
1

Abstract—With the emergence of the Internet of Things that

allows communications and local computations, and with the

vision of Industry 4.0, a foreseeable transition is from centralized

system planning and operation toward decentralization with

interacting components and subsystems, e.g., self-optimizing

factories. In this paper, a new “price-based” decomposition and

coordination methodology is developed to efficiently coordinate a

system consisting of distributed subsystems such as machines and

parts, which are described by Mixed-Integer Linear Programming

(MILP) formulations, in an asynchronous way. The novel method

is a dual approach whereby the coordination is performed by

updating Lagrangian multipliers based on economic principles of

“supply and demand.” To ensure low communication

requirements within the method, exchanges between the

“coordinator” and subsystems are limited to “prices” (Lagrangian

multipliers) broadcast by the coordinator, and to subsystem

solutions sent at the coordinator. Asynchronous coordination,

however, may lead to convergence difficulties since the order in

which subsystem solutions arrive at the coordinator is not

predefined as a result of uncertainties in communication and

solving times. Under realistic assumptions of finite communication

and solve times, convergence of our method is proved by

innovatively extending Lyapunov Stability Theory. Numerical

testing of generalized assignment problems through simulation

demonstrates that the method converges fast and provides near-

optimal results, paving the way for self-optimizing factories in the

future. Accompanying CPLEX codes and data are included.

Note to practitioners—In view of a foreseeable transition toward

self-optimizing factories whereby machines and parts have

communication and computational capabilities, a novel “price-

based” distributed and asynchronous method to coordinate a

system consisting of distributed subsystems is developed. Under

realistic assumptions of finite communication and solve times,

method convergence is proved. Numerical testing of generalized

assignment problems through simulation demonstrates that the

method converges fast and provides near-optimal results, paving

the way for self-optimizing factories in the future. Accompanying

CPLEX codes and data are included.

Index Terms—Distributed and Asynchronous Algorithms,

Surrogate Lagrangian Relaxation, Self-Optimizing Factories,

Mixed-Integer Linear Programming Problems

I. INTRODUCTION

ith the emergence of the Internet of Things [1, 2]

empowered by smart sensors together with advanced

computation and communication technologies, and with the

vision of Industry 4.0 [3, 4], a foreseeable transition is from

centralized system planning and operation toward

decentralization. For example, within self-optimizing factories,

a system will consist of multiple distributed and interacting

components/subsystems that need to be coordinated. Within

these futuristic factories, distributed subsystems such as

machines and parts are coordinated through 5G networks to

meet certain objectives such as on-time delivery. In

manufacturing, examples of operations optimization problems

include planning, scheduling and dispatching problems [5, 6].

Scheduling problems are solved before each shift and require

short solving times such as a few minutes, and online

dispatching of a part to a machine may require a few seconds.

Because of the many possible interconnections among parts,

operations, and machines, an efficient communication scheme

is required to prevent bandwidth overloading. This motivates

the need for efficient coordinated operations while ensuring

high computational and communication efficiency.

 A system consisting of subsystems are frequently

formulated as mixed-integer linear programming (MILP)

subproblems. For complicated systems, the complexity of

MILP problems is a serious issue because of the presence of

integer decision variables, and the goal of obtaining high-

quality solutions within short times as delineated above,

typically cannot be met. Nevertheless, the structures of these

systems and the associated MILP problems are amenable to

decomposition into individual MILP subproblems associated

with corresponding subsystems with drastically reduced

complexity. Traditionally, to coordinate subproblems, price-

based decomposition and coordination Lagrangian relaxation

(LR) method [7-11] has been used by exploiting problem

separability in manufacturing problems such as job-shop

scheduling [10]. The LR method is a dual approach whereby

the coordination is performed by updating Lagrangian

multipliers based on economic principles of “supply and

demand.” Multipliers (or “shadow prices”) are updated based

on levels of violation of relaxed constraints by using

subgradient methods [12-13]. Because of the exploitation of

decomposability, the method is a good candidate for

coordinating distributed subsystems whereby a coordinator

updates multipliers and only needs to know solutions of

subproblems associated with distributed subsystems. However,

standard LR methods suffer from major convergence

difficulties such as high computational effort, zigzagging of

Mikhail A. Bragin, Member, IEEE, Bing Yan, Member, IEEE, Peter B. Luh, Life Fellow, IEEE

