
This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING 1

An Innovative Formulation Tightening
Approach for Job-Shop Scheduling

Bing Yan , Member, IEEE, Mikhail A. Bragin , Member, IEEE, and Peter B. Luh , Life Fellow, IEEE

Abstract— Job shops are an important production environment
for low-volume high-variety manufacturing. Its scheduling has
recently been formulated as an integer linear programming (ILP)
problem to take advantages of popular mixed-integer linear
programming (MILP) methods, e.g., branch-and-cut. When con-
sidering a large number of parts, MILP methods may experience
difficulties. To address this, a critical but much overlooked issue
is formulation tightening. The idea is that if problem constraints
can be transformed to directly delineate the problem convex hull
in the data preprocessing stage, then a solution can be obtained by
using linear programming (LP) methods without combinatorial
difficulties. The tightening process, however, is fundamentally
challenging because of the existence of integer variables. In this
article, an innovative and systematic approach is established for
the first time to tighten the formulations of individual parts, each
with multiple operations, in the data preprocessing stage. It is
a major advancement of our previous work on problems with
binary and continuous variables to integer variables. The idea is
to first link integer variables to binary variables by innovatively
combining constraints so that the integer variables are uniquely
determined by the binary variables. With binary and continuous
variables only, it is proved that the vertices of the convex hull
can be obtained based on vertices of the LP problem after
relaxing binary requirements. These vertices are then converted
to tightened constraints for general use. This approach signif-
icantly improves our previous results on tightening individual
operations. Numerical results demonstrate significant benefits on
solution quality and computational efficiency. This approach also
applies to other complex ILP and MILP problems with similar
characteristics and fundamentally changes the way how such
problems are formulated and solved.

Note to Practitioners—Scheduling is an important but difficult
problem in planning and operation of job shops. The problem has
been recently formulated in an integer linear programming (ILP)
form to take advantage of popular mixed-integer linear program-
ming methods. Given an ILP problem, there must exist a linear
programming (LP) formulation so that all of its vertices are also
the vertices to the ILP problem. If such an LP problem can be
found in the data preprocessing stage, then the corresponding
ILP problem is tight and can be solved by using an LP method

Manuscript received January 24, 2021; revised April 20, 2021; accepted
May 23, 2021. This article was recommended for publication by Associate
Editor C.-B. Yan and Editor J. Li upon evaluation of the reviewers’ comments.
This work was supported in part by the National Science Foundation (NSF)
under Grant ECCS-1810108 and in part by the U.S. Department of Energy
(DoE)’s Office of Energy Efficiency and Renewable Energy through the
Advanced Manufacturing Office under Award DE-EE0007613. (Correspond-
ing author: Bing Yan.)

Bing Yan is with the Department of Electrical and Microelectronic Engineer-
ing, Rochester Institute of Technology, Rochester, NY 14623 USA (e-mail:
bxyeee@rit.edu).

Mikhail A. Bragin and Peter B. Luh are with the Department of Electrical
and Computer Engineering, University of Connecticut, Storrs, CT 06269 USA
(e-mail: mikhail.bragin@uconn.edu; peter.luh@uconn.edu).

Color versions of one or more figures in this article are available at
https://doi.org/10.1109/TASE.2021.3088047.

Digital Object Identifier 10.1109/TASE.2021.3088047

without difficulties. In this article, an innovative and systematic
approach is established to tighten the formulations of individual
parts, each with one or multiple operations. It is a major
advancement of our previous work on problems with binary and
continuous variables by novel exploitation of the relationship
between integer and binary variables in job-shop scheduling.
The resulting tightened constraints are characterized by part
parameters and the length of the scheduling horizon and can be
easily adjusted for other data sets. Results demonstrate significant
benefits on solution quality and computational efficiency. This
approach also applies to other complex ILP and MILP problems
with similar characteristics and fundamentally changes the way
how such problems are formulated and solved.

Index Terms— Formulation tightening, job-shop scheduling,
manufacturing, mixed-integer linear programming (MILP).

I. INTRODUCTION

JOB shops are an important production environment for
low-volume high-variety manufacturing. In a job shop,

machines are usually categorized into different types based
on their functions. With these machines, multiple parts with
different due dates are processed, and each part needs a
sequence of operations to be completed [1]. To meet on-time
deliveries, scheduling of parts is critical. The problem is
to minimize the required objective, e.g., the total weighted
tardiness and the total cycle time, by assigning parts to
machines while satisfying part processing time requirements,
and operation precedence and machine capacity constraints.
It is one of the hardest scheduling problems. Only a few special
cases are polynomially solvable, such as two machines or two
parts, and slightly generalized versions of these problems are
NP-hard [2]. For practical-sized job-shop problems, the opti-
mal solution is difficult to get and the goal is usually to obtain
near-optimal solutions with quantifiable quality.

As reviewed in Section II, some nonlinear job-shop schedul-
ing formulations were established and efficiently exploited by
decomposition and coordination methods. To take advantage of
popular mixed-integer linear programming (MILP) methods,
e.g., branch-and-cut, the problem is recently formulated in an
integer linear programming (ILP) form and is not convex1 with
the existence of integer variables. Branch-and-cut first solves
the linear programming (LP) problem without integrality
requirements. If the solution is feasible to the original MILP
problem, then it is optimal. If not, valid cuts are performed
around the optimal solution of the LP problem on the fly to get

1A set is convex if the line segment between any two points in it lies in it.
A function defined on a convex set is convex if the line segment in-between
any two points on the graph of the function lies above the graph between the
two points.

1545-5955 © 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: UNIVERSITY OF CONNECTICUT. Downloaded on June 26,2021 at 07:44:11 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0002-0126-5524
https://orcid.org/0000-0002-7783-9053
https://orcid.org/0000-0002-5158-7388

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

2 IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING

solutions to the MILP problem. If such solutions are obtained,
the problem is directly solved. If not, the method relies on
time-consuming branching operations.

When considering a large number of parts, the state-of-
the-art and practice MILP methods may experience conver-
gence and quality difficulties. To obtain near-optimal job-shop
schedules fast, a critical but much overlooked issue is for-
mulation transformation. The idea is to transform problem
constraints to directly delineate the convex hull (the smallest
convex set that contains all feasible solutions [3]) in the data
preprocessing stage. If this can be done (i.e., the formulation
is “tight”), then a solution can be obtained by using an
LP method without combinatorial difficulties. Theoretically,
the tighter the formulation, the less the time to obtain solu-
tions with the same quality. The tightening process, however,
is fundamentally challenging without a systematic approach
because of the existence of integer variables (e.g., beginning
time).

In the literature, a few tightened single-part formulations
were reported and shown computationally efficient for the
overall problems. In our previous work [4], [5], a sys-
tematic formulation tightening approach was developed for
mixed-binary linear programming (MBLP) for the first time,
and the method was realized based on power system unit
comment problems. The idea is to derive vertices of the convex
hull of a unit (a generator) without binary requirements. From
them, vertices of the original convex hull are innovatively
obtained. These vertices are converted to tightened constraints,
which are then parameterized based on unit characteristics
for general use in unit commitment problems. The method
was then extended to job-shop scheduling problems with
integer variables in [6]. Our idea is to obtain the vertices
of the convex hull of a part without integrality require-
ments and then approximate noninteger values in vertices
as nearest feasible integers. For each operation, two sets of
tightened constraints related to processing time were obtained.
They were then parameterized by analyzing their patterns
for general use in job-shop scheduling problems. Precedence
constraints were modeled but not tightened. The results were
then extended to consider energy costs as a component of
the objective function in energy-efficient job-shop scheduling
problems in [7]. Results in [4]–[7] demonstrate computa-
tional efficiency and solution quality benefits of formulation
tightening.

In this article, the job-shop scheduling problem is first
formulated in an integer programming form in Section III
following [6], and the objective is to minimize the total
weighted tardiness and the total cycle time. Since tardiness is
a nonlinear function of part completion times, it is linearized
by introducing new binary and continuous variables and the
corresponding constraints to make effective use of MILP
methods. Then, the problem becomes an MILP problem. Since
the complexity of tightening increases with problem sizes,
the focus is on individual parts.

To tighten the formulations of parts with multiple operations
in the data preprocessing stage, an innovative and systematic
approach is established for the first time in Section IV.
This is a major advancement of our previous work as it

is generalized from MBLP to MILP problems with special
structures. The idea is to first link integer variables (e.g.,
beginning time) to binary variables (e.g., part statues) by
innovatively combining constraints so that the integer variables
are uniquely determined by the binary variables. With binary
and continuous variables only, it is proved that the vertices
of the convex hull can be obtained based on vertices of the
LP problem after relaxing binary requirements [4], [5]. Thus,
there is no approximation in the tightening process as those
in [6] and [7]. These vertices are then converted to tightened
constraints. The numbers of resulting tightened constraints and
variables involved, and the constraint coefficients depend on
part parameters. Since all parts must be processed within the
scheduling horizon, the above also depends on the length of the
horizon. For general use purposes, these tightened constraints
are characterized by analyzing constraint structures and the
relationship between coefficients and part parameters as well
as the scheduling horizon.

