

extra LP problem is solved, and multipliers and the penalty 

coefficient 𝑐𝐷  are updated, and then the next batch of three 

subproblems is solved in parallel. If not, a combined solution 

obtained by merging any two subproblem solutions is checked 

to see if the surrogate optimality condition is satisfied, and the 

process repeats. If no merged solution satisfies (29), then the 

solution of the subproblem with the lowest surrogate dual value 

is selected, and there is no need to solve the extra LP problem. 

The flow chart of the parallel version is presented in Figure 2.  

V.  NUMERICAL TESTING  

Our method, both the sequential and the parallel versions, 

have been implemented by using Gurobi 7.5.0 and Python 2.7. 

Testing has been performed on the HIPPO platform of a MISO 

server with Intel Xeon @2.3GHz, 64GB RAM and 24 cores 

with Linux Redhat 6.6. Two examples of MISO’s UC problems 

are considered with 15 minutes as the time interval over 36 

hours. Example 1 is used to demonstrate the computational 

efficiency of our new method. In Example 2, three additional 

MISO cases with different numbers of units and locations of 

virtual transactions are tested to demonstrate the robustness of 

our method. For both examples, high quality solutions are 

difficult to obtain by using B&C alone within 20 minutes (1200s) 

or 30 minutes (1800s) even for hourly UC.  

Example 1  

 In this example, a MISO 15-min interval UC problem is 

considered over 36 hours. There are 1,105 conventional units, 

15,843 virtual transactions, 75 dispatchable demand bids, and 

227 transmission lines. Following the process of Section IV, the 

problem is decomposed into 10 subproblems, each with roughly 

m=n 

Fig. 2. Flowchart of the parallel SAVLR+OO+B&C  
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110 units and all virtual transactions and dispatchable demand 

bids. The initialization of our method is as follows: the average 

value of initial multipliers is $12.56/MW; the initial penalty 

coefficient is $125.6/MW; the fixed penalty coefficient is 

$2000/MW; and the initial adjustable penalty coefficient for not 

meeting system reserve constraints is $500/MW with the 

growth rate α equal to 1.01. The problem is solved by using 

B&C, SAVLR+B&C (solving subproblems sequentially by 

using B&C), and both sequential and parallel versions of the 

new method. In the parallel version, 3 subproblems are solved 

in parallel in a round robin manner. The stopping criterion is set 

as 1% of the gap (calculated by the feasible solution cost and 

the best known lower bound obtained by B&C in advance). 
TABLE I 

PERFORMANCE OF DIFFERENT METHODS FOR EXAMPLE 1  

Methods 
Solving 

Time (s) 

CPU Time 

(s) 
Gap (%) 

B&C 5211 5443 0.90 

    
SAVLR 

+B&C 
2985 4086 0.90 

    
SAVLR+ 

OO+B&C (sequential)  
1484 3237 0.77 

    
SAVLR+ 

OO+B&C (parallel) 
979 1639 0.84 

 The overall results are summarized in Table I. As can be seen 

from the table, B&C obtains a feasible solution with a gap of 

0.90% after more than 5,000s. For SAVLR+B&C, a feasible 

solution with a gap of 0.90% is obtained after 4,000s. For the 

sequential version of our approach, as shown in the third row of 

Table I, a feasible solution with a gap of 0.77% is obtained after 

3,237s. The total solving time is 1,484s, and the rest are model 

loading and miscellaneous times. For the parallel version of our 

approach, as shown in the last row, a near-optimal solution with 

a gap of 0.84% is obtained after 1,639s.  

 The feasible solutions obtained by using different methods 

over time are compared in Figure 3. Only the parallel version 

of our approach satisfies the stopping criterion of 1% gap within 

the required 1800s (i.e., 30 minutes). In the testing, the new 

method (both sequential and parallel versions) obtains good 

feasible solutions after solving each subproblem only twice 

(i.e., after two “major iterations”), same as that of the 

SAVLR+B&C. Within the new method, B&C was never called 

to solve subproblems. Rather, good-enough feasible 

subproblem solutions are always obtained by modifying 

existing solutions obtained from previous iterations (as part of 

the Gurobi “presolving” process). By doing this, the average 

time to obtain a good-enough feasible solution (both sequential 

and parallel versions) is 53s, which is much less than solving a 

subproblem by using B&C of 162s. Moreover, by applying 

parallelization, the overhead of model building and 

miscellaneous time is much reduced from 1,753s to 660s, and 

the total solving time is reduced from 1,484s to 979s. These 

results show that the OO concepts significantly speed up the 

subproblem solving process. Furthermore, even though our 

subproblems are not solved by using B&C, both sequential and 

parallel versions obtain high quality overall solutions (within 

1% of the gap) after the same number of major iterations as that 

of SAVLR+B&C. Our new method thus significantly 

outperforms B&C and SAVLR+B&C.  