Distributed and Asynchronous Coordination of a

Mixed-Integer Linear System via Surrogate

Lagrangian Relaxation

Asynchronous Coordination of Distributed Mixed-

Integer Linear Programming Systems via Surrogate

Lagrangian Relaxation W

This work is supported by the National Science Foundation under grants

ECCS-1509666, ECCS-1810108, and CNS-1647209. Any opinions, findings,

conclusions or recommendations expressed in this material are those of the
authors and do not necessarily reflect the views of the NSF.

Mikhail A. Bragin and Peter B. Luh are with Department of Electrical and

Computer Engineering, University of Connecticut, Storrs, CT, 06269-4157,
USA (e-mails: mikhail.bragin@uconn.edu, peter.luh@uconn.edu)

Bing Yan is with the Department of Electrical and Microelectronic

Engineering at Rochester Institute of Technology, Rochester, NY, 14623,

USA (e-mail: bxyeee@rit.edu).

mailto:mikhail.bragin@uconn.edu
mailto:peter.luh@uconn.edu

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

2

multipliers and the need to know the optimal dual values.

Moreover, since standard LR requires solving all subproblems

to update multipliers, the method is synchronous. When the

number of subproblems is large, synchronous coordination may

lead to inefficient time management since “fast” subproblem

solvers will likely spend a significant amount of time waiting

for synchronization.

 Some the above difficulties have been overcome within

several versions of Lagrangian relaxation such as incremental

subgradient methods [14, 15], Alternate Direction Method of

Multipliers (ADMM) [16-21], surrogate subgradient method

[22], and surrogate Lagrangian relaxation (SLR) [23-24, 49] to

be reviewed in Section II. The distributed and asynchronous

incremental subgradient method [15] for optimizing convex

dual functions consisting of a large number of components,

which arise within the Lagrangian relaxation framework with a

large number of subproblems, overcomes the synchronization

difficulty. However, the method may be slow when there are

both “slow” and “fast” subsystems since the method requires

that all subproblem solutions arrive at the coordinator with the

same “long-term” frequency, on average. ADMM [16-21], a

decomposable version of the Method of Multipliers (frequently

referred to as “Augmented Lagrangian Relaxation” (ALR) [25,

26]), aims at accelerating convergence of traditional LR by

penalizing constraint violations by using quadratic penalty

terms and by decomposing relaxed problems arising in ALR to

reduce computational effort. However, when it comes to

coordination of MILP subproblems, neither synchronous nor

asynchronous versions of ADMM converge.

 Our recent SLR method [23, 24, 49] has overcome major

convergence difficulties of standard Lagrangian Relaxation

such as high computational effort, zigzagging of multipliers,

and the need to know the optimal dual value for convergence.

Moreover, as demonstrated in [24, Fig., 1, p. 537], the method

outperforms another coordination method – ADMM. In [49], it

has been demonstrated that the Surrogate Augmented

Lagrangian relaxation method, which is built upon the SLR

method, is capable of efficiently coordinating thousands of

subsystems. The method has thus been demonstrated to be

powerful and the asynchronous functionality will be added to

efficiently coordinate distributed subsystems to be discussed

next.