Since it is difficult to directly tighten the formulation with
multiple operations, the idea is to first tighten the formulation
of a single operation to explore relations among part status
and beginning/completion time. The resulting processing time
and beginning/completion time-related tightened constraints
can be applied to every operation of parts with multiple
operations. Then, the same method is used to tighten the
formulation of two successive operations to explore their
interactions. The resulting precedence-related tightened con-
straints can be used for every two consecutive operations of
parts with multiple operations. The process can be repeated
for the formulation with three and more operations. The
tightening process only needs to be performed once, and
the resulting tightened constraints can be easily adjusted for
other data sets after parameterization and can be directly
applied in the data preprocessing stage, tremendously reduc-
ing online computational requirements. This approach signif-
icantly improves our previous results on tightening individual
operations [6].

Three examples are considered in Section V. The first is
to tighten the formulations for single parts to illustrate the
tightening idea and present insights. Robustness of formulation
tightening is shown in the second example. The last example
is to demonstrate the performance of tightened single-part
formulations when solving the overall job-shop scheduling
problems. Results demonstrate significant benefits on solution
quality and computational efficiency.

Beyond MILP job-shop scheduling problems under con-
sideration, this approach also applies to the other complex
ILP and MILP problems with similar characteristics between
integer and binary variables. It fundamentally changes the
way how such problems are formulated and solved. This
approach goes naturally with decomposition and coordination
approaches, a subject worthy of further exploration.

II. LITERATURE REVIEW

Existing job-shop formulations and solution methodolo-
gies are reviewed in Section II-A. Tightened constraints are
reviewed in Section II-B.

Authorized licensed use limited to: UNIVERSITY OF CONNECTICUT. Downloaded on June 26,2021 at 07:44:11 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

YAN et al.: INNOVATIVE FORMULATION TIGHTENING APPROACH FOR JOB-SHOP SCHEDULING 3

A. Problem Formulations and Solution Methodologies

With large numbers of decision variables and constraints
in job-shop scheduling, developing efficient formulations is
complex [8]. “Separable” and nonlinear formulations were
established and efficiently exploited by decomposition and
coordination-based Lagrangian relaxation methods in [9]–[14].
ILP models were also developed in [15]–[25]. Considering
sequence-dependent setups, an ILP model was established
in [15]. With additional variables, job successors and predeces-
sors were modeled. In our previous work on high-volume and
low-variety manufacturing [25], an ILP model was developed.
However, large-scale problems cannot be effectively solved by
using those models.

To solve job-shop scheduling problems, branch-and-cut has
been widely used. The method solves the LP problem without
integral requirements by using an LP method first. If the
solution has integer values for all integer decision variables,
it is optimal with respect to the original problem. If not,
the method tries to obtain the convex hull by adding valid cuts
to cut off regions outside the convex hull without cutting off
feasible solutions. If successful, the problem is directly solved.
If not, time-consuming branching operations are performed,
resulting in very slow convergence. In [15] and [17]–[25],
the problems were solved by branch-and-cut implemented in
commercial software CPLEX or Gurobi. When considering a
large number of parts, branch-and-cut may experience conver-
gence and quality difficulties.

B. Tightened Constraints

Obtaining a tight formulation is fundamentally difficult and
NP-hard without clear ways. In the literature, few tightening
studies exist on general problems. For traveling salesman prob-
lems, a tightened formulation was obtained based on subtour
elimination [26]. For knapsack problems, tight formulations
were obtained through the use of “structural” disjunctive cuts
based on the problem structure [27].

For manufacturing scheduling, a few tightened constraints
were presented for single parts without explaining how they
were generated. For traditional job-shop scheduling, a few
valid cuts were developed by analyzing problem structures
in [17]. The major idea is to find a ceiling for inventory
shortage and the longest working procedure sequence till
completion for parts. Testing results based on randomly
generated data for 325 instances with 3–5 machines and
4–6 parts demonstrate the computational efficiency of the cuts.
For flow-shop scheduling, subtour elimination constraints and
lower/upper bound mixed-integer inequalities were developed
by analyzing formulation structures in [15], and some of them
are facet-defining cuts. Testing results based on randomly
generated data for problems with 2–6 machines and 7–10 parts
show that the computational time is much reduced with
these tightened constraints. For both studies, testing results
demonstrate the computational efficiency of these tightened
constraints.

In our previous work [4], [5], a systematic formulation
tightening approach was developed for MBLP problems for the
first time, and the method was realized based on power system

unit comment problems. It is based on novel integration of
“constraint-and-vertex conversion,” “vertex elimination,” and
“parameterization” processes to tighten single-unit formula-
tions. Our idea is to derive vertices of the convex hull of a unit
(a generator) without binary requirements. From them, vertices
of the original convex hull are innovatively obtained by
eliminating vertices with fractional values for binary variables
with rigorous proof. These vertices are converted to tightened
constraints, which are then parameterized based on unit char-
acteristics for general use in unit commitment problems. The
method was then extended to job-shop scheduling problems
with integer variables in [6]. Our idea is to obtain the vertices
of the convex hull of a part without integrality requirements
and then approximate noninteger values in vertices as nearest
feasible integers. For each operation, two sets of tightened con-
straints related to processing time were obtained. They were
then parameterized by analyzing their patterns for general use
in job-shop scheduling problems. Precedence constraints were
modeled but not tightened. The results were then extended to
consider energy costs as a component of the objective func-
tion in energy-efficient job-shop scheduling problems in [7].
Results in [4]–[7] demonstrate computational efficiency and
solution quality benefits of formulation tightening.

III. JOB-SHOP SCHEDULING FORMULATION

Consider a job shop with multiple machines categorized
into M types based on their functionalities. By using these
machines, I parts with different due dates need to be
processed, and the part index is i . Part i requires Ji operations,
and the operation index is j . It is assumed that the scheduling
horizon is long enough so that all parts can be processed.
The horizon is discretized into K time slots and let k denote
the time index. Assuming that system-level machine capacity
constraints are relaxed, a single-part scheduling problem is
formulated based on our previous work [6] in Section III-A
(part index i is omitted for brevity). Machine capacity con-
straints and the objective function are briefly described in
Section III-B.

A. Single-Part Formulation

For a part with J operations, the main decision variables are
beginning time b j and completion time c j for each operation
j , both integer variables. To capture the status of operation j
at time k, i.e., active (processed) or not, binary variables δ jmk

with operation j , machine group m, and time k indices are
considered

δ jmk

=
{

1, if operation j is active on machine type m at time k

0, otherwise.

Here, the machine group concept is considered instead of
individual machines since machines are usually categorized
into different types based on their functions in a job shop.
With machine groups, the decision space is much reduced, and
the problem complexity is thus much reduced. The choice of
machines within the same group will be based on heuristics
after optimization and is not captured in the formulation.

Authorized licensed use limited to: UNIVERSITY OF CONNECTICUT. Downloaded on June 26,2021 at 07:44:11 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

4 IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING

Since the processing time p jm is machine-type-dependent,
a new set of binary decision variables is defined to iden-
tify the assignment of operation j to machine type m as
follows:

x jm =
{

1, if operation j is assigned to machine type m

0, otherwise.

Part-level constraints are processing time requirements,
operation precedence constraints, and machine-type assign-
ment constraints. Modeling of linearized tardiness is also
included.

1) Processing Time Requirements: Because of the “non-
preemption,” a contiguous time period with length of p jm is
needed to process operation j , i.e.,

c j = b j +
∑

m∈M j

x jm p jm − 1, ∀ j (1)

where M j denotes the set of machine types that can process
operation j of part i (part index i is omitted). Since processing
time p jm is generally machine-type-dependent, the actual
processing time depends on the assignment of machine types.

Since δ jmk represents the status of the part, δ jmk must be
1 within [b j , c j] if machine type m is assigned to process
operation j and 0 otherwise, i.e.,

δ jmk =
{

1, if b j ≤ k ≤ c j and x jm = 1

0, otherwise.
(2)

Logical (2) is linearized as follows:

k ≤ c j + N

⎛
⎝1 −

∑
m∈M j

δ jmk

⎞
⎠, ∀ j, ∀k (3)

k ≥ b j − N

⎛
⎝1 −

∑
m∈M j

δ jmk

⎞
⎠, ∀ j, ∀k (4)

∑
k

δ jmk = x jm p jm, ∀ j, ∀m (5)

where N is a big number. It can be seen that (3)–(5) guarantee
that δ jmk = 1 iff b j ≤ k ≤ c j and x jm = 1, and δ jmk =
0 otherwise.

