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Abstract—With the emergence of the Internet of Things that 

allows communications and local computations, and with the 

vision of Industry 4.0, a foreseeable transition is from centralized 

system planning and operation toward decentralization with 

interacting components and subsystems, e.g., self-optimizing 

factories.  In this paper, a new “price-based” decomposition and 

coordination methodology is developed to efficiently coordinate a 

system consisting of distributed subsystems such as machines and 

parts, which are described by Mixed-Integer Linear Programming 

(MILP) formulations, in an asynchronous way.  The novel method 

is a dual approach whereby the coordination is performed by 

updating Lagrangian multipliers based on economic principles of 

“supply and demand.”  To ensure low communication 

requirements within the method, exchanges between the 

“coordinator” and subsystems are limited to “prices” (Lagrangian 

multipliers) broadcast by the coordinator, and to subsystem 

solutions sent at the coordinator.  Asynchronous coordination, 

however, may lead to convergence difficulties since the order in 

which subsystem solutions arrive at the coordinator is not 

predefined as a result of uncertainties in communication and 

solving times. Under realistic assumptions of finite communication 

and solve times, convergence of our method is proved by 

innovatively extending Lyapunov Stability Theory. Numerical 

testing of generalized assignment problems through simulation 

demonstrates that the method converges fast and provides near-

optimal results, paving the way for self-optimizing factories in the 

future.  Accompanying CPLEX codes and data are included.  

 

Note to practitioners—In view of a foreseeable transition toward 

self-optimizing factories whereby machines and parts have 

communication and computational capabilities, a novel “price-

based” distributed and asynchronous method to coordinate a 

system consisting of distributed subsystems is developed. Under 

realistic assumptions of finite communication and solve times, 

method convergence is proved. Numerical testing of generalized 

assignment problems through simulation demonstrates that the 

method converges fast and provides near-optimal results, paving 

the way for self-optimizing factories in the future.  Accompanying 

CPLEX codes and data are included.   

 
Index Terms—Distributed and Asynchronous Algorithms, 

Surrogate Lagrangian Relaxation, Self-Optimizing Factories, 

Mixed-Integer Linear Programming Problems   

I. INTRODUCTION 

ith the emergence of the Internet of Things [1, 2] 

empowered by smart sensors together with advanced 

computation and communication technologies, and with the 

vision of Industry 4.0 [3, 4], a foreseeable transition is from 

centralized system planning and operation toward 

decentralization.  For example, within self-optimizing factories, 

a system will consist of multiple distributed and interacting 

components/subsystems that need to be coordinated.  Within 

these futuristic factories, distributed subsystems such as 

machines and parts are coordinated through 5G networks to 

meet certain objectives such as on-time delivery.  In 

manufacturing, examples of operations optimization problems 

include planning, scheduling and dispatching problems [5, 6].  

Scheduling problems are solved before each shift and require 

short solving times such as a few minutes, and online 

dispatching of a part to a machine may require a few seconds.  

Because of the many possible interconnections among parts, 

operations, and machines, an efficient communication scheme 

is required to prevent bandwidth overloading.  This motivates 

the need for efficient coordinated operations while ensuring 

high computational and communication efficiency.   

 A system consisting of subsystems are frequently 

formulated as mixed-integer linear programming (MILP) 

subproblems.  For complicated systems, the complexity of 

MILP problems is a serious issue because of the presence of 

integer decision variables, and the goal of obtaining high-

quality solutions within short times as delineated above, 

typically cannot be met.   Nevertheless, the structures of these 

systems and the associated MILP problems are amenable to 

decomposition into individual MILP subproblems associated 

with corresponding subsystems with drastically reduced 

complexity.  Traditionally, to coordinate subproblems, price-

based decomposition and coordination Lagrangian relaxation 

(LR) method [7-11] has been used by exploiting problem 

separability in manufacturing problems such as job-shop 

scheduling [10].  The LR method is a dual approach whereby 

the coordination is performed by updating Lagrangian 

multipliers based on economic principles of “supply and 

demand.”  Multipliers (or “shadow prices”) are updated based 

on levels of violation of relaxed constraints by using 

subgradient methods [12-13].  Because of the exploitation of 

decomposability, the method is a good candidate for 

coordinating distributed subsystems whereby a coordinator 

updates multipliers and only needs to know solutions of 

subproblems associated with distributed subsystems.  However, 

standard LR methods suffer from major convergence 

difficulties such as high computational effort, zigzagging of 
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multipliers and the need to know the optimal dual values.  

Moreover, since standard LR requires solving all subproblems 

to update multipliers, the method is synchronous.  When the 

number of subproblems is large, synchronous coordination may 

lead to inefficient time management since “fast” subproblem 

solvers will likely spend a significant amount of time waiting 

for synchronization.   

 Some the above difficulties have been overcome within 

several versions of Lagrangian relaxation such as incremental 

subgradient methods [14, 15], Alternate Direction Method of 

Multipliers (ADMM) [16-21], surrogate subgradient method 

[22], and surrogate Lagrangian relaxation (SLR) [23-24, 49] to 

be reviewed in Section II.  The distributed and asynchronous 

incremental subgradient method [15] for optimizing convex 

dual functions consisting of a large number of components, 

which arise within the Lagrangian relaxation framework with a 

large number of subproblems, overcomes the synchronization 

difficulty.  However, the method may be slow when there are 

both “slow” and “fast” subsystems since the method requires 

that all subproblem solutions arrive at the coordinator with the 

same “long-term” frequency, on average.  ADMM [16-21], a 

decomposable version of the Method of Multipliers (frequently 

referred to as “Augmented Lagrangian Relaxation” (ALR) [25, 

26]), aims at accelerating convergence of traditional LR by 

penalizing constraint violations by using quadratic penalty 

terms and by decomposing relaxed problems arising in ALR to 

reduce computational effort.  However, when it comes to 

coordination of MILP subproblems, neither synchronous nor 

asynchronous versions of ADMM converge.   

 Our recent SLR method [23, 24, 49] has overcome major 

convergence difficulties of standard Lagrangian Relaxation 

such as high computational effort, zigzagging of multipliers, 

and the need to know the optimal dual value for convergence.  

Moreover, as demonstrated in [24, Fig., 1, p. 537], the method 

outperforms another coordination method – ADMM.  In [49], it 

has been demonstrated that the Surrogate Augmented 

Lagrangian relaxation method, which is built upon the SLR 

method, is capable of efficiently coordinating thousands of 

subsystems.  The method has thus been demonstrated to be 

powerful and the asynchronous functionality will be added to 

efficiently coordinate distributed subsystems to be discussed 

next.   

 In this paper, a novel distributed and asynchronous price-

based decomposition and coordination method based upon our 

recent SLR method [23] is developed in Section III to 

efficiently coordinate a system consisting of distributed MILP 

subsystems within futuristic self-optimizing factories while 

overcoming difficulties associated with other dual methods 

mentioned above.  Within the new method, multiple distributed 

subsystems and one coordinator have computation and 

communication capabilities.  To avoid excessive data transfer 

within the system, information exchanges between the 

coordinator and subsystems are limited to 1) “prices” 

(Lagrangian multipliers) broadcast by the coordinator and to 2) 

subsystem solutions sent at the coordinator.  While 

asynchronous coordination avoids the synchronization issue, it 

leads to major convergence difficulties: 1) because of 

uncertainties in solving, communication and multiplier-

updating times, the order in which subsystem solutions arrive 

at the coordinator is uncertain, and 2) subsystem solutions are 

obtained based on multipliers of different vintages, and 

multipliers may not converge.  To overcome these difficulties 

while ensuring fast speed, rather than requiring the “long-term” 

frequency requirement as in [15], convergence is proved under 

a “freshness” assumption, whereby a coordinator can update 

multipliers without waiting for “slow” subproblems as long as 

all subproblem solutions arrive at the coordinator at least once 

within a finite number of iterations.  Our idea to establish 

convergence is through the novel use of the Lyapunov energy 

function defined as the square of the distance from the current 

prices to the optimum with the idea of forcing this function to 

approach zero thereby ensuring that prices approach their 

optimal values.  Although not monotonically decreasing as 

required by traditional Lyapunov methods for convergence  

[27], an upper bound is innovatively established as an envelope 

of Lyapunov functions for all possible (uncertain) trajectories 

of multipliers (“prices”) that result from uncertain sequences of 

subproblem solutions arriving at the coordinator.  Based on the 

contraction mapping concept whereby distances between 

multipliers at consecutive iterations decrease, it is then proved 

in the Main Theorem and several supporting Propositions that 

this upper bound approaches zero thereby leading to 

convergence.     