 In this paper, a novel distributed and asynchronous price-

based decomposition and coordination method based upon our

recent SLR method [23] is developed in Section III to

efficiently coordinate a system consisting of distributed MILP

subsystems within futuristic self-optimizing factories while

overcoming difficulties associated with other dual methods

mentioned above. Within the new method, multiple distributed

subsystems and one coordinator have computation and

communication capabilities. To avoid excessive data transfer

within the system, information exchanges between the

coordinator and subsystems are limited to 1) “prices”

(Lagrangian multipliers) broadcast by the coordinator and to 2)

subsystem solutions sent at the coordinator. While

asynchronous coordination avoids the synchronization issue, it

leads to major convergence difficulties: 1) because of

uncertainties in solving, communication and multiplier-

updating times, the order in which subsystem solutions arrive

at the coordinator is uncertain, and 2) subsystem solutions are

obtained based on multipliers of different vintages, and

multipliers may not converge. To overcome these difficulties

while ensuring fast speed, rather than requiring the “long-term”

frequency requirement as in [15], convergence is proved under

a “freshness” assumption, whereby a coordinator can update

multipliers without waiting for “slow” subproblems as long as

all subproblem solutions arrive at the coordinator at least once

within a finite number of iterations. Our idea to establish

convergence is through the novel use of the Lyapunov energy

function defined as the square of the distance from the current

prices to the optimum with the idea of forcing this function to

approach zero thereby ensuring that prices approach their

optimal values. Although not monotonically decreasing as

required by traditional Lyapunov methods for convergence

[27], an upper bound is innovatively established as an envelope

of Lyapunov functions for all possible (uncertain) trajectories

of multipliers (“prices”) that result from uncertain sequences of

subproblem solutions arriving at the coordinator. Based on the

contraction mapping concept whereby distances between

multipliers at consecutive iterations decrease, it is then proved

in the Main Theorem and several supporting Propositions that

this upper bound approaches zero thereby leading to

convergence.

 In section IV, by simulating asynchronous updates of

multipliers, two examples are presented. The first small

example is to show that Lyapunov functions within the new

method while non-monotonic, approach zero fast. The second

example is based on generalized assignment problems, which

can be viewed as simplified problems that arise within factories.

These results demonstrate that the new method converges fast.

With such effective distributed and asynchronous coordination,

the method has valuable implications for future self-optimizing

factories to coordinate machines or parts.

II. LITERATURE REVIEW

 Standard Lagrangian Relaxation (LR) is reviewed in

subsection II.A. In subsection II.B, other existing price-based

decomposition and coordination approaches such as the

distributed asynchronous incremental subgradient method as

well as asynchronous ADMM, both are versions of LR tailored

for asynchronous coordination, are reviewed and their

limitations are presented. In subsection II.C, our recent

Surrogate Lagrangian relaxation is reviewed as a promising

approach for the development of an efficient asynchronous

coordination method. Since this paper deals with coordination

of MILP subsystems that use branch-and-cut to solve their

subproblems, branch-and-cut is reviewed in subsection II.D.

Methods that do not support distributed coordination, such as

heuristics methods, or the distributed methods that require

continuity of problems are not reviewed.

A. Standard Lagrangian Relaxation

Traditionally, to solve MILP problems, Lagrangian relaxation

[7-11] has been used to exploit problem separability.

Specifically, in manufacturing, to solve job-shop scheduling,

machine capacity coupling constraints are relaxed to

decompose the problem into part subproblems [10]. The LR

method is a dual approach whereby the coordination is

performed by updating Lagrangian multipliers based on

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

3

economic principles of “supply and demand.” Within standard

LR, multipliers (or “shadow prices”) are updated after receiving

subproblem solutions based on levels of violation of relaxed

constraint using subgradient methods [12-13]. Because of the

exploitation of decomposability, the LR method is a good

candidate for coordinating distributed subsystems whereby a

coordinator updates multipliers and only needs to know

solutions of subproblems associated with distributed

subsystems. However, standard LR methods suffer from major

convergence difficulties. Because of the presence of discrete

variables, the dual function is non-smooth polyhedral concave

[28, p. 670, Proposition 7.1.2]. Therefore, gradients may not

exist and subgradients are used. Moreover, ridges of the dual

function may be sharp. Since the method requires solving all

subproblems, because of the sharp ridges, subgradient

directions may change drastically from one iteration to the next.