Example 2 

 To demonstrate the robustness of our method, three 

additional cases roughly of the size of Example 1 but with 

different days of the MISO system are tested. Characteristics of 

test cases are summarized in Table II.  

TABLE II 

CHARACTERISTICS OF CASE 1, 2 AND 3 

 # of units 
# of virtual 

transactions 

# of transmission 
constraints each 

interval 

Case 1 1,109 16,504 220 
    

Case 2 1,118 14,955 226 

    
Case 3 1,102 14,482 235 

 These three cases are solved by using B&C and the parallel 

version of our new method. Similar to that of Example 1, the 

problem is decomposed into 10 subproblems; 3 subproblems 

are solved in parallel. The initial values of multipliers and 

penalty coefficients are close to those values of Example 1. 

With 2 major iterations as the stopping criterion for our method, 

and 3,600s (1 hour) as the time limit for B&C, the testing results 

are summarized in Table III.  

TABLE III 

PERFORMANCE OF B&C AND OUR APPROACH FOR CASE 1, 2 AND 3  

 Methods 
Solving  

Time (s) 

CPU  

Time (s) 
Gap (%)  

 B&C 2548 3600 2.00 

Case 1     

 
Our approach 

(parallel) 
990 1409 1.10 

 B&C 2787 3600 4.31 

Case 2     

 
Our approach 

(parallel) 
638 993 3.09 

 B&C 3089 3600 76.00 

Case 3     

 
Our approach 

(parallel) 
619 1016 1.60 

 As can be seen from Table III, after 3,600s, B&C obtains a 

feasible solution with a gap of 2% for Case 1; a feasible solution 
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Gap: 0.9% 0.9% 0.77% 

Fig. 3.  Comparison of the feasible solutions obtained by 
SAVLR+OO+B&C, Pure B&C and SAVLR+B&C over time.  
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with a gap of 4.31% for Case 2; and a feasible solution with a 

gap of 76% for Case 3. By using our parallel version, a feasible 

solution with a gap of 1.10% is obtained after 1,409s for Case 

1; with a gap of 3.09% after 993s for Case 2; and with a gap of 

1.60% after 1,016s for Case 3. Similar to that of Example 1, 

B&C was never called to solve subproblems in Cases 2 and 3. 

For Case 1, B&C was used only twice at the beginning of 

iterations. The above results thus demonstrate that our new 

approach obtains near-optimal solutions in a computationally 

efficient manner for different sub-hourly UC cases, and 

significantly outperforms B&C.  

VI. CONCLUSION 

This paper presents a novel decomposition and coordination 

approach. Instead of formally solving subproblems by using 

MILP methods, good-enough feasible subproblem solutions are 

obtained by modifying existing subproblem solutions or 

solving crude models based on the OO concepts. The approach 

leads to a significant reduction of computational requirements 

to obtain near-optimal solutions of a similar quality as 

compared to SAVLR+B&C.  

Our new approach can be extended to solve stochastic sub-

hourly UC with uncertainties upon further development.  In our 

previous works, uncertainties were explicitly modeled as 

discrete Markov processes. Without considering transmission 

capacity constraints, stochastic hourly UC was solved by using 

B&C [26]. With transmission capacity constraints, a hybrid 

Markovian and interval approach was developed, and after 

linearization, the problem was again solved by using B&C [27]. 

Branch-and-Cut, however, is not able to solve large 

deterministic sub-hourly UC as evident from numerical testing 

results presented in Section V, not to mention stochastic sub-

hourly UC. Our approach presented here is conceivable to solve 

stochastic sub-hourly UC with the OO concepts further 

extended to handle the complicated Markov processes. This 

belief is built on the fact that with decomposition and 

coordination, subproblem complexity is much reduced as 

compared to that of the original problem. Then with the OO 

concepts further extended to appropriately approximate the 

complicated Markov processes, subproblem solving can be fast. 

Our method represents a new optimization concept, and will 

have vital implications on solving other complicated MILP 

problems in power systems and beyond. Our next work will be 

on stochastic sub-hourly UC. 
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