 In section IV, by simulating asynchronous updates of 

multipliers, two examples are presented.  The first small 

example is to show that Lyapunov functions within the new 

method while non-monotonic, approach zero fast.  The second 

example is based on generalized assignment problems, which 

can be viewed as simplified problems that arise within factories.  

These results demonstrate that the new method converges fast.  

With such effective distributed and asynchronous coordination, 

the method has valuable implications for future self-optimizing 

factories to coordinate machines or parts.     

II. LITERATURE REVIEW 

 Standard Lagrangian Relaxation (LR) is reviewed in 

subsection II.A.  In subsection II.B, other existing price-based 

decomposition and coordination approaches such as the 

distributed asynchronous incremental subgradient method as 

well as asynchronous ADMM, both are versions of LR tailored 

for asynchronous coordination, are reviewed and their 

limitations are presented.  In subsection II.C, our recent 

Surrogate Lagrangian relaxation is reviewed as a promising 

approach for the development of an efficient asynchronous 

coordination method.  Since this paper deals with coordination 

of MILP subsystems that use branch-and-cut to solve their 

subproblems, branch-and-cut is reviewed in subsection II.D. 

Methods that do not support distributed coordination, such as 

heuristics methods, or the distributed methods that require 

continuity of problems are not reviewed.   

A. Standard Lagrangian Relaxation  

Traditionally, to solve MILP problems, Lagrangian relaxation 

[7-11] has been used to exploit problem separability.  

Specifically, in manufacturing, to solve job-shop scheduling, 

machine capacity coupling constraints are relaxed to 

decompose the problem into part subproblems [10].  The LR 

method is a dual approach whereby the coordination is 

performed by updating Lagrangian multipliers based on 
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economic principles of “supply and demand.”  Within standard 

LR, multipliers (or “shadow prices”) are updated after receiving 

subproblem solutions based on levels of violation of relaxed 

constraint using subgradient methods [12-13].  Because of the 

exploitation of decomposability, the LR method is a good 

candidate for coordinating distributed subsystems whereby a 

coordinator updates multipliers and only needs to know 

solutions of subproblems associated with distributed 

subsystems.  However, standard LR methods suffer from major 

convergence difficulties.  Because of the presence of discrete 

variables, the dual function is non-smooth polyhedral concave 

[28, p. 670, Proposition 7.1.2].  Therefore, gradients may not 

exist and subgradients are used.  Moreover, ridges of the dual 

function may be sharp.  Since the method requires solving all 

subproblems, because of the sharp ridges, subgradient 

directions may change drastically from one iteration to the next.  

As a result, multipliers suffer from zigzagging across ridges of 

the dual function [23, p. 192, Fig. 1; 29, p. 594, Fig. 1].  Also, 

convergence proof and as practical implementations, require 

the knowledge of the optimal dual value, which is unknown and 

is typically adaptively adjusted in practice as in “subgradient-

level” methods [30] or incremental subgradient methods [31].  

However, these adjustments are inefficient and convergence is 

slow as demonstrated in [23, pp. 195-196, 199, Figs. 3-5, 7].   

B. Distributed and Asynchronous Coordination Methods.  

Distributed Asynchronous Incremental Subgradient 

Method.  To optimize non-smooth dual functions consisting of 

a large number of components, which arise within the LR 

framework, in a distributed and asynchronous manner, a 

distributed asynchronous incremental subgradient method was 

developed [15].  The method requires that all subproblem 

solutions arrive at the coordinator with the same “long-term” 

frequency on average, and convergence was proved using the 

diminishing stepsizing rule.  Moreover, convergence was 

proved under the assumption that the subgradient is split into 

individual components and each component is updated 

independently rather than updating the subgradient as a whole.  

Under this scheme, convergence may be slow in situations 

whereby there are “fast” and “slow” subsystems solvers 

because “fast” subsystems may spend significant amounts of 

time waiting to satisfy the “long-term” frequency requirement.   

Alternate Direction Method of Multipliers. ADMM, a 

decomposable version of the Method of Multipliers [25, 26]  

(frequently referred to as “Augmented Lagrangian Relaxation” 

(ALR)), aims at accelerating convergence of traditional LR by 

penalizing constraint violations by using quadratic penalty 

terms and by decomposing relaxed problems arising in ALR to 

reduce computational effort.  Within the asynchronous ADMM, 

to alleviate the issues associated with synchronization, two 

conditions are used: 1) “partial barrier,” which allows the 

coordinator to update multipliers after receiving solutions from 

one or few subsystems and 2) “bounded delay,” which requires 

solutions from every subsystem to arrive at the coordinator at 

least once within a finite number of iterations [21, 32]. 

However, ADMM converges when solving convex problems 

only [21, p. 419], but when solving non-convex problems, 

                                                           
1 The convex hull is the smallest convex set that encloses feasible solutions of 
a problem.   

ADMM does not converge [33, p. 73].  This is because within 

ADMM, stepsizes do not approach zero, which is the 

requirement to guarantee convergence when optimizing non-

smooth polyhedral concave dual functions [13, 23].  Moreover, 

quadratic penalties make the resulting relaxed problem 

nonlinear, which cannot be solved by MILP solvers.  While 

penalty terms can be linearized [34], the minimum of penalties 

is typically not preserved and performance of the method is 

degraded.  Furthermore, penalty terms are a part of each 

subproblem formulation, but these terms involve decision 

variables from multiple subproblems.  Therefore, additional 

communication requirements are entailed.  For example, in 

power systems, communication requirements among 

subsystems [21, 35] are needed.   

C. Surrogate Lagrangian Relaxation Method 

All major difficulties of standard Lagrangian relaxation such as 

high computational effort, zigzagging of multipliers and the 

requirement of the knowledge of the optimal dual value, have 

been overcome within our recent surrogate Lagrangian 

relaxation (SLR) [23-24, 49].  Within the method, it is not 

necessary to optimally solve subproblems.  Rather, it is 

sufficient to optimize subproblems subject to the simple 

“surrogate optimality condition” [23, p. 178, eq. 12], 

guaranteeing that “surrogate dual” values approach dual values 

[23, p. 181].  Convergence is proved without requiring the 

knowledge of the optimal dual value.  This was achieved with 

a constructive process based on the contraction mapping 

concept whereby distances between Lagrange multipliers 

decrease at consecutive iterations, and as a result, multipliers 

converge to a unique limit.  At the same time, stepsizes are kept 

sufficiently large to avoid premature algorithm termination.  

Additionally, a constructive stepsizing formula satisfying these 

criteria has been developed.  When solving large-scale 

problems, such as unit commitment problems arising in power 

systems [49], the method demonstrated high efficiency in the 

coordination of thousands of power generating units.  SLR thus 

satisfies high computational efficiency requirement because of 

much-improved convergence over standard LR, and low 

communication requirements because subsystems are not 

required to communicate with each other.  The method has been 

shown to outperform other previous methods including 

coordination methods such as ADMM [24].   