As a result, multipliers suffer from zigzagging across ridges of

the dual function [23, p. 192, Fig. 1; 29, p. 594, Fig. 1]. Also,

convergence proof and as practical implementations, require

the knowledge of the optimal dual value, which is unknown and

is typically adaptively adjusted in practice as in “subgradient-

level” methods [30] or incremental subgradient methods [31].

However, these adjustments are inefficient and convergence is

slow as demonstrated in [23, pp. 195-196, 199, Figs. 3-5, 7].

B. Distributed and Asynchronous Coordination Methods.

Distributed Asynchronous Incremental Subgradient

Method. To optimize non-smooth dual functions consisting of

a large number of components, which arise within the LR

framework, in a distributed and asynchronous manner, a

distributed asynchronous incremental subgradient method was

developed [15]. The method requires that all subproblem

solutions arrive at the coordinator with the same “long-term”

frequency on average, and convergence was proved using the

diminishing stepsizing rule. Moreover, convergence was

proved under the assumption that the subgradient is split into

individual components and each component is updated

independently rather than updating the subgradient as a whole.

Under this scheme, convergence may be slow in situations

whereby there are “fast” and “slow” subsystems solvers

because “fast” subsystems may spend significant amounts of

time waiting to satisfy the “long-term” frequency requirement.

Alternate Direction Method of Multipliers. ADMM, a

decomposable version of the Method of Multipliers [25, 26]

(frequently referred to as “Augmented Lagrangian Relaxation”

(ALR)), aims at accelerating convergence of traditional LR by

penalizing constraint violations by using quadratic penalty

terms and by decomposing relaxed problems arising in ALR to

reduce computational effort. Within the asynchronous ADMM,

to alleviate the issues associated with synchronization, two

conditions are used: 1) “partial barrier,” which allows the

coordinator to update multipliers after receiving solutions from

one or few subsystems and 2) “bounded delay,” which requires

solutions from every subsystem to arrive at the coordinator at

least once within a finite number of iterations [21, 32].

However, ADMM converges when solving convex problems

only [21, p. 419], but when solving non-convex problems,

1 The convex hull is the smallest convex set that encloses feasible solutions of
a problem.

ADMM does not converge [33, p. 73]. This is because within

ADMM, stepsizes do not approach zero, which is the

requirement to guarantee convergence when optimizing non-

smooth polyhedral concave dual functions [13, 23]. Moreover,

quadratic penalties make the resulting relaxed problem

nonlinear, which cannot be solved by MILP solvers. While

penalty terms can be linearized [34], the minimum of penalties

is typically not preserved and performance of the method is

degraded. Furthermore, penalty terms are a part of each

subproblem formulation, but these terms involve decision

variables from multiple subproblems. Therefore, additional

communication requirements are entailed. For example, in

power systems, communication requirements among

subsystems [21, 35] are needed.

C. Surrogate Lagrangian Relaxation Method

All major difficulties of standard Lagrangian relaxation such as

high computational effort, zigzagging of multipliers and the

requirement of the knowledge of the optimal dual value, have

been overcome within our recent surrogate Lagrangian

relaxation (SLR) [23-24, 49]. Within the method, it is not

necessary to optimally solve subproblems. Rather, it is

sufficient to optimize subproblems subject to the simple

“surrogate optimality condition” [23, p. 178, eq. 12],

guaranteeing that “surrogate dual” values approach dual values

[23, p. 181]. Convergence is proved without requiring the

knowledge of the optimal dual value. This was achieved with

a constructive process based on the contraction mapping

concept whereby distances between Lagrange multipliers

decrease at consecutive iterations, and as a result, multipliers

converge to a unique limit. At the same time, stepsizes are kept

sufficiently large to avoid premature algorithm termination.

Additionally, a constructive stepsizing formula satisfying these

criteria has been developed. When solving large-scale

problems, such as unit commitment problems arising in power

systems [49], the method demonstrated high efficiency in the

coordination of thousands of power generating units. SLR thus

satisfies high computational efficiency requirement because of

much-improved convergence over standard LR, and low

communication requirements because subsystems are not

required to communicate with each other. The method has been

shown to outperform other previous methods including

coordination methods such as ADMM [24].