2) Operation Precedence Constraints: It is assumed that
the operation sequence of a part is fixed, and operation j +
1 cannot start until j is finished, i.e.,

b j+1 ≥ c j + 1, ∀ j. (6)

Also, the part cannot start the process of the first operation
until it arrives at time a, i.e.,

b1 ≥ a. (7)

3) Machine-Type Assignment Constraints: Operation j can
only be assigned to one machine type, i.e.,∑

m∈M j

x jm = 1, ∀ j. (8)

Also, if a machine type cannot process operation j of
part i , then the assignment variable should be 0, i.e.,

x jm = 0, ∀ j, m /∈ M j . (9)

4) Linearized Tardiness: Tardiness T is formulated as
follows:

max(cJ − d, 0) (10)

where d is the due date. To represent this, a piecewise linear
function is used, as shown in Fig. 1.

As shown in the figure, the lower and upper bounds of cJ −d
are

∑
j minm∈M j p jm − d and K − d , and the corresponding

tardiness is 0 and K −d . The three break points of this function
on the x-axis are

∑
j minm∈M j p jm − d , 0, and K − d (if∑

j minm∈M j p jm − d < 0 < K − d), and the corresponding
values at the y-axis are 0, 0, and K − d . This piecewise
linear function is linearized by using special ordered set
techniques [28]. Three continuous variables w1, w2, and w3

(0 ≤ w1, w2, w3 ≤ 1) are considered to represent the weights
of the three points. In addition, three binary variables α1, α2,
and α3 are used to set up upper bounds for these weights. The
constraints are as follows:

cJ − d =
⎛
⎝∑

j

min
m∈M j

p jm − d

⎞
⎠ω1 + 0ω2 + (K − d)ω3

(11)

T = oω1 + 0ω2 + (K − d)ω3 (12)

αl ≥ ωl, 1 ≤ l ≤ 3 (13)

α1 + α3 ≤ 1 (14)∑
l

ωl = 1 (15)

∑
l

αl = 2. (16)

For simplicity, instead of
∑

j minm∈M j p jm − d and K − d ,
two break points −K and 2K are used for all parts (d could
be negative). Here and later in the article, the max function is
kept for compactness of notation.

B. Machine Capacity Constraints and Objective Function

For completeness, machine capacity constraints and the
objective function are briefly described in this section.

1) Machine Capacity Constraints: For each machine type
m, the total number of active parts cannot exceed machine
capacity Mm at any time slot, i.e.,∑

∀(i, j)∈Om

δi jmk ≤ Mm , ∀m, ∀k. (17)

In the above, (i , j) denotes operation j of part i , and Om

denotes the set of (i , j) that can be processed by machine
type m.

2) Objective Function: The objective function is to mini-
mize the weighted sum of total tardiness and total cycle time,
i.e.,

ω
∑

i

(
ωT

i max(ci Ji −di , 0)
)+(1 − ω)

∑
i

(
ci Ji −ai,1

)
(18)

where ω is the weight for total tardiness and ωT
i is for part i .

The job-shop scheduling problem with (1), (3)–(9), and
(11)–(18) established above is an MILP problem. Most of the

Authorized licensed use limited to: UNIVERSITY OF CONNECTICUT. Downloaded on June 26,2021 at 07:44:11 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

YAN et al.: INNOVATIVE FORMULATION TIGHTENING APPROACH FOR JOB-SHOP SCHEDULING 5

Fig. 1. Tardiness function.

Fig. 2. (a) Convex hull of a BLP problem with binary variables x1 and x2.
(b) Convex hull of its integer-relaxed problem.

decision variables are binary (e.g., δ and x). There are also a
few integers (e.g., b and c) and continuous variables (i.e., w).
If every operation of each part can only be processed on one
machine type, then there is no need to consider machine-type
assignment variable x , and machine-type index m for part sta-
tus variable δ can be deleted. The machine capacity constraints
and objective function are linear but irrelevant for tightening.

IV. FORMULATION TIGHTENING

Building upon our previous work [4]–[7], an innovative
and systematic method is established to tighten the above
single-part formulation in Section IV-A. A numerical example
is also presented to illustrate the tightening idea. Tightness is
proved in Section IV-B.

A. Formulation Tightening

In our previous work on power system unit comment
problems, a systematic approach is developed to tighten MBLP
problems [4], [5]. To illustrate the idea, consider a simple
binary linear programming (BLP) problem in Fig. 2 with two
binary variables x1 and x2, and x1 + x2 ≥ 0.5. After relaxing
binary requirements, the vertices [blue dots in Fig. 2(b)] of
the convex hull [blue lines in Fig. 2(b)] to the integer-relaxed
problem are obtained. Then, the vertices [red dots in Fig. 2(a)]
of the original convex hull [red lines in Fig. 2(a)] can be
obtained by simply eliminating the vertices with factional
values [open blue dots in Fig. 2(b)] [4], [5]. These vertices
are then converted to tightened constraints for general use.
The idea to tighten MBLP problems is the same.

For ease of presentation, the following terms are defined.
Definition 1: For an MBLP problem, if the integrality

requirements are relaxed, the resulting convex hull is defined
as the “integer-relaxed convex hull.” In terms of the simple
example described above, the integer-relaxed convex hulls are
defined by blue lines in Fig. 2(b).

Definition 2: For an integer-relaxed convex hull of an MBLP
problem, a vertex consists of integral and real components.
If all integral components have integer values, then it is called
an “integral vertex.” Otherwise, it is called “fractional vertex.”
In terms of the simple example above, integral and fractional
vertices are denoted by solid and open blue dots, respectively,
in Fig. 2(b).

The above definitions can apply to an MILP problem.

Fig. 3. Flowchart of formulation tightening.

To apply the MBLP tightening idea to tighten the MILP
problem under consideration, the relationship that integer
variables (e.g., beginning time b) are uniquely determined by
binary variables (e.g., part status δ and machine-type assign-
ment variable x) is innovatively established as to be proved in
Section IV-B. Therefore, the MBLP principle of eliminating
fractional vertices with respect to δ and x described above can
be applied.

Since it is difficult to directly tighten the formulation with
multiple operations, the idea is to first tighten the formulation
of a single operation to explore relations among part status and
beginning/completion time. The resulting processing time and
beginning/completion time-related tightened constraints can be
applied to every operation of parts with multiple operations.
Then, the same method is used to tighten the formulation of
two successive operations to explore their interactions. The
resulting precedence-related tightened constraints can be used
for every two consecutive operations of parts with multiple
operations. The process can be repeated for the formulation
with three and more operations.

1) One Operation: Given part parameters (due date d ,
processing time p, and arrival time a) and the length of
the scheduling horizon (K) in numerical values, tightened
constraints are established by an innovative and systematic
method through four steps, as shown in Fig. 3.

Step 1 (Constraint-to-Vertex Conversion): After relaxing
integrality requirements, the constraints are converted to the
vertices of the integer-relaxed convex hull. The conversion is
done by algebraic manipulation of part parameters and the
scheduling horizon length with algorithms [29] well estab-
lished in existing software Porta [30]. The constraints are
input, and the output is vertices in numerical values.

Step 2 (Vertex Elimination): If all vertices obtained in Step 1
are integral, the formulation is tight. If not, fractional vertices
are projected onto the original convex hull. For this particular
problem, all integral vertices of the integer-relaxed convex hull
are the same as the vertices of the original convex hull and
vice versa, as will be proved in Section IV-B. Thus, vertex
projection can be done by eliminating factional vertices.

Step 3 (Vertex-to-Constraint Conversion): In this step,
the vertices obtained in Step 2 are converted back to tightened
constraints by using Porta as a reverse process of that in Step 1.
The resulting formulation with those constraints should be
tight.

Step 4 (Parameterization): Constraints obtained above have
coefficients in numerical values. To make them reusable for

Authorized licensed use limited to: UNIVERSITY OF CONNECTICUT. Downloaded on June 26,2021 at 07:44:11 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

6 IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING

Fig. 4. Original constraints of a single operation problem.

other parts, the idea is to convert numerical coefficients to part
parameters (e.g., processing time) and the total number of time
slots in the scheduling horizon. This parameterization is done
by analyzing constraints and the relationship between numeri-
cal coefficients and part parameters and the scheduling horizon
length. It is verified by checking the physical meanings of the
resulting constraints with coefficients in part parameters and
the scheduling horizon length under all possible combinations
of binary variables. The resulting tightened constraints can be
easily adjusted for problems with other data sets.

For a single part, the number of tightened constraints,
the number of variables involved, and constraint coefficients
depend on part parameters and the length of the scheduling
horizon. For example, consider the first operation of a part
with p = 3 and K = 5, and assume that this operation
can only be processed on one machine type. Because of
“nonpreemption,” a contiguous time period with length of 3
is needed to process this operation. If the first time block
is taken, then the contiguous time period cannot go beyond
time block 3; otherwise, the process is disjunctive. Therefore,
δ1 + δ4 ≤ 1 and δ2 + δ5 ≤ 1. Since the assumption is that
the scheduling horizon is long enough so that the operation
can be processed, δ1 + δ4 = 1 and δ2 + δ5 = 1. For the same
part with K = 6, there is one more similar constraint. Note
that after parameterization, the resulting tightened constraints
can be used for individual operations of parts with multiple
operations.