D. MILP Method: Branch-and-cut  

The main premise behind branch-and-cut [36] is that if the 

convex hull1 of an MILP problem is obtained, the solution 

process is reduced to solving an LP problem.  Owing to the 

linearity of the problem, the surface of the convex hull is 

polyhedral [41], and vertices of the convex hull are feasible 

solutions to the original MILP problem.  Because of finite 

numbers of variables and constraints, the number of vertices is 

finite and linear programming methods such as simplex 

methods converge to the optimal feasible solution within a 

finite number of iterations [37, p. 6].  However, the convex hull 

generally cannot be obtained.  After relaxing integrality 

requirements, branch-and-cut solves the LP-relaxed problem 
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[37].  Attempting to obtain feasible solutions, branch-and-cut 

uses “cuts” to cut off LP regions that contain fractional vertices 

without cutting off feasible solutions.   While cuts generally 

require an infinite number of iterations to define facets of the 

convex hull, branch-and-cut resorts to branch-and-bound [38, 

39] after a finite number of iterations when “tailing off” of cuts 

occurs [40, p. 349].  Since the number of fractional vertices that 

correspond to integer variables is finite, the number of 

branching operations required to obtain optimal feasible 

solutions is also finite.  

III. CONVERGENCE OF DISTRIBUTED AND ASYNCHRONOUS 

SURROGATE LAGRANGIAN RELAXATION 

 In subsection III.A, an MILP problem formulation of a 

system consisting of several distributed subsystems is 

considered.  In subsection III.B, our recent price-based 

decomposition and coordination Surrogate Lagrangian 

Relaxation (SLR) method is presented.  In subsection III.C, a 

novel Distributed and Asynchronous Surrogate Lagrangian 

Relaxation (DA-SLR) method is developed.  In subsection 

III.D, the convergence of DA-SLR is proved in the dual space. 

In subsection III.E, the practical considerations of the new 

method are presented.   

A. An MILP System with Distributed Subsystems  

Consider a system consisting of one coordinator and I 

distributed subsystems.  Each subsystem is subject to its local 

linear constraints, which will not be considered for simplicity 

and ease of presentation.  The entire system is subject to system-

wide coupling constraints.  These constraints couple individual 

subsystems and the MILP formulation of an overall system can 

be written as follows:  

 

1

min ( )
I

i i
x i

f x


 ,  
 

(1) 

 
subject to 

1

( ) 0
I

i i
i

g x


  ,  
 

(2) 

where xi = (yi, zi)  Xi  ℝ𝑁𝑖
𝑟
ℤ𝑁𝑖

𝑧 , Xi are closed and bounded 

sets, x = (x1,…,xI) = (y, z)  X  ℝ𝑁𝑟
ℤ𝑁𝑧

, y = (y1,…,yI)  ℝ𝑁𝑟
, 

z = (z1,…,zI)  ℤ𝑁𝑧
, with ℝ denoting the set of real numbers, ℤ 

denoting the set of integers.  Functions fi: Xi  ℝ and gi: Xi  
ℝ𝑚 are linear.  It is assumed that a set of feasible solutions that 

satisfy (1)-(2) is non-empty.  To rule out possible irregularities 

such as linear dependence of gradients of active constraints in 

the continuous subspace ℝ𝑁𝑟
, it is assumed that gradient 

vectors of active inequality constraints with respect to 

continuous variables y only are linearly independent at a local 

minimum x* = (y*, z*) of (1) [42].   

B. Surrogate Lagrangian Relaxation  

As discussed in Sections II, separability of the problem is 

exploited by relaxing coupling constraints (2) by introducing 

Lagrangian multipliers T = (1, …, m) ℝ𝑚 and by 

decomposing the resulting relaxed problem into individual 

subproblems: 

   min ( ) ( )
j

T

j j j j
x

f x g x .  (3) 

As discussed in Section II, it is not necessary to fully optimize 

subproblems within SLR. Rather, it is sufficient to stop 

optimization after the “surrogate” optimality condition for 

subproblems [23, eq. 57] is satisfied at iteration k+1: 

            1 1 1 1 .
T T

k k k k k k
j j j j j j j jf x g x f x g x        (4) 

This condition is not the necessary requirement in a sense that 

if a subproblem is solved to optimality and the best solution 

found is the same as the most recent subproblem solution, i.e.,
1k k

j jx x  , then, although this solution does not satisfy (4), the 

algorithm can proceed.  To coordinate subsystems, multipliers 

are updated in the following way  

 1 ( ), 0,1,...k k k ks g x k     .   (5) 

Here, 

 1

1:

( ) ( ) ( )
I

k k k
i i j j

i i j

g x g x g x

 

  . 
 

(6) 

are “surrogate” subgradient directions that are obtained instead 

of subgradient directions by using solutions from one or few 

subproblems. If inequality constraints are present in the 

formulation, multipliers are updated according to (5) with 

subsequent projection onto the positive orthant.    

 Multipliers (5) are updated using stepsizes sk that satisfy 

[23, p. 180, eqs. 21a and 21b], which are derived based on the 

contraction mapping concept and are set as: 

 1 1( )
, 0 1, 1,2,...

( )

k k

k
k kk

s g x
s k

g x
 

 

     
 

(7) 

with 

 
1 1

1 , 1 , 1, 0 1, 1,2,3,...k p r
p M r k

Mk k
         . (8) 

To ensure that stepsizes (7) are well-defined, the following 

Assumption is required.   

Assumption 1. Boundedness of surrogate subgradients.  
Surrogate subgradients satisfy the following condition:  

 ( )kg x < C < .                                     (9) 

This assumption is realistic for MILP problems defined 

over a closed and bounded set.  Indeed, surrogate subgradients 

are levels of constraints violations.  Since constraints are linear 

and each variable is defined over a closed and bounded set, 

constraint violations are finite.  

Unlike the subgradient method, whereby zero subgradients 

imply that the optimum is obtained and the algorithm terminates 

with the optimal primal solution, within SLR, zero surrogate 

subgradient implies that there are no constraint violations and 

that a feasible solution is obtained, but it does not imply zero 

subgradient.  Therefore, this solution is not guaranteed to be 

optimal.  In this case, an iteration is skipped without updating 

multipliers (5) and stepsizes (7)-(8). 

As proved in [23], multipliers (5) converge to their optimal 

values 𝜆∗ that maximize the following dual function: 

 ( ) min ( , )
x X

q L x 


 ,  (10) 

where 

  
1 1

( , ) ( ) ( )
I IT

i i i i
i i

L x f x g x 
 

     
(11) 

is the Lagrangian function. The problem of minimizing the 

Lagrangian function (11) within (10) is referred to as “the 

relaxed problem.” 
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C. Distributed and Asynchronous Surrogate Lagrangian 

Relaxation  

Within Distributed and Asynchronous Surrogate 

Lagrangian Relaxation, it is assumed that subsystems have 

computational and communication capabilities.  Namely, 

subsystems are capable of solving subproblems to obtain 

solutions that satisfy the surrogate optimality condition (4) and 

to send the resulting solution at the coordinator.  To coordinate 

subsystems, it is also assumed that the coordinator has the 

capability to receive subproblem solutions, update multipliers 

and send them to all subproblems.  Throughout the rest of the 

paper, superscript k will denote multiplier-updating iterations 

performed by the coordinator.  Within the distributed and 

asynchronous framework, subproblems are assumed to perform 

their own “surrogate” optimization without waiting for other 

subproblems to finish, and the coordinator updates multipliers 

asynchronously without waiting for all subproblem solutions to 

arrive.  For notational convenience, superscripts k of 

subproblems will denote the most recent subproblem solution 

available at iteration k. 

Distributed architecture of the method. High-level 

architecture of the method is shown in Figure 1.  

Fig. 1. Distributed architecture of the method. 
 

As shown in Figure 1, information exchanges are limited 

to multipliers 𝜆 that the coordinator broadcasts to all 

subsystems and subsystem solutions 𝑥1, 𝑥2, …, 𝑥𝐼  that 

corresponding subsystems send at the coordinator.  Each 

subproblem corresponds to a thread and each thread is using 

branch-and-cut to solve the corresponding subproblem.  The 

coordinator corresponds to a separate thread to update stepsizes, 

subgradient directions, and multipliers.  The dynamic aspect of 

the coordination will be discussed next.  