D. MILP Method: Branch-and-cut

The main premise behind branch-and-cut [36] is that if the

convex hull1 of an MILP problem is obtained, the solution

process is reduced to solving an LP problem. Owing to the

linearity of the problem, the surface of the convex hull is

polyhedral [41], and vertices of the convex hull are feasible

solutions to the original MILP problem. Because of finite

numbers of variables and constraints, the number of vertices is

finite and linear programming methods such as simplex

methods converge to the optimal feasible solution within a

finite number of iterations [37, p. 6]. However, the convex hull

generally cannot be obtained. After relaxing integrality

requirements, branch-and-cut solves the LP-relaxed problem

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

4

[37]. Attempting to obtain feasible solutions, branch-and-cut

uses “cuts” to cut off LP regions that contain fractional vertices

without cutting off feasible solutions. While cuts generally

require an infinite number of iterations to define facets of the

convex hull, branch-and-cut resorts to branch-and-bound [38,

39] after a finite number of iterations when “tailing off” of cuts

occurs [40, p. 349]. Since the number of fractional vertices that

correspond to integer variables is finite, the number of

branching operations required to obtain optimal feasible

solutions is also finite.

III. CONVERGENCE OF DISTRIBUTED AND ASYNCHRONOUS

SURROGATE LAGRANGIAN RELAXATION

 In subsection III.A, an MILP problem formulation of a

system consisting of several distributed subsystems is

considered. In subsection III.B, our recent price-based

decomposition and coordination Surrogate Lagrangian

Relaxation (SLR) method is presented. In subsection III.C, a

novel Distributed and Asynchronous Surrogate Lagrangian

Relaxation (DA-SLR) method is developed. In subsection

III.D, the convergence of DA-SLR is proved in the dual space.

In subsection III.E, the practical considerations of the new

method are presented.

A. An MILP System with Distributed Subsystems

Consider a system consisting of one coordinator and I

distributed subsystems. Each subsystem is subject to its local

linear constraints, which will not be considered for simplicity

and ease of presentation. The entire system is subject to system-

wide coupling constraints. These constraints couple individual

subsystems and the MILP formulation of an overall system can

be written as follows:

1

min ()
I

i i
x i

f x

 ,

(1)

subject to

1

() 0
I

i i
i

g x

 ,

(2)

where xi = (yi, zi) Xi ℝ𝑁𝑖
𝑟
ℤ𝑁𝑖

𝑧 , Xi are closed and bounded

sets, x = (x1,…,xI) = (y, z) X ℝ𝑁𝑟
ℤ𝑁𝑧

, y = (y1,…,yI) ℝ𝑁𝑟
,

z = (z1,…,zI) ℤ𝑁𝑧
, with ℝ denoting the set of real numbers, ℤ

denoting the set of integers. Functions fi: Xi ℝ and gi: Xi
ℝ𝑚 are linear. It is assumed that a set of feasible solutions that

satisfy (1)-(2) is non-empty. To rule out possible irregularities

such as linear dependence of gradients of active constraints in

the continuous subspace ℝ𝑁𝑟
, it is assumed that gradient

vectors of active inequality constraints with respect to

continuous variables y only are linearly independent at a local

minimum x* = (y*, z*) of (1) [42].

B. Surrogate Lagrangian Relaxation

As discussed in Sections II, separability of the problem is

exploited by relaxing coupling constraints (2) by introducing

Lagrangian multipliers T = (1, …, m) ℝ𝑚 and by

decomposing the resulting relaxed problem into individual

subproblems:

 min () ()
j

T

j j j j
x

f x g x . (3)

As discussed in Section II, it is not necessary to fully optimize

subproblems within SLR. Rather, it is sufficient to stop

optimization after the “surrogate” optimality condition for

subproblems [23, eq. 57] is satisfied at iteration k+1:

 1 1 1 1 .
T T

k k k k k k
j j j j j j j jf x g x f x g x (4)

This condition is not the necessary requirement in a sense that

if a subproblem is solved to optimality and the best solution

found is the same as the most recent subproblem solution, i.e.,
1k k

j jx x , then, although this solution does not satisfy (4), the

algorithm can proceed. To coordinate subsystems, multipliers

are updated in the following way

 1 (), 0,1,...k k k ks g x k . (5)

Here,

 1

1:

() () ()
I

k k k
i i j j

i i j

g x g x g x

 .