Numerical Example: To illustrate the above approach,
a numerical example is presented. Consider the first operation
of a prat with p = 3 and K = 8, and assume that this operation
can only be processed on one machine type. Decision variables
include part status δk , beginning time b, and completion
time c. Constraints are processing time requirements (1) and
(3)–(5). Without integrality requirements, the constraints to
Porta are shown in Fig. 4.

By constraint-to-vertex conversion, 1234 vertices are
obtained and the last ten are shown in Fig. 5. Six integral
vertices remain after eliminating factional vertices, as shown
in Fig. 6. By vertex-to-constraint conversion, tight constraints
are generated by Porta in Fig. 7.

Fig. 5. Vertices of the LP problem.

Fig. 6. Integral vertices.

Equalities (2), (3), and (5) in Fig. 7 are converted to a set
of processing time-related tightened constraints as follows:

δ1 + δ4 + δ7 = 1 (19a)

δ2 + δ5 + δ8 = 1 (19b)

δ3 + δ6 = 1. (19c)

Because of “nonpreemption,” a contiguous time period with
length of 3 is needed to process this operation. If the first
time block is taken, then the contiguous time period cannot go
beyond time block 3, and otherwise, the process is disjunctive.
Therefore, δ1 + δ4 + δ7 ≤ 1. Since it is assumed that the
scheduling horizon is long enough so that the part can be
processed, δ1 + δ4 + δ7 = 1 as shown in (19a). Similarly, one
δ from time slots 2, 5, and 8 must be 1 as shown in (19b), and
one δ from time slots 3 and 6 must be 1 as shown in (19c).
Given (19) and binary requirements of δ, inequalities (11)
and (12) in Fig. 7 are redundant. The processing time-related
tightened constraint set has been reported in our previous
work [6].

The above set of tightened constraints can be generalized
for all operations with different processing time as follows:
τ=�K/p j m�:p j mτ+k≤K∑

τ=0

δ jm,k+p j mτ = x jm, m ∈ M j , k ∈ [1, p jm].
(20)

2) Two Operations: Now, consider two operations. Given
part parameters (due date d , processing time p1 and p2, and
arrival time a) and the scheduling horizon length in numerical
values, tightened constraints are established as follows.

For the first and second operations, they have their own
constraints, such as processing time requirements. There is
also an operation precedence constraint that couples the two
operations together. Denote the operation-level constraints for
the first and second operations as C1 and C2, respectively,
and the coupling constraint as C1−2. Apply the tightened con-
straints obtained by tightening the single operation formulation
to C1 and C2, and obtain TC1 and TC2, respectively. With
the constraint set {TC1, TC2, C1−2}, tighten the two-operation
formulation through the four steps presented above and
obtain tightened constraints across two operations as TC1−2.

Authorized licensed use limited to: UNIVERSITY OF CONNECTICUT. Downloaded on June 26,2021 at 07:44:11 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

YAN et al.: INNOVATIVE FORMULATION TIGHTENING APPROACH FOR JOB-SHOP SCHEDULING 7

Fig. 7. Tightened constraints.

Note that after parameterization, TC1−2 can be used for every
two consecutive operations of parts with multiple operations.

Similar to the tightened constraints for every operation,
the tightened constraints across two operations also depend
on part parameters and the length of the scheduling horizon.
For example, consider a part with p1 = 3 and p2 = 1, and
K = 5. Because the part must be processed in the scheduling
horizon, the latest completion time of operation one is 4 as
operation two needs one time slot after it, and thus, δ1,5 =
0. Similarly, the earliest beginning time of operation two is
4 as operation one needs three time slots before it, and thus,
δ2,1 = δ2,2 = δ2,3 = 0.

3) Multiple Operations: With tightened constraints for
individual operations and every two consecutive operations,
the tightening process is repeated for parts with more oper-
ations. Since the number of vertices increases exponentially
in constraint-and-vertex conversion and so does the number
of constraints, it is difficult to obtain a tight formulation. Our
goal is thus to obtain “near-tight” formulations by partially
tightening.

B. Tightness Proof

Tightness proof is established in Theorem 1.
Theorem 1: For the formulation of a single operation

described by (1), (3)–(5), (8), (9), and (11)–(16), the inte-
gral vertices (Definition 2) of its integer-relaxed convex hull
(Definition 1) Conv(PMILP−IR) are the vertices of the convex
hull Conv(PMILP) of the original problem and vice versa.

Proof: The proof will be conducted in two steps. The
major step is to show that the values of integer decision
variables can be uniquely determined by the values of binary
variables. The remaining step is to prove that integral vertices
of the integer-relaxed convex hull Conv(PMILP−IR) are the
vertices of the original convex hull Conv(PMILP) based on
the theorems developed for MBLP problems in our previous
work [5].

1) Step 1—Integer Variables Can Be Uniquely Determined
by Binary Variables: An integral vertex of the integer-relaxed
convex hull is feasible to the original MILP problem. Now,
consider one operation. Since “nonpreemptive” processing
time requirements modeled in (3)–(5) are satisfied, a contigu-
ous time period of length

∑
m∈M xm pm (operation index j is

omitted for brevity, and it is assigned to one machine type in
set M that can process this operation) should be assigned to
process this operation. For any time k0 such that 1 ≤ k0 ≤ K

–
∑

m∈M xm pm + 1, without loss of generality, it is assumed
that this operation is processed during the time interval [k0,
k0 +∑

m∈M xm pm−1]. Because of (5),
∑

m∈M xm pm time slots
will be occupied, and because of (3) and (4), these time slots
will be contiguous. Since the operation is processed during
time slot k ∈ [k0, k0 + ∑

m∈M xm pm − 1], then
∑

m∈M δmk

equals 1 during these time slots and 0 otherwise as required
by the processing time requirements (5). Therefore, the terms
with big number N in (3) and (4) disappear. By replacing c
as b + ∑

m∈M xm pm − 1 in (3) and combining (3) and (4),
the following inequality is obtained:

b ≤ k ≤ b +
∑
m∈M

xm pm − 1. (21)

To analyze the relationship between b and k0, (21) is
evaluated at the two extreme points of k in [k0, k0 +∑

m∈M xm pm − 1]. First, set k as k0, and (21) becomes

b ≤ k0 ≤ b +
∑
m∈M

xm pm − 1. (22)

Then, set k as k0 + ∑
m∈M xm pm − 1, and (21) becomes

b ≤ k0 +
∑
m∈M

xm pm − 1 ≤ b +
∑
m∈M

xm pm − 1. (23)

Equation (23) can be rewritten as

b −
∑
m∈M

xm pm + 1 ≤ k0 ≤ b. (24)

Combining (22) and (24), obtain k0 ≤ b ≤ k0, which implies
that b = k0. Then, c can be described as k0 +∑

m∈M xm pm −1.
Therefore, the values of δ and x uniquely determine the values
of b and c.

The above implies that when δ and x are binary and (3)–(5)
are all satisfied, the values of integer decision variables b and
c can be uniquely determined by the values of binary decision
variables δ and x . Therefore, given a vertex of integer-relaxed
convex hull Conv(PMILP−IR), if all the binary variables have
binary values, then the integer variables have integral values.
Thus, the MILP problem under consideration can be treated
as an MBLP problem in the tightening process.

2) Step 2—Tightness of MILP Problems: For an MBLP
problem, it has been proved that the integral vertices of its
integer-relaxed convex hull are all vertices of the original
convex hull in our previous work [5] and vice versa. Since
the MILP problem under consideration can be treated as an
MBLP problem in the tightening process, integral vertices of
its integer-relaxed convex hull Conv(PMILP−IR) are the vertices
of original convex hull Conv(PMILP) and vice versa.

End: Based on Theorem 1, vertex projection can be simply
done by eliminating factional vertices in Step 2 to tighten the
single operation formulation. For parts with multiple opera-
tions, since the relations between b, δ, and x within individual
operations still hold, the values of b and c can be uniquely
determined by the values of δ and x . Thus, the formulation
is still tight by applying the same idea as that for the single
operation.

Generalization: Beyond MILP job-shop scheduling prob-
lems under consideration, this approach also applies to other

Authorized licensed use limited to: UNIVERSITY OF CONNECTICUT. Downloaded on June 26,2021 at 07:44:11 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

8 IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING

complex ILP and MILP problems with similar characteristics
between integer and binary variables.

V. NUMERICAL RESULTS

The above tightening method is implemented by using
Porta [30]. The job-shop scheduling problems are solved by
using IBM ILOG CPLEX Optimization Studio V 12.8.0.0 [31]
on a PC with 2.40-GHz Intel Xeon E-2286M CPU and
32-GB RAM. Three examples are presented. The first is to
tighten the formulations of single parts to illustrate the idea
and present the insights. Robustness of formulation tightening
is shown in the second example. The last example is to
demonstrate performance of tightened single-part formulations
when solving the overall problems.