Fig. 2. Distributed and Asynchronous implementation of Surrogate Lagrangian Relaxation  

 



> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) < 

 

 

 

 

6 

 By using a simple illustrative example, Figure 2 

demonstrates the asynchronous update by using one coordinator 

and three subproblems, and the difficulties caused by 

asynchronous updating of multipliers.  After obtaining a 

solution to the first subproblem, the coordinator updates the 

multipliers without waiting for other solutions to arrive and 

broadcasts the updated multipliers to all subproblems.  

Subproblem 1 can then start solving the problem once receiving 

updated multipliers.  Then, after the third subproblem is solved, 

and its solution arrives at the coordinator, the coordinator once 

again updates multipliers and broadcasts their values to all 

subproblems, and so on.  While asynchronous coordination 

avoids the synchronization issue, it leads to major convergence 

difficulties: 1) because of uncertainties in solving, 

communication and multiplier-updating times, the order in 

which subsystem solutions arrive at the coordinator is 

uncertain, and 2) subsystem solutions are obtained based on 

multipliers of different vintages, and multipliers may not 

converge. For example, as demonstrated in Figure 2, at 

coordinator iteration 4, x1
3 is obtained using λ2, x2

4 is obtained 

using λ0 and x3
2 is obtained using λ1.  As a result, there may be 

convergence difficulties.  In the following subsection, under 

realistic “freshness” assumption, the convergence of the DA-

SLR method will be proved.    

D. Convergence of Distributed and Asynchronous Surrogate 

Lagrangian Relaxation   

It is assumed that within Distributed and Asynchronous 

Surrogate Lagrangian Relaxation (DA-SLR) method, 

subproblem solving times as well as communication times are 

finite, which is equivalent to the following “freshness” 

Assumption:  

Assumption 2. Freshness. There exists integer number D > 0 

such that within any consecutive D iterations, all subproblem 

solutions arrive at the coordinator at least once. □ 

Indeed, if solving and communication times are bounded, 

then each subproblem solution should arrive at the coordinator 

at least once within a finite number of iterations. Convergence 

of DA-SLR is stated on the following Main Theorem.   

Main Theorem. Suppose that Assumptions 1-2 hold, the 

surrogate optimality condition (4) is satisfied by subproblem 

solutions to (3) that are obtained by using branch-and-cut, 

Lagrange multipliers are updated per (5) and stepsizes are 

updated per (7)-(8). Within the DA-SLR method for 

coordinating MILP problems with separable structure as in (1)-

(2), multipliers converge to 𝜆∗. □  

For the ease of understanding, the proof is split into three 

steps.  In Step 1, it is proved that “surrogate” dual values 

approach dual values and multipliers approach the optimum 

“infinitely often” (Propositions 1-4).  In Step 2, the Lyapunov 

function is introduced as the square of distances from multiplies 

to the optimum, and the upper bound on Lyapunov functions is 

developed (Propositions 5-6).  In Step 3, with the help of the 

result obtained in Steps 1-2, in the Main Theorem it is proved 

that the upper bound on Lyapunov functions approaches zero 

thereby leading to convergence of multipliers.   

Step 1. Convergence of “surrogate” dual values to dual 

values.   

Since subproblems are solved subject to the “surrogate” 

optimality condition (4), rather than obtaining dual values as 

within standard LR, “surrogate” dual values are obtained, 

which are generally above the dual surface.  To prove that 

surrogate dual values approach dual values, Propositions 1-2 

will first prove that subproblem solutions satisfying (4) 

converge their optimal values.   

Proposition 1. Convergence to optimal subproblem 

solutions for fixed .  Assuming that subproblem solutions 

satisfy the surrogate optimality condition (4), for each 

subproblem j and there exist finite 
'
jK  such that the subproblem 

solution is optimal for multiplier values : 

  
'

*jK

j jx x  .  (12) 

Proof: As explained in subsection II.D, an optimal subproblem 

solution is obtained by branch-and-cut within a finite number 

of steps.  A subproblem-feasible solution satisfying (4) is also 

obtained within a finite number of steps.  Since multipliers are 

assumed to be constant here, (4) implies the decrease of 

subproblem objective function.   Essentially, branch-and-cut 

will continue to search along the unexplored nodes of the 

branch tree trying to find a lower objective function value until 

the subproblem-optimal solution is obtained. □ 

 The limitation of Proposition 1 is that it is proved for a 

fixed set of multipliers.  Within DA-SLR, multipliers are 

updated, and, therefore, the objective functions of subproblems 

(3) will change.  In turn, this will affect the optimal solution of 

a subproblem.  Proposition 2 removes this limitation.   

Proposition 2. Convergence to optimal subproblem 

solutions.  Assuming that subproblem solutions satisfy (4), then 

for each subproblem j there exist finite jK  (> 
'
jK ) such that 

solution to subproblem j is optimal for multiplier values jK
 : 

 *( )j jK K

j jx x  .  (13) 

Proof: As proved in Proposition 1, for 
'
jK  and fixed

'
jK

 , a 

subproblem-optimal solution is
'

*( )jK

jx  .  What remains to prove 

is that when multipliers are updated, there exist jK (> 
'
jK ) such 

that optimal solutions at 
'
jK

 and jK
 are the same:  

 
'

* *( ) ( )j jK K

j jx x  .  (14) 

To prove (12), introduce the following operator:  

    ( ) ( ) ( ) arg min ( ) ( ) ( )
j

T T
j j j j j j j j

x
A f x g x f x g x    . (15) 

Because subproblems are defined over bounded sets Xj, 

solutions are finite and the following inequality holds:  

   ( ) ( )
T

j j j jA f x g x   .  (16) 

The operator A is thus bounded [43].  Therefore, there exists a 

finite constant C’A > 0 such that the following inequality holds:  

      '( ) ( ) ( ) ( )
T T

j j j j A j j j jA f x g x C f x g x    . (17) 

To establish (14), consider the following norm:      
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'

* *( ) ( )j jK K

j jx x  .  (18) 

Using (15), equation (18) can be rewritten as:  

    
'

( ) ( ) ( ) ( )j j

T T
K K

j j j j j j j jA f x g x A f x g x 
   

    
  

. (19) 

Because Xj is bounded, subproblem objective functions (3) take 

on finite values, therefore, the following inequality also holds: 

 

   

   

   

'

'

'

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) .

j j

j j

j j

T T
K K

j j j j j j j j

T T
K K

A j j j j j j j j

T T
K K

A j j

A f x g x A f x g x

C f x g x f x g x

C g x

 

 

 

   
     

  

   
     

  

 
 

 

  (20) 

Here, CA is a finite positive constant.  Using the Cauchy-

Schwarz inequality, equation (20) becomes: 

 
   

'

'

( ) ( ) ( ) ( )

( ) .

j j

j j

T T
K K

j j j j j j j j

K K

A j j

A f x g x A f x g x

C g x

 

 

   
     

  



  (21) 

Since gj(xj) is a component of constraint violations, Assumption 

1 is applicable, therefore: 

 
' '

* *( ) ( ) .j j j jK K K K

j j Ax x C C        (22) 

Since stepsizes (7)-(8) approach zero [23], there exist iteration  

K’
j and Kj such that for any  > 0 the following inequality holds:  

  
'

2 '

jK

A j j

s
C C K K





.  (23) 

Therefore, 

  
 

 
'

'
1

2 '
.

j
j j

i
j

K
j jK K i i

i K AA j j

C K K
g x s

C CC C K K

 
 








   


  (24) 

From (22) and (24) is follows that 

 
'

* *( ) ( ) .j jK K

j jx x      (25) 

As reviewed in Section II, subproblem convex hulls contain a 

finite number of vertices, each corresponding to a feasible 

solution. Moreover, it can be assumed that distances between 

any two adjacent vertices are greater than .  Therefore, optimal 

solutions at iterations 
'
jK  and jK  are the same and (14) holds.  