(6)

are “surrogate” subgradient directions that are obtained instead

of subgradient directions by using solutions from one or few

subproblems. If inequality constraints are present in the

formulation, multipliers are updated according to (5) with

subsequent projection onto the positive orthant.

 Multipliers (5) are updated using stepsizes sk that satisfy

[23, p. 180, eqs. 21a and 21b], which are derived based on the

contraction mapping concept and are set as:

 1 1()
, 0 1, 1,2,...

()

k k

k
k kk

s g x
s k

g x

(7)

with

1 1

1 , 1 , 1, 0 1, 1,2,3,...k p r
p M r k

Mk k
 . (8)

To ensure that stepsizes (7) are well-defined, the following

Assumption is required.

Assumption 1. Boundedness of surrogate subgradients.
Surrogate subgradients satisfy the following condition:

 ()kg x < C < . (9)

This assumption is realistic for MILP problems defined

over a closed and bounded set. Indeed, surrogate subgradients

are levels of constraints violations. Since constraints are linear

and each variable is defined over a closed and bounded set,

constraint violations are finite.

Unlike the subgradient method, whereby zero subgradients

imply that the optimum is obtained and the algorithm terminates

with the optimal primal solution, within SLR, zero surrogate

subgradient implies that there are no constraint violations and

that a feasible solution is obtained, but it does not imply zero

subgradient. Therefore, this solution is not guaranteed to be

optimal. In this case, an iteration is skipped without updating

multipliers (5) and stepsizes (7)-(8).

As proved in [23], multipliers (5) converge to their optimal

values 𝜆∗ that maximize the following dual function:

 () min (,)
x X

q L x

 , (10)

where

1 1

(,) () ()
I IT

i i i i
i i

L x f x g x

(11)

is the Lagrangian function. The problem of minimizing the

Lagrangian function (11) within (10) is referred to as “the

relaxed problem.”

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

5

C. Distributed and Asynchronous Surrogate Lagrangian

Relaxation

Within Distributed and Asynchronous Surrogate

Lagrangian Relaxation, it is assumed that subsystems have

computational and communication capabilities. Namely,

subsystems are capable of solving subproblems to obtain

solutions that satisfy the surrogate optimality condition (4) and

to send the resulting solution at the coordinator. To coordinate

subsystems, it is also assumed that the coordinator has the

capability to receive subproblem solutions, update multipliers

and send them to all subproblems. Throughout the rest of the

paper, superscript k will denote multiplier-updating iterations

performed by the coordinator. Within the distributed and

asynchronous framework, subproblems are assumed to perform

their own “surrogate” optimization without waiting for other

subproblems to finish, and the coordinator updates multipliers

asynchronously without waiting for all subproblem solutions to

arrive. For notational convenience, superscripts k of

subproblems will denote the most recent subproblem solution

available at iteration k.

Distributed architecture of the method. High-level

architecture of the method is shown in Figure 1.

Fig. 1. Distributed architecture of the method.

As shown in Figure 1, information exchanges are limited

to multipliers 𝜆 that the coordinator broadcasts to all

subsystems and subsystem solutions 𝑥1, 𝑥2, …, 𝑥𝐼 that

corresponding subsystems send at the coordinator. Each

subproblem corresponds to a thread and each thread is using

branch-and-cut to solve the corresponding subproblem. The

coordinator corresponds to a separate thread to update stepsizes,

subgradient directions, and multipliers. The dynamic aspect of

the coordination will be discussed next.