A. Example 1: Single Part

1) One Operation: Consider the scheduling problem for
the first operation of a prat with p = 3 and K = 8 used
in Section IV-A. Constraints (2), (3), and (5) in Fig. 7 have
been explored in Section IV-A, and inequalities (11) and (12)
are redundant given the binary requirements of δ. Therefore,
the focus is on exploring inequalities (6)–(10) and equali-
ties (1) and (4) in Fig. 7.

a) Inequality constraints: Inequality (9) in Fig. 7 is con-
verted to a set of processing time-related tightened constraints
as follows:

δ2 + δ3 ≤ 2(δ1 + δ4) (25a)

δ3 + δ4 ≤ 2(δ2 + δ5) (25b)

δ4 + δ5 ≤ 2(δ3 + δ6) (25c)

δ5 + δ6 ≤ 2(δ4 + δ7) (25d)

δ6 + δ7 ≤ 2(δ5 + δ8). (25e)

Equation (25a) implies that if δ2 and δ3 are both 1, either
δ1 or δ4 must be 1 because of “nonpreemptive” processing
time requirements, similar for (25b)–(25e). The above set of
processing time-related tightened constraints has been reported
in our previous work [6].

The above set of tightened constraints can be generalized
for all operations with different processing times as follows:
k+p j m−1∑
τ=k+1

δ jmτ ≤ (p jm − 1)
(
δ jmk + δ jm,k+p j m

)
,

m ∈ M j , k ∈ [1, K − p jm]. (26)

Equation (26) implies that if δ jmτ are all 1, either δ jmk or
δ jm,k+p j m must be 1.

When examining inequalities (6)–(10) in Fig. 7 as a group,
they can be put together in the matrix form as follows:⎛

⎜⎜⎜⎜⎝
0 0 0 0 −1
0 0 0 −1 1
0 0 −1 1 0
0 −1 1 0 −1

−1 1 0 −1 1

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝

δ4

δ5

δ6

δ7

δ8

⎞
⎟⎟⎟⎟⎠ ≤ 0. (27)

Note that δ1–δ3 do not show up in (27). The reason is that
if δ4–δ8 are properly regulated to satisfy the “nonpreemptive”

TABLE I

CONSTRAINT ANALYSIS FOR (27-2)

TABLE II

CONSTRAINT ANALYSIS FOR (27-4)

Fig. 8. Intuitive description of (27). (a) If δ8 = 1 then δ7 = 1. (b) If δ7 = 1
then δ6 = 1. (c) If δ6 = 1 then δ5 = 1 or δ8 = 1. (d) If δ5 = 1 then δ4 = 1
or δ7 = 1.

processing time requirements by (27), and then, δ1–δ3 are
expected to satisfy the requirements because of the processing
time-related tightened constraint (19). In addition, although
the first row of (27), denoted as (27-1), is redundant given the
binary requirements of δ, it helps put the constraints together
in a square matrix form. Physical meanings of (27-2)–(27-5)
are analyzed one by one in the following.

Physical meanings of (27-2) under all combinations of
binary variables involved are shown in Table I.

It can be seen that (27-2) guarantees that if δ8 is 1, δ7

must be 1 as implied by the second row of Table I. This is
reasonable because the last possible three time slots to process
the operation are 6–8, given that the processing time is 3. If the
eighth time slot is taken, then the seventh must be taken too,
and otherwise, the operation cannot be completed within the
scheduling horizon. The physical meaning of (27-3) is similar,
and if δ7 is 1, δ6 must be 1, given that the processing time
is 3.

Physical meanings of (27-4) under all combinations of
binary variables involved are shown in Table II.

It can be seen that (27-4) guarantees that δ6 cannot be
1 when δ5 and δ8 are both 0 as implied by the third row
of Table II. In other words, if δ6 is 1, one of δ5 and δ8 has to
be 1. This is reasonable because if neither the fifth time slot

Authorized licensed use limited to: UNIVERSITY OF CONNECTICUT. Downloaded on June 26,2021 at 07:44:11 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

YAN et al.: INNOVATIVE FORMULATION TIGHTENING APPROACH FOR JOB-SHOP SCHEDULING 9

nor the eighth is taken, then the sixth cannot be taken based
on the processing time requirement. Note that Case 8 is not
feasible because δ5 and δ8 cannot be 1 at the same time as
guaranteed by (19b).

Physical meanings of (27-5) under all combinations of
binary variables involved are shown in Table VI in the Appen-
dix, as well as the analysis. The physical meanings of (27) can
be intuitively shown in Fig. 8.

In Fig. 8(a), if δ8 is 1, then δ7 must be 1. In Fig. 8(b), if δ7

is 1, then δ6 must be 1. In Fig. 8(c), if δ6 is 1, then one of δ5

and δ8 has to be 1. In Fig. 8(d), if δ5 is 1, then one of δ4 and
δ7 has to be 1. Equation (27) with the processing time-related
tightened constraint (19) guarantees a contiguous time period
with a length of 3 to process the operation. For example, if δ6

is 1, there are two possibilities: 1) δ8 is 1 or 2) δ5 is 1. The
first situation is simple since δ7 will be 1 when δ8 is 1, and
thus, time slots 6–8 are used to process the operation. For
the second situation, δ5 is 1, and there are two possibilities
again: 1) δ4 is 1 or 2) δ7 is 1. For the first situation, time slots
4–6 are used to process the operation. For the second situation,
time slots 5–7 are used. Among all situations described above,
a contiguous time period with length of 3 is guaranteed to
process the operation. A similar analysis can be performed
for other δ.

With further analysis on the meanings of (27), it can be
extended to a set of tightened constraints (28) for problems
with longer time periods as follows:⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

. . . 0 0 0 0 0 0 0 0 −1

. . . 0 0 0 0 0 0 0 −1 1

. . . 0 0 0 0 0 0 −1 1 0

. . . 0 0 0 0 0 −1 1 0 −1

. . . 0 0 0 0 −1 1 0 −1 1

. . . 0 0 0 −1 1 0 −1 1 0

. . . 0 0 −1 1 0 −1 1 0 −1

. . . 0 −1 1 0 −1 1 0 −1 1

. . . −1 1 0 −1 1 0 −1 1 0

. . . 1 0 −1 1 0 −1 1 0 −1

. .

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

δ4

δ5

δ6

δ7

δ8

δ9

δ10

δ11

. . .
δK

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

≤ 0.

(28)

The entries ynh of the above matrix are presented as follows.

Let n + h = K − 3 + z, z ∈ Z

ynh =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0, z ≤ 0

−1, z > 0 and z mod 3 = 1

1, z > 0 and z mod 3 = 2

0, z > 0 and z mod 3 = 0.

(29)

The meaning of (28) is similar to (27). For example, when
δk is 1, the meaning is intuitively shown in Fig. 9.

For example, if δk is 1, there are two possibilities: 1) δk−1 is
1 or 2) δk+2 is 1. For Case 1), there are two possibilities again:
1) δk−2 is 1 or 2) δk+1 is 1. For each of them, a contiguous time
period with length of 3 is guaranteed to process the operation.
For Case 2), δk+2 is 1, and there are two possibilities again:
1) δk+1 is 1 or 2) δk+4 is 1. For Case (2.1), a contiguous time
period with length of 3 is guaranteed to process the operation.
For Case (2.2), according to (28), one of δk+3 and δk+6 has

to be 1. This is contradictory with (20), where δk+3 and δk+6

have to be zero as δk is 1. Among all the situations described
above, a contiguous time period with length of 3 is guaranteed.
A similar analysis can be performed for other δ.

When the processing time is 2 and 4, the corresponding
sets of tightened constraints for problems with longer time
periods are shown in (30) and (32), respectively. Their entries
are presented in (31) and (33)⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

. . . 0 0 0 0 0 0 0 0 −1

. . . 0 0 0 0 0 0 0 −1 1

. . . 0 0 0 0 0 0 −1 1 −1

. . . 0 0 0 0 0 −1 1 −1 1

. . . 0 0 0 0 1 1 −1 1 −1

. . . 0 0 0 1 −1 −1 1 −1 1

. . . 0 0 0 −1 1 1 −1 1 −1

. . . 0 0 −1 1 −1 −1 1 −1 1

. . . 0 −1 1 −1 1 1 −1 1 −1

. . . −1 1 −1 1 −1 −1 1 −1 1

. .