Since it takes a finite number of iterations to obtain 
'

*( )jK

jx 

without updating multipliers, it will also take a finite number of 

iterations to obtain *( )jK

jx   when multipliers are updated. □ 

Proposition 3.  Convergence of “surrogate” dual values to 

dual values.  With stepsizing formula (7)-(8), Lagrange 

multipliers (5) converge to a unique fixed point 

 k  ,  (26) 

(not necessarily *), and surrogate dual values approach dual 

values:  

 ( , ) ( )kL x q  , (27) 

where 

 ( ) min ( , )
x X

q L x 


 ,  (28) 

                                                           
2 If there are inequality constraints, then the violation would be positive.  

is a dual value obtained by solving all subproblems optimally 

and 

 
1

( , ) ( ) ( ) ( )
I

k k T k
i i

i

L x f x g x 


  ,  (29) 

is a “surrogate” dual value obtained after solving one or few 

subproblems subject to the surrogate optimality condition (4).  

Proof: As proved in [23], stepsizes (7)-(8) approach zero. To 

prove that surrogate dual values approach dual values, consider 

first the surrogate optimality condition for one subproblem j:  

 
1 1 1 1( ) ( ) ( ) ( ) ( ) ( ).k k T k k k T k

j j j j j j j jf x g x f x g x        (30) 

By using (5), inequality (30) can be rewritten as:  

 

1 1 1

2

( ) ( ) ( )

( ) ( ) ( ) ( ) .

k k T k
j j j j

k k T k k k
j j j j j j

f x g x

f x g x s g x





   

 
 (31) 

The inequality (31) can then be equivalently rewritten as: 

 

1 1 1

2

( ) ( ) ( ) ( ) ( ) ( )

( ) .

k k T k k k T k
j j j j j j j j

k k
j j

f x g x f x g x

s g x

      
 (32) 

As stepsizes approach zero, there exists 𝜅 so that for all k > 𝜅 

and all 𝜀 > 0, the following inequality holds:  

 

1 1 1

2
2

( ) ( ) ( ) ( ) ( ) ( )

( ) .

k k T k k k T k
j j j j j j j j

k
j j

f x g x f x g x

g x C

 

 

     


 (33) 

Therefore,  ( ) ( ) ( )k k T k
j j j jf x g x  forms a convergent sequence: 

 ( ) ( ) ( ) ( ) ( ) ( )k k T k T
j j j j j j j jf x g x f x g x     .  (34) 

Indeed, as proved in Propositions 1-2, subproblem solutions 

approach a limit, which here is denoted as jx .  Moreover, the 

situation whereby 

 ( ) ( )k T k
j jg x    (35) 

is impossible.  Multipliers cannot grow without bound because 

that would imply that there is always positive or always 

negative constraint violation,2 implying infeasibility of (1)-(2), 

which is impossible.  From Assumption 2, within any 

consecutive D iterations, all subproblem solutions arrive at the 

coordinator at least once.  Moreover, by Propositions 1-2, 

subproblem-feasible solutions are obtained within a finite 

number of iterations.  Therefore, optimal solutions to all 

subproblems are obtained within a finite number of iterations, 

implying that “surrogate” dual values approaches dual values:  

  ( , )kL x q  as 0ks  .                          □  (36) 

Proposition 4. “Rate of Convergence” [23, p. 187]. When 

stepsizes are updated per (7)-(8), there exists  > 0 and the 

following condition is satisfied “infinitely often” 

 2
* *( , ) ,k k kq L x k       . 

 (37) 

Here   is an infinite subset of natural numbers. 

Proof: If condition (37) is not satisfied infinitely often for  > 

0, then starting from iteration 𝜅, the following inequality holds:  

 2
* *( , ) ,k k kq L x k        . 

(38) 

There are three cases:  
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Case 1: The left-hand side of (38) is negative.  Surrogate dual 

values are greater than q* for all k > 𝜅, which contradicts 

Proposition 3 that states that surrogate dual values approach 

dual values. 

Case 2: The left hand-side of (38) is positive, and 
* ( , )k kq L x    for some 0   and k’ > k > 𝜅, then there exists 

'

2
* '

0
k




 
 


, and the following condition holds:  

 2
* ' ' ' * '( , )k k kq L x      . 

 (39) 

There is a contradiction with (38) because in this case it is 

possible to find ' 0   that satisfies (37).  

Case 3: The left hand-side of (38) is positive, but infinitesimally 

small, * ( , )k kq L x    for all 0  , then surrogate dual values 

approach q*.  Since, by Proposition 3, surrogate dual values 

approach dual values, then dual values approach the optimal 

dual value and convergence to the optimum is immediate.  □ 

Step 2. Development of an upper bound for Lyapunov 

functions  

In this Step, the Lyapunov function is defined as  

  
2

*k kV     , 
 

(40) 

which is the square of the distance from current to optimal 

multipliers.  Because subproblem solving times and 

subproblem-coordinator communication times are uncertain, 

different sequences of subproblem solutions arriving at the 

coordinator lead to different trajectories of multipliers.  As a 

result, the exact representation of the Lyapunov function is 

unknown.  To resolve this issue, an upper bound of the 

Lyapunov function is derived in Propositions 5-6 as an 

envelope of all possible Lyapunov functions for any sequence 

of subproblems arriving at the coordinator.  Two inequalities 

are derived based on whether condition (37) holds or not in 

Proposition 5.  In Proposition 6, these inequalities are combined 

to derive an upper bound on all possible Lyapunov functions.  

Proposition 5. As proved in [23, p. 187], under condition (37) 

and assuming that stepsizes are “sufficiently small” 1/ (2 )ks 

the following inequality holds:  

 2 2 2
* 1 * 2(1 2 ) ( ) ( )k k k k ks s g x          . 

(41) 

If condition (37) is not satisfied or stepsizes are not “sufficiently 

small” 1/ (2 )ks  , then the following inequality holds: 

  
2 2

* 1 *

2

1 ( )

1
( ) ( ) ( ) , 0.

k k k k k

k k k k

k

s g x

s g x g x

    




     

 
   
 

 

 

(42) 

Proof: Inequality (41) has been derived in [23, Proposition 2.5]. 

To derive inequality (42) consider 

 

 

2
* 1

2 2
* * 22 ( ) ( ) ( ) .

k

k k k k k ks g x s g x

 

   

 

   

 

 

(43) 

By using the Cauchy-Schwarz inequality, (43) becomes: 

 2
* 1

2 2
* * 22 ( ) ( ) ( ) .

k

k k k k k ks g x s g x

 

   

 

    

 

 

(44) 

The right-hand side of (44) contains the Lyapunov function 
2

* k  at iteration k as well as its square root * k  .  In 

order to express the inequality (44) in terms of the Lyapunov 

function, the basic inequality 2 21
2ab a b


   [15] is used and 

the inequality (44) becomes 

 2 2 2
* 1 * *

2
2 2

( )

1
( ) ( ) ( ) ( ) .

k k k k k k

k k k k

k

s g x

s g x s g x

      



      


 

 

(45) 

Therefore, 

  
2 2

* 1 *

2

1 ( )

1
( ) ( ) ( ) .

k k k k k

k k k

k

s g x

s g x g x

    



     

 
  
 

     

 

(46) 

In Proposition 6 below, an upper bound on Lyapunov 

functions at iteration k+1 in terms of Lyapunov functions at 

iteration 0 is derived by induction taking into account all 

possible realizations of Lyapunov functions.   

Proposition 6. Upper bound for Lyapunov functions. The 

following upper bound is valid for Lyapunov functions:  

  

     

     

2
1 * 0

0

1 2

0 1

2

1

1
, 1,

k
k i

i

kk
j j j l

j
j l j

k k k

k

V P

s g x g x P

s g x g x k

  











  



 

  

  
    

  

 
  

 

 

 

(47) 

where  1 2i iP s    if condition (37) holds at iteration i, and 

  1i i i iP s g x   otherwise.  

Proof: Proof will follow by induction by first proving that the 

equation is true when k = 1, then assuming it is true for k, 

showing it is true for k+1. 

Before starting the induction, consider the situation 

whereby k = 0.  If condition (37) is satisfied, then inequality 

(41) holds for k = 0:   

      
222 2

* 1 * 0 0 0 01 2s s g x         . (48) 

If (37) is not satisfied, then inequality (42) holds for k = 0:  

   

     

2 2
* 1 * 0 0 0 0

2
0 0 0 0

0

1

1
, 0.

s g x

s g x g x

    




    

 
  

 

 

 

(49) 

Since the term      
2

0 0 0

0

1
s g x g x



 
 

 
which appears in (49) 

is greater than    
22

0 0s g x which appears in (48), the following 

expression is the upper bound for 
2

* 1  :  
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2 2
* 1 * 0 0

2
0 0 0 0

0

1
, 0,

P

s g x g x

   




   

 
  

 

 

  

(50) 

where  0 01 2P s    if condition (37) holds at k = 0, and 

  0 0 0 01P s g x   if condition (37) does not holds at k = 0.  

The inequality (50) is indeed an upper bound of 
2

* 1   

because if condition (37) does not hold, then (50) reduces to 

(49), and if condition (37) holds, then (50) reduces to (48) plus 

a positive extra term
   

2
0 0

0

s g x


.   

Following the same logic, the following holds for k = 1:  

 
     

     

     

22 2
* 2 * 1 1 1 1 1

1

22
* 0 0 1 0 0 0 1

0

2
1 1 1

1

1

1

1
,

P s g x g x

P P s g x g x P

s g x g x

   


 




 
      

 

 
    

 

 
 

 

 (51) 

where  1 11 2P s    if condition (37) holds at k = 1, and 

  0 1 1 11P s g x   if condition (37) does not holds at k = 1.  

Inequality (51) is indeed the same as inequality (47) for k = 1.  

What remains to prove is that assuming that (47) holds at 

iteration k, it also holds for k+1: 

 

     

     

12 2
* 2 * 0

0

12

0 1

2
1 1 1

1

1

1
.

k
k i

i

kk
j j j l

j
j l j

k k k

k

P

s g x g x P

s g x g x

   












  

  





 

   

  
    

  

 
 

 

 

 

(52) 

The validity of (52), is derived using the same logic as that used 

in deriving (50). Consider the following inequality: 

 

     

2 2
* 2 * 1 1

2
1 1 1

1

1
,

k k k

k k k

k

P

s g x g x

   



  

  



   

 
 

 

 

 

(53) 

After substituting the expression for 
2

* 1k   from (47) into 

(53) one obtains the following inequality:  

 

     

     

     

2
* 2

2
* 0

0

1 2
1

0 1

2

2
1 1 1

1

1

1

1
.

k

k
i

i

kk
j j j l k

j
j l j

k k k

k

k k k

k

P

s g x g x P P

s g x g x

s g x g x

 

 














  

  





 

 

 
  
 
 

           
  

   
  

 
  

 

 

 

(54) 

The inequality (54) simplifies to the following: 

 

     

     

     

12 2
* 2 * 0

0

1 2
1

0 1

2
1

1

2
1 1 1

1

1

1

1
.

k
k i

i

kk
j j j l k

j
j l j

k k k k

k

k k k

k

P

s g x g x P P

s g x g x P

s g x g x

   















  





  





 

   

   
      

   

 
  

 

 
 

 

 

 

(55) 

After further simplifications, the inequality (55) becomes: 

 

     

     

12 2
* 2 * 0

0

12

0 1

2
1 1 1

1

1

1
.

k
k i

i

kk
j j j l

j
j l j

k k k

k

P

s g x g x P

s g x g x

   












  

  





 

   

  
    

  

 
 

 

 

 

(56) 

The inequality (56) is the sought-for inequality (47). 

Step 3. Convergence of the upper bound to zero.   

In this Step, the Main Theorem is proved, mainly, it is 

proved that the upper bound on the Lyapunov function defined 

in (47) asymptotically approaches zero, thereby leading to 

convergence of multipliers to 𝜆∗.   

Proof of the Main Theorem: In order to prove that 𝜆𝑘 → 𝜆∗, it 

is necessary to prove that the upper bound on Lyapunov 

function (right-hand side of (47)) approaches zero.  This leads 

the Lyapunov function to converge to zero and to the 

convergence of multipliers.   

Since 𝜆∗ that maximizes the dual function (10), is assumed 

to exist, the term 
2

* 0   is finite.  Therefore, it is sufficient 

to prove that the following expression approaches zero:  

    
1 1 1

0 0: / 0:

1 ( ) 1 2
k k k

i i i k i

i i i i i

P s g x s 
  

     

     , 
 

(57) 

where ℵ is the set is iteration numbers whereby inequality (41) 

holds, and  is the set of natural numbers.   

 To prove that (57) approaches zero, the stepsizing formula 

(7)-(8) is plugged in first, then the resulting function is upper-

bounded by using standard functions and their asymptotical 

representation, then, though algebraic manipulations, the 

condition for i is derived to ensure that (57) approaches zero.  

By exploiting the fact that set ℵ  is a proper subset of natural 

numbers   and that each term  1 ( )i i is g x  is greater 

than 1, the following inequality holds: 

    

 

1 1

0: / 0:

1 1
0 0

0: 1 0:

1 ( ) 1 2

1 2 ( ) 1 2 .

k k
i i i i

i i i i

k i k
i i

j
i i j i i

s g x s

s g x s

 

  

 

    

 

    

 

  

  

  
   

  

 

 

(58) 

Assuming that condition (37) is satisfied at least every N (< ∞) 

iterations the entire expression (58) is upper-bounded as:  
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1 1

0: / 0:

1
0 0

0: 1

0 0
1 /

0 1

1 ( ) 1 2

1 2 ( )

( )
1 2 .

( )

k k
i i i i

i i i i

k i
i

j
i i j

k N iN

j i
i j

s g x s

s g x

s g x

g x

 

 




 

    



  

  

 

 

 

 

  

  
   

  

 
    

  
 

 

 

(59) 

If such N does not exist and condition (37) does not hold 

infinitely often, then there is a contradiction with Proposition 3.  

To prove that the right-hand side of (59) approaches zero, 

consider 𝛼𝑘 from (8) which asymptotically behaves as 1 −
1

𝑀𝑘
 

as 𝑘 → ∞ [23], therefore, asymptotically, the right hand-side of 

(59) becomes 

 
0 0

0: 1

0 0

0 1

1
1 2 1 ( )

( )1
1 2 1 .

( )

i
i

i i N j

iN

i
i j

s g x
Mj

s g x

Mj g x







  



 

 

 

  
     

  

  
   
   

 

 

(60) 

The product 
1

1
1

i

j Mj


 
 

 
can be expressed in terms of a 

“Pochhammer function,” [44] which asymptotically behaves as 
1

1
1

M
M

i
M




  
     

 [44] where 𝛾 is the Euler’s gamma function.  

Therefore, asymptotically, (60) approaches the following 

expression:   

 

 

0 0 0 0

1 1
0 0

2 ( ) 2 ( )
1 1 .

11 ( )

i

i i iN
M M

s g x s g x

MM g x iNi
MM

 



 

 

 

   
   
    
     
           

 (61) 

After regrouping terms, (61) becomes 

 

 

0 0

1
1

1

0 0

1

2 ( )
1

1

2 ( )
1

1
( )

i
jN

i N jN
M

j

jN
M

s g x

M
i

M

s g x

M
g x jN

M









  









  
  
   
       
   
 
  
  
  

   
   
   

. 

 

(62) 

After expanding the inner product, and ignoring involving 
(𝑗)−2/𝑀 and higher order terms, (62) becomes 

 

 

0 0 0 0

1 1
11

2 ( ) 2 ( )
1 .

11 ( )

i
jN

i N jNj jN
M M

s g x s g x

MM g x jNi
MM

 





  



 
 
  
   
       

 

 

(63) 

To ensure that products involve terms less than 1 each, consider  

 

 

0 0

1

1 ,...,

1 1

2 ( )
1

1

max

( )(1 )

ij

i N jN jN

jN
M M

s g x

M

M

N

g x jNN jN










  



 
  

  
  
  

  
  

  
     

. 

 

(64) 

To ensure that every terms is less than 1, consider  

 

 

1

1

(1 )
,

( )

1 ,..., , 1,2,....