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

δ3

δ4

δ5

δ6

δ7

δ8

δ9

δ10

. . .
δK

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

≤ 0

(30)

P = 2, n + h = K − 2 + z, z ∈ Z

ynh =

⎧⎪⎨
⎪⎩

0, z ≤ 0

−1, z > 0 and y mod 2 = 1

1, z > 0 and y mod 2 = 0

(31)

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

. . . 0 0 0 0 0 0 0 0 −1

. . . 0 0 0 0 0 0 0 −1 1

. . . 0 0 0 0 0 0 −1 1 0

. . . 0 0 0 0 0 −1 1 0 0

. . . 0 0 0 0 −1 1 0 0 −1

. . . 0 0 0 −1 1 0 0 −1 1

. . . 0 0 −1 1 0 0 −1 1 0

. . . −1 1 0 0 1 1 0 0

. . . −1 1 0 0 −1 1 0 0 −1

. . . 1 0 0 −1 1 0 0 −1 1

. .

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

δ5

δ6

δ7

δ8

δ9

δ10

δ11

δ12

. . .
δK

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

≤ 0.

(32)

P = 4, n + h = K − 4 + z, z ∈ Z

ynh =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

0, z ≤ 0

−1, z > 0 and y mod 4 = 1

1, z > 0 and y mod 4 = 2

0, z > 0 and y mod 4 = 3

0, z > 0 and y mod 4 = 0.

(33)

b) Equality Constraints: With further analysis on the
meanings of equalities (1) and (4) in Fig. 7 under all possible
part statuses, i.e., active or not at each time slot, two new sets
of beginning/completion time-related tightened constraints are
obtained as follows:

b = K − p+1 − 2(δ1+δ2) − (δ3+δ4+δ5) − 0(δ6+δ7+δ8)

(34)

c = −0(δ8+δ7)+K δ6 − (δ5+δ4)+(K − 1)δ3 − 2(δ2+δ1).

(35)

Since the processing time is p and the operation must be
completed within the scheduling horizon, the largest beginning

Authorized licensed use limited to: UNIVERSITY OF CONNECTICUT. Downloaded on June 26,2021 at 07:44:11 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

10 IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING

time is K − p + 1 with δ6–δ8 as 1 as implied in (34). When the
starting of nonzero δ moves earlier, b gets smaller. The earlier
δ, the larger the negative impacts on b. The meaning of (35)
is similar. The largest completion time is K with δ6–δ8 as 1.
When the starting of nonzero δ moves earlier, c gets smaller.
It can be verified that these constraints are meaningful under
all possible part statuses of δ1–δ8.

The above two tightened constraints can be generalized for
all operations with different processing times as follows:
b j = K −

∑
m∈M j

x jm p jm + 1

−
∑

m∈M j

n=�K/p j m�∑
n=0

n

⎛
⎝τ=p j m−1:np j m+τ<K∑

τ=0

δ jm,K−np j m−τ

⎞
⎠
(36)

c j =
∑

m∈M j

n=�K/p j m�∑
n=0

×
(

−n
(∑τ=p j m−2:np j m+τ<K

τ=0 δ jm,K−np j m−τ

)
+(K − n)

∑τ=1:np j m+p j m−τ<K
τ=1 δ jm,K−np j m−p j m+τ

)
.

(37)

Equations (20), (26), (36), and (37) directly constrain
δ1–δ8, b, and c within one operation. For the single-operation
part problem with p = 3 and K = 8 under consideration,
with (19) and (25), the total number of vertices decreases
from 1234 to 250 in a major way. With (34) and (35), it is
further reduced to 42. After replacing (25) by (27), the total
number of vertices is 6, and all of the vertices are integral
vertices, implying that the formulation is tight. For the single
operation scheduling problem with the processing time as 1–4,
tight formulations are obtained.

2) Two Operations: Now, add another operation with a
processing time of 3 to the problem in Section V-A1, with
additional operation precedence constraint (6). For each oper-
ation, decision variables include b, c, and one set of δk . With
the standard formulation established in Section III, after relax-
ing integrality requirements, 63 872 vertices are obtained by
constraint-to-vertex conversion. After applying (20) and (26)
obtained in the one-operation example to both operations,
a total number of 23 206 vertices remains. With (36) and (37)
applied to both operations, 333 vertices remain. After elimi-
nating factional vertices, there are six integral vertices. After
vertex-to-constraint conversion, the resulting tight constraints
are obtained, as shown in Fig. 10.

After analyzing the meanings of equalities (2)–(7)
in Fig. 10 under possible part statuses, two sets of opera-
tion precedence-related tightened constraints are obtained as
follows:

δ1,k = 0, k ∈ [K − p2 + 1, K] (38)

δ2,k = 0, k ∈ [1, p1]. (39)

Since the two operations need to be completed in the
scheduling horizon, the largest completion time for operation
two is K , with the beginning time of K – p2 + 1. Therefore,
operation one must be completed by that time, and δ1,k must

be 0 for period of k ∈ [K− p2 + 1, K] as implied in (38).
The meaning of (39) is similar. The smallest beginning time
of operation one is 1, with completion time of p1. Therefore,
operation two cannot start before p1, and δ2,k must be 0 for
period of k ∈ [1, p1].

Equations (38) and (39) directly constrain δ1,k and δ2,k

across operations. With them, the total number of vertices
decreases to 14 from 333 in a major way.

The above two tightened constraints can be generalized for
all operations with different processing times as follows:

δ jmk = 0, j ∈ [1, J − 1], m ∈ M j ,

k ∈
⎡
⎣K −

J∑
g= j+1

min
m∈Mg

pgm + 1, K

⎤
⎦ (40)

δ jmk = 0, j ∈ [2, J], m ∈ M j , k ∈
⎡
⎣1,

j−1∑
g=1

min
m∈Mg

pgm

⎤
⎦.

(41)

3) One Operation With Linearized Tardiness: Now, add
the constraints associated with tardiness to the problem
in Section V-A1, assuming due date d is 2. Constraints
under consideration are processing time requirements (1) and
(3)–(5) and tardiness constraints (11)–(16). Decision variables
include b, c, a set of δk , a set of continuous variables w,
a set of binary variables α, and tardiness T . With the standard
formulation established in Section III, after relaxing integral-
ity requirements, 6170 vertices are obtained by constraint-
to-vertex conversion. With (19), (25), (34), and (35) obtained
in the one-operation example, a total number of 210 vertices
remain. Eliminate factional vertices, and obtain eight integral
vertices. After vertex-to-constraint conversion, the resulting
tight constraints are shown in Fig. 11.

By combining equalities (2), (5), and (10) in Fig. 11,
the following constraint is obtained:

T = δ3 + δ4 + δ5 + 2δ6 + 2δ7 + 2δ8. (42)

Since the processing time is 3 and the due date is 2,
the smallest tardiness is 1 with δ1–δ3 as 1, and the largest
tardiness is 6 with δ6–δ8 as 1 as implied in (42). When
the starting of nonzero δ moves earlier, T gets smaller. The
earlier δ, the smaller the impacts on T . Equation (42) directly
constrains δ1–δ8 and tardiness T . With it, the total number of
vertices decreases to 84 from 210.

After analyzing the physical meanings, (42) is converted to
the following constraint in a generic form (43), as shown at
the bottom of the next page:

The tightened constraints obtained in Sections V-A1–V-A3
tighten the formulation. However, they can hardly be obtained
manually without going through the above tightening process.
The formulation with them is much tighter (not tight yet) than
the original one. Those tightened constraints can be extended
to other parts with more operations and processing time other
than 3, whose due date is positive [only for (43)].

B. Example 2: Medium-Sized Problems

This medium-sized example is to demonstrate the effective-
ness and robustness of formulation tightening. The instance is

Authorized licensed use limited to: UNIVERSITY OF CONNECTICUT. Downloaded on June 26,2021 at 07:44:11 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

YAN et al.: INNOVATIVE FORMULATION TIGHTENING APPROACH FOR JOB-SHOP SCHEDULING 11

TABLE III

COMPARISON OF FORMULATIONS: MEDIUM-SIZED

created based on the first 89 parts and all machines in [9].
The largest number of operations of parts is 6. According to
which parts/operations that machines can process, machines
are categorized into 17 types, and each type has 1–6 machines
with the same function. Assume that each operation of each pat
can only be processed on one machine type, and machines are
always available for simplicity. The number of time slots under
consideration is 220 so that all the parts can be processed.
There are three values for tardiness weights, 1, 10, and 100,
and they are randomly assigned to parts with the percentage
of 50%, 40%, and 10%, respectively. The weight for the total
tardiness is 0.9.

Before and after adding tightened constraints, the overall
job-shop scheduling problems are solved by using branch-and-
cut implemented in CPLEX. In CPLEX, optimization stops
when computational time reaches the preset stop time or the
relative Mixed-Integer Programming (MIP) gap (relative dif-
ference between the objectives of the optimal relaxed solution
and current integer solution) falls below the preset gap. Here,
the stop MIP gap is set as 0.01% and there is no time limit.

With different formulations, the results are presented
in Table III: (a) the original formulation; (b) adding (20)
and (26); (c) adding (36) and (37); (d) adding (40) and (41);
(e) adding (43) to operations with processing time of 1–3 time
slots; and (f) replacing (26) in (e) by (28), (30), and (32) for
operations with a processing time of 2–4 time slots. From
1) to 5), it is accumulative. CPU time consists of three parts:
data and model loading, solving, and solution outputting.