M
i

jN
M

N jN

N g x jN

i N jN jN j




 


   

 

 

(65) 

The second term of the right-hand side of (47) also approaches 

zero, because it involves similar products as in (57), and the 

proof follows exactly the same logic. The last term in the right-

hand side of (47) approaches zero because stepsizes approach 

zero.  □ 

E. Practical Implementations of the Method.  

In practical implementation, the following considerations 

are important.  The coordinator needs to initialize stepsizes and 

multipliers at the beginning of the algorithm.  Also, the 

coordinator needs to obtain feasible costs and to provide the 

quality of the feasible solutions during or after the iterative 

process.  These considerations are discussed next.  

Initialization. The coordinator initializes multipliers and 

stepsizes.  Multiplier initialization is typically problem-

dependent; specific initialization for generalized assignment 

problems tested in this paper will be explained in Section IV. 

One possible way to initialize stepsizes is [23, eq. 76, p. 190]:  

  

 

0 0

0

2
0

ˆ ,q L x
s

g x


 , 

 

(66) 

where q̂ is an estimate of the optimal dual value. Specific ways 

to obtain this estimate are discussed in the Numerical Testing 

Section. 

Criteria to search for feasible solutions. To find the feasible 

cost to the original problem, feasible solutions need to be 

searched for within the method.  Several criteria can be used to 

start searching for feasible solutions: 1) Search with a 

predetermined frequency, e.g., once every 100 iterations or 2) 

Search after surrogate subgradient norm is below a certain 

threshold. There could be other criteria such as the CPU time 

limit. Once some of these criteria are satisfied, feasible 

solutions are searched as explained next.  

Obtaining of feasible solutions. The process of obtaining 

feasible solutions is generally problem-dependent. Solutions to 

subproblems are feasible with respect to subproblems, but these 

solutions when put together may not satisfy relaxed constraints. 

To satisfy these constraints, some subproblem solutions are 

adjusted.  This can be performed by selecting a few 

subproblems and fixing decision variables associated with other 

subproblems within the original problem (1)–(2) at 𝑥𝑘, the most 

recent values obtained by solving subproblems, and the 

resulting problem is solved by B&C. If a solution feasible with 

respect to the original problem is obtained, then the feasible cost 

is computed, otherwise, multipliers are adjusted for a few more 

iterations, and a feasible solution is searched again.   

Calculation of the lower bound. It is assumed that subsystems 

can solve subproblems (3) optimally.  Dual values provide valid 

lower bounds, which are obtained by minimizing the 

Lagrangian function (10), which is equivalent to solving all 

subproblems optimally without updating the multipliers.   
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Stopping criteria. The algorithm is terminated after the duality 

gap, which is the relative difference between the feasible cost 

and the lower bound value, is below a predetermined threshold.     

Flow chart of the algorithm. The algorithm is summarized in 

the flow chart shown in Figure 3.  

 
Fig 3. Flow chart of the DA-SLR method. 

IV. NUMERICAL TESTING 

The purpose of this section is to demonstrate performance of 

the new method.  In Example 1, a small integer linear problem 

is considered to demonstrate that the Lyapunov function 

approaches zero fast.  In Example 2, a generalized assignment 

problem with 20 machines and 1600 jobs is considered to 

demonstrate capability of DA-SLR to solve large-scale 

optimization problems fast with near-optimal performance.  

Because of difficulties associated with other methods as 

reviewed in subsection II.B of Literature Review, comparison 

of DA-SLR is performed against its sequential version – SLR 

[23], which, in turn, has been shown to outperform other 

previous coordination methods in [24] such as ADMM.  

Moreover, another variation of SLR - distributed and 

synchronous SLR (DS-DLR) is used for further comparison.  

The new method is implemented using IBM ILOG CPLEX 

Optimization Studio Version: 12.7.1.0 on a PC with 3.10GHz 

Intel(R) Xeon(R) CPU and 32G RAM.   

Example 1.  A Small Integer Programming Problem. 

Consider the following integer optimization problem   

  
 

1 2 3 4 5 6

1 2 3 4 5 6
, , , , ,

min 2 3 2 3
x x x x x x

x x x x x x


       (67) 

 

1 2 3 4 5 6

1 2 3 4 5 6

. .

3 5 3 5 26 0,

2 1.5 5 2 0.5 16 0,

0 3, 1,...,6.i

s t

x x x x x x

x x x x x x

x i

      

      

  

 

 

(68) 

After constraints (68) are relaxed by using multipliers 1 and 

2, the Lagrangian function becomes  

 1 2 3 4 5 6 1 2

1 2 3 4 5 6

1 1 2 3 4 5 6

2 1 2 3 4 5 6

( , , , , , , , )

2 3 2 3

( 3 5 3 5 26)

( 2 1.5 5 2 0.5 16).

L x x x x x x

x x x x x x

x x x x x x

x x x x x x

 







     

       

      

 

 

(69) 

The relaxed problem is then separated into six individual 

subproblems, one for each variable:  

 
1

1 1 1 2 1

1

min{ 2 },
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min{2 3 1.5 },
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x
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x
x x x
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6

6 1 6 2 6

6

min{3 5 },

. .0 3.

x
x x x

s t x

 


 

 
 

 

(70) 

Derivation of dual function and optimal multipliers. Since 

the purpose of this example is to demonstrate the convergence 

of multipliers to their optimal values, the knowledge of the dual 

function and optimal multipliers is needed.  The dual function 

is obtained by minimizing the Lagrangian function (6669) by 

using software Mathematica [45], which allows symbolic 

manipulations.  Because of technical limitations that do not 

allow performing symbolic minimization with respect to 6 

integer variables, the dual function is obtained iteratively.  The 

Lagrangian function is minimized over {x1, x2, x3} and the 

resulting function is minimized over {x4, x5, x6}. The analytical 

expression for the dual function then becomes:    
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 1 2 3 4 5 6

1 2 1 2 3 4 5 6 1 2
, , , , ,

1 2 1 2 1 2

1 2 1 2 1 2

1 2 1 2 1 2

1 2 1 2 1 2 1

( , ) min ( , , , , , , , )

26 16 ,  if 0.6,  2 1

6 20 4 ,  if 0.6,  2 1

21 4 15.5 ,  if 3 1.5 2,  5 3

18 2 2 ,  if 5 3,  2 1,  3

x x x x x x
q L x x x x x x   

     

     

     

      

 

    

     

     

      2

1 2 1 2 1 2 1 2

1 2 1 2 1 2 1 2

1 2 1 2 1 2

1 2 1 2 1 2 1 2

1 2

0.5 2

30 19 18.5 ,  if 5 3,  2 1,  3 0.5 2

9 11 ,  if 0.6, 5 3, 2 1

18 4 2 ,  if 5 3, 3 0.5 2

15 5 11 ,  if 0.6,  2 1, 3 0.5 2

24 13 6.5 ,  if 



       

       

     

       

 

 

       

       

     

       

  1 2 1 2 1 2

1 2 1 2 1 2

3 1.5 2,  2 1,  3 0.5 2

30 22 8 ,  if 3 0.5 2,  2 1

0,  otherwise. 

     

     















     
      



(71) 

By maximizing the dual function (71) over 1 and 2 in 

Mathematica, the optimal dual value and optimal multipliers are 

obtained as:  
* *
1 2( , ) 15.6q    , with *

1 0.6  and *
2 0  .             (72) 

Initialization. The stepsize is initialized by using [23, eq. (76), 

p. 190], whereby the optimal dual value q* from (72), rather 

than its estimate, is used.  Multipliers are initialized at zero. 

Simulation. Because of the lack of distributed computing and 

communicating facilities, asynchronous coordination is 

simulated by simulating subproblem-solving, multiplier-

updating, and communication times.  Simulated solving and 

updating times are based on real times obtained by SLR first.  

According to the SLR results, subproblem solving times range 

from 2 milliseconds (ms) to 115 ms with an average value of 

5.36 ms.  The multiplier-updating time is either 0 or 1 ms with 

an average value of 0.036 ms (the updating time is very short 

and the time resolutions within OPL CPLEX is 1 ms).  