According to Table III, the solutions with the same quality
are obtained under different formulations. The CPU, solving,
cutting, and branching time are much reduced by adding
new tightened constraints (20), (26), (36), (37), (40), (41),
and (43). With the standard formulation, a feasible solution
with the total weighted tardiness of 35 089 and total cycle
time of 477 is obtained in 932 s, while the time on cutting
and branching is 20 and 866 s, respectively. By adding new

Fig. 9. Intuitive description of (28).

tightened constraints (20), (26), (36), (37), (40), (41), and (43),
a similar feasible solution is obtained in 4.7 s, while the cutting
time is 1.1 s and there are no branching operations. With
tightened constraints, less time is required to obtain the same
MIP gap of 0.01% compared with the standard formulation.

When replacing (26) by (28), (30), and (32) (the formulation
becomes tighter), a similar solution is obtained in 6 s, with
cutting time of 0.9 s. The reason is that when solving the
problem by using branch-and-cut, cuts are performed around
the optimal solution to the integer-relaxed problem [31], not
on the entire feasible region as mentioned in Section I.
Therefore, more tightened constraints may not guarantee better
computational efficiency. There is a tradeoff between tightness
and computational efficiency.

The problem is also solved with randomly assigned part
tardiness weights considering formulations (a), (e), and (f) pre-
sented above. Cutting and branching time for problems with
different sets of weights are compared in Fig. 12. Then, for
each part, a random variable following U(−5, 5) is generated
and added to the part due date, while tardiness weights are the
same as the original problem. The results are shown in Fig. 13.

For every instance, solutions with the same quality are
obtained with and without tightened constraints. By adding
tightened constraints, the total cutting and branching time
is significantly reduced, and the reduction is mainly from
the reduction of branching time. Results demonstrate the
effectiveness and robustness of our formulation tightening.

T =
∑

m∈MJ

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

�(K−d+1)/pJ m�+1∑
n=1

⎛
⎜⎜⎜⎜⎝

(pJ m − d + n − 1)

0:pJ mn+τ≤K∑
τ=0

δJ m,pJ mn+τ

+n
pJ m−1:pJ mn+τ≤K∑

τ=1

δJ m,pJ mn+τ

⎞
⎟⎟⎟⎟⎠, pJ m ≥ d

�(K−d+1)/pJ m�+1∑
n=1

(
n

pJ m :d+pJ m (n−1)+τ≤K∑
τ=1

δJ m,d+pJ m(n−1)+τ

)
, pJ m < d.

(43)

Authorized licensed use limited to: UNIVERSITY OF CONNECTICUT. Downloaded on June 26,2021 at 07:44:11 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

12 IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING

Fig. 10. Ex.1-b) tightened constraints.

Fig. 11. Ex.1-c) tightened constraints.

Fig. 12. Cutting, branching, and other times under different weights.

C. Example 3: Large-Sized Problems

This large-sized example is to demonstrate the performance
of tightened single-part formulations. The instance is created
based on all 127 parts and all machines in [9]. The number of
time slots under consideration is 300 so that all the parts can
be processed. The other problem setup is the same as that in

Fig. 13. Cutting, branching, and other times under different due dates.

TABLE IV

COMPARISON OF FORMULATIONS: LARGE-SIZED

TABLE V

COMPARISON OF FORMULATIONS: LARGE-SIZED

(MULTIPLE MACHINE TYPES)

Example 2. Before and after adding tightened constraints, the
job-shop scheduling problems are solved by using branch-and-
cut, and the results are shown in Table IV. Since the problem
is more complicated than Example 2, two stopping criteria are
considered: 1200-s CPU time or 0.01% MIP gap.

According to Table IV, both the solution quality and compu-
tational efficiency are significantly improved by adding tight-
ened constraints. With the standard formulation, no feasible
solution can be found in 20 min. By adding new tightened
constraints (20), (26), (36), (37), (40), (41), and (43), a feasible
solution with an MIP gap of 0.01% is obtained in 12 s.
The results show that tightening single parts also improves the
solution quality and computational efficiency when solving the
overall problems. Similar to Example 2, when replacing (26)
by (28), (30), and (32) (the formulation becomes tighter), both
the CPU and solving time increases.

Now, consider that some of the 127 parts can be processed
on multiple machine types. The other problem setup is the
same as that in the above. Before and after adding tightened
constraints, the job-shop scheduling problems are solved by
using branch-and-cut, and the results are shown in Table V.

According to Table V, both the solution quality and com-
putational efficiency are significantly improved by adding

Authorized licensed use limited to: UNIVERSITY OF CONNECTICUT. Downloaded on June 26,2021 at 07:44:11 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

YAN et al.: INNOVATIVE FORMULATION TIGHTENING APPROACH FOR JOB-SHOP SCHEDULING 13

TABLE VI

CONSTRAINT ANALYSIS FOR (27-5)

tightened constraints. With the standard formulation, no feasi-
ble solution can be found in 20 min. By adding new tightened
constraints, a feasible solution with an MIP gap of 0.01% is
obtained in 50 s.

The above results demonstrate the great potential of our
formulation tightening method for complex ILP and MILP
problems where the values of integer variables are uniquely
determined by the values of binary variables.

VI. CONCLUSION

In this article, an innovative and systematic method is
established for the first time to tighten the formulations of
individual parts with multiple operations in the data pre-
processing stage. It is a major advancement of our previous
work on problems with binary and continuous variables to
integer variables. The idea is to first link integer variables
to binary variables by innovatively combining constraints so
that the integer variables are uniquely determined by the
binary variables. With binary variables only, the vertices of
the convex hull can be obtained based on the vertices of
the linear problem after relaxing binary requirements with
proved tightness. These vertices are then converted back to
tightened constraints with coefficients characterized by part
parameters and the length of the scheduling horizon. The tight-
ening process only needs to perform once, and the resulting
tightened constraints can be easily adjusted for other data sets
after parameterization and can be directly applied in the data
preprocessing stage, tremendously reducing online computa-
tional requirements. This method significantly improves our
previous results on tightening individual operations. Numerical
results demonstrate significant benefits on solution quality and
computational efficiency.

Beyond MILP job-shop scheduling problems under consid-
eration, this approach also applies to other complex ILP and
MILP problems with similar characteristics between integer
and binary variables, such as job-shop scheduling problems
with other features like sequence-dependent setups. For prac-
tical applications, the idea is to obtain “near-tight” formu-
lations by partially tightening. The approach fundamentally

changes the way how such problems are formulated and
solved. In addition, this method goes naturally with part-based
decomposition and coordination approaches, a subject worthy
of further exploration.

APPENDIX

A. Physical Meanings of Tight Constraints

Physical meanings of (27-5) under all combinations of
binary variables involved are shown in Table VI.

It can be seen that (27-5) guarantees that δ5 cannot be 1
when δ4 and δ7 are both 0 as implied by the fifth row of
Table VI. In other words, if δ5 is 1, one of δ4 and δ7 has to
be 1. This is reasonable because if neither of the fourth time
slot or the seventh is taken, the fifth cannot be taken based on
the processing time requirement. Note that Case 10 in Table VI
is not feasible because if δ8 is 1, δ7 must be 1 as guaranteed by
(27-2). Cases 11, 12, 15, and 16 are not feasible as guaranteed
by (19). For Case 3, since δ6 cannot be 1 when δ5 and δ8 are
both 0 as guaranteed by (27-4), δ6 has to be 0. However, if δ7

is 1, δ6 must be 1 as guaranteed by (27-3). Therefore, Case 3 is
not infeasible either.

ACKNOWLEDGMENT

Any opinions, findings, and conclusions or recommenda-
tions expressed in this material are those of the author(s) and
do not necessarily reflect the views of NSF or DoE.

REFERENCES

[1] P. Brucker, Scheduling Algorithms, 5th ed. Berlin, Germany: Springer,
2006.

[2] P. Brucker, “The job-shop problem: Old and new challenges,” in
Proc. 3rd Multidisciplinary Int. Conf. Scheduling: Theory Appl., 2007,
pp. 15–22.

[3] D. P. Bertsekas, Nonlinear Programming, 3rd ed. Nashua, NH, USA:
Athena Scientific, 2016.

[4] B. Yan et al., “A systematical approach to tighten unit commitment for-
mulations,” in Proc. IEEE Power Energy Soc. Gen. Meeting (PESGM),
Aug. 2018, pp. 1–5.

[5] B. Yan et al., “A systematic formulation tightening approach for unit
commitment problems,” IEEE Trans. Power Syst., vol. 35, no. 1,
pp. 782–794, Jan. 2020.

[6] B. Yan, M. A. Bragin, and P. B. Luh, “Novel formulation and resolution
of job-shop scheduling problems,” IEEE Robot. Autom. Lett., vol. 3,
no. 4, pp. 3387–3393, Oct. 2018.