Subproblem-solving and multiplier-updating times, thus, 

follow empirical distributions, which for simulation purposes 

are used to generate solving and updating times using discrete 

random number generators in MS Excel [48].  Communication 

time between the coordinator and subproblem solvers is 

randomly generated following a uniform distribution U[0.95, 

1.05] as the average wireless 5G speed is 1 ms.3  Based on the 

above data, absolute arrival times (the time when one 

subproblem solver finishes solving one subproblem + 

communication time) of subproblem solutions are computed.  

Based on these absolute timestamps, a sequence of subproblem 

solution arrivals at the coordinator is obtained.  Given solution 

arrival times, the sequence, and the multiplier-updating time, 

the set of latest subproblem solutions used to update multipliers 

at each coordinator iteration is determined.  Then the time of 

multiplier arrivals to each subproblem solver is obtained.  

Given the time when one subproblem solver starts solving, 

appropriate multipliers to be used are also determined based on 

multiplier arrival times.  In simulations, subproblems are solved 

and multipliers are updated based on simulated sequences, 

which are, in turn, based on empirical distributions as described 

above.  To test the robustness of DA-SLR, 10 testing cases are 

generated following the above procedure.  To demonstrate the 

convergence of DA-SLR when there is a “slow” subsystem, 

                                                           
3 https://5g.co.uk/guides/how-fast-is-5g/ 

 

another testing case with one “slow” subproblem solver is also 

considered.  The solving time of the “slow” subproblem solver 

is assumed to range from 20 ms to 450 ms.  The other five 

subproblem solver remain the same.  For comparison purposes, 

one more testing case with a “slow” subsystem is also generated 

for sequential SLR.      

Results. Distances from multipliers to the optimum, which are 

square a square root of Lyapunov functions, for DA-SLR 

(average, minimum and maximum over 10 cases) and 

sequential SLR are shown in Figure 4.  The results for the case 

with a “slow” subsystem are shown in Figure 5. 

 
Fig. 4. Distances from multipliers to the optimum (square root of Lyapunov 

function) within DA-SLR and SLR  

As demonstrated in Figure 4, average as well as minimum 

and maximum values of Lyapunov functions within DA-SLR 

while non-monotonic, approach zero fast.  Moreover, distances 

to the optimum within DA-SLR approach zero faster, as 

compared to those within SLR.   

 
Fig. 5. Distances from multipliers to the optimum (square root of Lyapunov 

functions) within DA-SLR and sequential SLR for a system with one “slow” 

subsystem; comparison with results of Fig. 4.  

 

As demonstrated in Figure 5, when there is a “slow” subsystem, 

distances to the optimum within DA-SLR also approach zero.  

While in this case, the Lyapunov function approaches zero 

slower than within the system without “slow” subsystems, and 

still faster than within sequential SLR.  
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Example 2.  Generalized Assignment Problems [23, 24, 46, 

47]. The Generalized Assignment Problem (GAP) can be 

viewed as a futuristic and albeit simplified optimization 

problem that arises within “factories of tomorrow,” whereby 

each machine or a job will have computational and 

communicational capabilities.  The DA-SLR method will then 

serve as a foundation for self-optimization to efficiently 

coordinate machines and jobs.   

Problem formulation. Mathematically, the generalized 

assignment problem is formulated in the following way:  

 ,

, ,
1 1

min
i j

I J

i j i j
x i j

g x
 

  ,  

 , , ,0,1 , 0, 0, 0i j i j i j jx g a b    , 
(73) 

 , ,
1

. . , 1,...,
I

i j i j j
i

s t a x b j J


   , (74) 

 ,
1

1, 1,...,
J

i j
j

x i I


   , (75) 

where I is the number of jobs and J is the number of machines, 

ai,j is the time required by machine j to perform job i, and gi,j is 

the cost of assigning job i to machine j.  Capacity constraints 

(74) ensure that the total amount of time required by the jobs to 

be performed on machine j does not exceed its available time 

bj.  Assignment constraints (75) ensure that each job is to be 

performed on one and one machine only.    

Relaxed problem. After relaxing assignment constraints (75), 

the relaxed problem is formulated in a separable form as follows 

[23]:    

 

   
, ,

, ,
1 1 1

min , min
i j i j

I J J

i j i i j i
x x i j i

L x g x  
  

     , 

, ,
1

. . , 1, ...,
I

i j i j j
i

s t a x b j J


  

 , , ,0,1 , 0, 0, 0i j i j i j jx g a b    . 

(76) 

 

Subproblems. The above relaxed problem (76) is decomposed 

into J individual machine subproblems, and subproblem j is 

formulated as follows: 

 
 

,

, ,
1

min
i j

I

i j i i j
x i

g x


  , , ,
1

. . ,
I

i j i j j
i

s t a x b


 

 , , ,0,1 , 0, 0, 0i j i j i j jx g a b    . 

(77) 

These subproblems are solved using branch-and-cut 

implemented in CPLEX.  The simulation follows the same 

process as that explained in Example 1.  The resulting 

subproblem solving times follow uniform distributions U[0.15, 

0.20], and updating times follow U[0.01, 0.02].  

Communication times follow the same 5G assumption with 

uniform distribution U[0.95, 1.05].   

 

Initialization. The stepsize is initialized by using [23, eq. (76), 

p 190], whereby an estimate of the optimal dual value q* is used.  

This estimate is obtained by solving (70)-(72) after relaxing 

integrality requirements.  Initial values of multipliers are 

obtained based on heuristic initialization rules following [47], 

whereby the second highest cost of assigning a job is used.   

                                                           
4 It is expected that surrogate dual value approach dual values at convergence, 
but for demonstration purposes, dual values are obtained every 500 iterations.  

Results. Because this example is complicated, optimal 

multipliers are difficult to obtain.  Therefore, Lyapunov 

functions are not plotted.  Rather, dual values and feasible costs 

obtained by using DA-SLR as well as sequential (SLR) and 

distributed and synchronous (DS-SLR) versions and are plotted 

in Figure 6. 

 
Fig. 6. Performance of DA-SLR and comparison against SLR and DS-

SLR for the GAP d201600 instance 

 

 Figure 6 demonstrates the performance of DA-SLR for the 

GAP d201600 instance with 20 machines and 1600 jobs.  The 

dual value is obtained every 500 iterations by solving all 

subproblems to optimality.4  As shown in Figure 6, with 

asynchronous coordination, a feasible cost 97,852 is obtained 

with a duality gap of 0.0316% after 78 seconds.  This 

demonstrates that DA-SLR converges and finds high-quality 

solutions significantly fast.  As shown in Figure 6, within 

sequential SLR, the best feasible cost 97,855 is obtained with a 

duality gap of 0.0332% after 950 seconds; within DS-SLR, the 

best feasible cost 97,870 is obtained with a duality gap of 

0.0528% after 121 seconds. 

 
Fig. 7. Norm squared reduction within DA-SLR and comparison against 

SLR and DS-SLR for the GAP d201600 instance  
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As demonstrated in Figure 7, within DA-SLR surrogate 

subgradient norms reduce fast.  The norm-squared reduction is 

faster than within DS-SLR, which translates into better feasible 

cost shown in Figure 6, and much faster than within sequential 

SLR, which leads to the overall drastic CPU time reduction, 

also shown in Figure 6.   

V. CONCLUSION 

 In anticipation of trends toward self-optimizing factories, 

there is a need for efficient asynchronous price-based 

coordination of distributed subproblems.  The novel distributed 

and asynchronous Surrogate Lagrangian Relaxation is 

developed and convergence is proved based on the novel use of 

Lyapunov energy function without requiring its strict 

monotonic decrease for convergence.  Numerical results 

demonstrate that the novel approach converges fast.  With this 

effective distributed and asynchronous coordination, the 

method has a strong potential to be used in future self-

optimizing factories to coordinate machines and in future power 

systems to efficiently coordinate distributed energy resources.   
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