[7] B. Yan, M. A. Bragin, and P. B. Luh, “Tightened formulation and
resolution of energy-efficient job-shop scheduling,” in Proc. IEEE 16th
Int. Conf. Autom. Sci. Eng. (CASE), Aug. 2020, pp. 741–746.

[8] T. Yamada and N. R. Nakano, Job Shop Scheduling (IEE Control
Engineering Series), 1997.

[9] D. J. Hoitomt, P. B. Luh, and K. R. Pattipati, “A practical approach
to job-shop scheduling problems,” IEEE Trans. Robot. Autom., vol. 9,
no. 1, pp. 1–13, Feb. 1993.

[10] T. Sun, P. B. Luh, and M. Liu, “Lagrangian relaxation for complex
job shop scheduling,” in Proc. IEEE Int. Conf. Robot. Autom. (ICRA),
May 2006, pp. 1432–1437.

[11] T. Nishi, Y. Hiranaka, and M. Inuiguchi, “Lagrangian relaxation with
cut generation for hybrid flowshop scheduling problems to minimize
the total weighted tardiness,” Comput. Oper. Res., vol. 37, no. 1,
pp. 189–198, Jan. 2010.

[12] K. Mao, Q.-K. Pan, X. Pang, and T. Chai, “A novel Lagrangian
relaxation approach for a hybrid flowshop scheduling problem in the
steelmaking-continuous casting process,” Eur. J. Oper. Res., vol. 236,
no. 1, pp. 51–60, Jul. 2014.

[13] E. Asadi-Gangraj, “Lagrangian relaxation approach to minimize
makespan for hybrid flow shop scheduling problem with unrelated
parallel machines,” Scientia Iranica, vol. 25, no. 6, pp. 3765–3775,
2018.

Authorized licensed use limited to: UNIVERSITY OF CONNECTICUT. Downloaded on June 26,2021 at 07:44:11 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

14 IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING

[14] B.-H. Zhou, L.-M. Hu, and Z.-Y. Zhong, “A hybrid differential evolution
algorithm with estimation of distribution algorithm for reentrant hybrid
flow shop scheduling problem,” Neural Comput. Appl., vol. 30, no. 1,
pp. 193–209, Jul. 2018.

[15] R. Z. Ríos-Mercado and J. F. Bard, “Computational experience with a
branch-and-cut algorithm for flowshop scheduling with setups,” Comput.
Oper. Res., vol. 25, no. 5, pp. 351–366, May 1998.

[16] J. C.-H. Pan and J.-S. Chen, “Mixed binary integer programming
formulations for the reentrant job shop scheduling problem,” Comput.
Oper. Res., vol. 32, no. 5, pp. 1197–1212, May 2005.

[17] M. Karimi-Nasab and M. Modarres, “Lot sizing and job shop scheduling
with compressible process times: A cut and branch approach,” Comput.
Ind. Eng., vol. 85, pp. 196–205, Jul. 2015.

[18] C. Özgüven, Y. Yavuz, and L. Özbakır, “Mixed integer goal pro-
gramming models for the flexible job-shop scheduling problems with
separable and non-separable sequence dependent setup times,” Appl.
Math. Model., vol. 36, no. 2, pp. 846–858, Feb. 2012.

[19] M. Karimi-Nasab and S. M. Seyedhoseini, “Multi-level lot sizing and
job shop scheduling with compressible process times: A cutting plane
approach,” Eur. J. Oper. Res., vol. 231, no. 3, pp. 598–616, Dec. 2013.

[20] J. Cheng, F. Chu, and M. Zhou, “An improved model for parallel
machine scheduling under time-of-use electricity price,” IEEE Trans.
Autom. Sci. Eng., vol. 15, no. 2, pp. 896–899, Apr. 2018.

[21] S. Zhang and S. Wang, “Flexible assembly job-shop scheduling with
sequence-dependent setup times and part sharing in a dynamic envi-
ronment: Constraint programming model, mixed-integer programming
model, and dispatching rules,” IEEE Trans. Eng. Manag., vol. 65, no. 3,
pp. 487–504, Aug. 2018.

[22] L. Meng, C. Zhang, B. Zhang, and Y. Ren, “Mathematical modeling and
optimization of energy-conscious flexible job shop scheduling problem
with worker flexibility,” IEEE Access, vol. 7, pp. 68043–68059, 2019.

[23] S. Chansombat, P. Pongcharoen, and C. Hicks, “A mixed-integer linear
programming model for integrated production and preventive mainte-
nance scheduling in the capital goods industry,” Int. J. Prod. Res.,
vol. 57, no. 1, pp. 61–82, Jan. 2019.

[24] L. Meng, C. Zhang, Y. Ren, B. Zhang, and C. Lv, “Mixed-integer linear
programming and constraint programming formulations for solving
distributed flexible job shop scheduling problem,” Comput. Ind. Eng.,
vol. 142, Apr. 2020, Art. no. 106347.

[25] B. Yan, H. Y. Chen, P. B. Luh, S. Wang, and J. Chang, “Litho machine
scheduling with convex hull analyses,” IEEE Trans. Autom. Sci. Eng.,
vol. 10, no. 4, pp. 928–937, Oct. 2013.

[26] H. D. Sherali and P. J. Driscoll, “On tightening the relax-
ations of Miller-Tucker-Zemlin formulations for asymmetric travel-
ing salesman problems,” Oper. Res., vol. 50, no. 4, pp. 656–669,
Aug. 2002.

[27] D. Bienstock and B. McClosky, “Tightening simple mixed-integer
sets with guaranteed bounds,” Math. Program., vol. 133, nos. 1–2,
pp. 337–363, Jun. 2012.

[28] E. M. L. Beale and J. J. H. Forrest, “Global optimization using special
ordered sets,” Math. Program., vol. 10, no. 1, pp. 52–69, Dec. 1976.

[29] G. B. Dantzig and B. C. Eaves, “Fourier-Motzkin elimination and its
dual,” J. Combinat. Theory A, vol. 14, no. 3, pp. 288–297, May 1973.

[30] Heidelberg University. Accessed: Oct. 1, 2019. [Online]. Available:
http://www.iwr.uni-heidelberg.de/groups/comopt/software/PORTA/

[31] IBM, ILOG CPLEX V 12.1 User’s Manual, 2018.

Bing Yan (Member, IEEE) received the B.S. degree
from the Renmin University of China, Beijing,
China, in 2010, and the M.S. and Ph.D. degrees from
the University of Connecticut, Storrs, CT, USA,
in 2012 and 2016, respectively.

She is currently an Assistant Professor with
the Department of Electrical and Microelectronic
Engineering, Rochester Institute of Technology,
Rochester, NY, USA. Before joining the Rochester
Institute of Technology, she was an Assistant
Research Professor with the Department of Electri-

cal and Computer Engineering, University of Connecticut. Her research inter-
ests include manufacturing system scheduling, power system optimization,
mathematical optimization, formulation tightening, and operation optimization
of microgrids and distributed energy systems.

Mikhail A. Bragin (Member, IEEE) received
the B.S. and M.S. degrees in mathematics
from Voronezh State University, Voronezh, Russia,
in 2004, the M.S. degree in physics and astronomy
from the University of Nebraska–Lincoln, Lincoln,
NE, USA, in 2006, and the M.S. and Ph.D. degrees
in electrical and computer engineering from the Uni-
versity of Connecticut, Storrs, CT, USA, in 2014 and
2016, respectively.

He is currently an Assistant Research Professor in
electrical and computer engineering at the University

of Connecticut. His research interests include operations research, mathe-
matical optimization, including power system optimization, grid integration
of renewables (wind and solar), energy-based operation optimization of
distributed energy systems, scheduling of manufacturing systems, and machine
learning through deep neural networks.

Peter B. Luh (Life Fellow, IEEE) received the
B.S. degree from National Taiwan University,
Taipei, Taiwan, in 1973, the M.S. degree from the
Massachusetts Institute of Technology, Cambridge,
MA, USA, in 1977, and the Ph.D. degree from
Harvard University, Cambridge, in 1980.

He has been with the University of Connecticut
since 1980, where he is currently a Board of Trustees
Distinguished Professor and the SNET Professor of
communications and information technologies. His
research interests include intelligent manufacturing,

energy-smart buildings, and smart grid.
Dr. Luh was the Chair of the IEEE TAB Periodicals Committee from

2018 to 2019 and the Founding Editor-in-Chief of IEEE TRANSACTIONS
ON AUTOMATION SCIENCE AND ENGINEERING. He is also the Chair
of the IEEE TAB Periodicals Review and Advisory Committee for the
period 2020–2021.

Authorized licensed use limited to: UNIVERSITY OF CONNECTICUT. Downloaded on June 26,2021 at 07:44:11 UTC from IEEE Xplore. Restrictions apply.