Fig. 2. Distributed and Asynchronous implementation of Surrogate Lagrangian Relaxation

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

6

 By using a simple illustrative example, Figure 2

demonstrates the asynchronous update by using one coordinator

and three subproblems, and the difficulties caused by

asynchronous updating of multipliers. After obtaining a

solution to the first subproblem, the coordinator updates the

multipliers without waiting for other solutions to arrive and

broadcasts the updated multipliers to all subproblems.

Subproblem 1 can then start solving the problem once receiving

updated multipliers. Then, after the third subproblem is solved,

and its solution arrives at the coordinator, the coordinator once

again updates multipliers and broadcasts their values to all

subproblems, and so on. While asynchronous coordination

avoids the synchronization issue, it leads to major convergence

difficulties: 1) because of uncertainties in solving,

communication and multiplier-updating times, the order in

which subsystem solutions arrive at the coordinator is

uncertain, and 2) subsystem solutions are obtained based on

multipliers of different vintages, and multipliers may not

converge. For example, as demonstrated in Figure 2, at

coordinator iteration 4, x1
3 is obtained using λ2, x2

4 is obtained

using λ0 and x3
2 is obtained using λ1. As a result, there may be

convergence difficulties. In the following subsection, under

realistic “freshness” assumption, the convergence of the DA-

SLR method will be proved.

D. Convergence of Distributed and Asynchronous Surrogate

Lagrangian Relaxation

It is assumed that within Distributed and Asynchronous

Surrogate Lagrangian Relaxation (DA-SLR) method,

subproblem solving times as well as communication times are

finite, which is equivalent to the following “freshness”

Assumption:

Assumption 2. Freshness. There exists integer number D > 0

such that within any consecutive D iterations, all subproblem

solutions arrive at the coordinator at least once. □

Indeed, if solving and communication times are bounded,

then each subproblem solution should arrive at the coordinator

at least once within a finite number of iterations. Convergence

of DA-SLR is stated on the following Main Theorem.

Main Theorem. Suppose that Assumptions 1-2 hold, the

surrogate optimality condition (4) is satisfied by subproblem

solutions to (3) that are obtained by using branch-and-cut,

Lagrange multipliers are updated per (5) and stepsizes are

updated per (7)-(8). Within the DA-SLR method for

coordinating MILP problems with separable structure as in (1)-

(2), multipliers converge to 𝜆∗. □

For the ease of understanding, the proof is split into three

steps. In Step 1, it is proved that “surrogate” dual values

approach dual values and multipliers approach the optimum

“infinitely often” (Propositions 1-4). In Step 2, the Lyapunov

function is introduced as the square of distances from multiplies

to the optimum, and the upper bound on Lyapunov functions is

developed (Propositions 5-6). In Step 3, with the help of the

result obtained in Steps 1-2, in the Main Theorem it is proved

that the upper bound on Lyapunov functions approaches zero

thereby leading to convergence of multipliers.

Step 1. Convergence of “surrogate” dual values to dual

values.

Since subproblems are solved subject to the “surrogate”

optimality condition (4), rather than obtaining dual values as

within standard LR, “surrogate” dual values are obtained,

which are generally above the dual surface. To prove that

surrogate dual values approach dual values, Propositions 1-2

will first prove that subproblem solutions satisfying (4)

converge their optimal values.

Proposition 1. Convergence to optimal subproblem

solutions for fixed . Assuming that subproblem solutions

satisfy the surrogate optimality condition (4), for each

subproblem j and there exist finite
'
jK such that the subproblem

solution is optimal for multiplier values :

'

*jK

j jx x . (12)

Proof: As explained in subsection II.D, an optimal subproblem

solution is obtained by branch-and-cut within a finite number

of steps. A subproblem-feasible solution satisfying (4) is also

obtained within a finite number of steps. Since multipliers are

assumed to be constant here, (4) implies the decrease of

subproblem objective function. Essentially, branch-and-cut

will continue to search along the unexplored nodes of the

branch tree trying to find a lower objective function value until

the subproblem-optimal solution is obtained. □

 The limitation of Proposition 1 is that it is proved for a

fixed set of multipliers. Within DA-SLR, multipliers are

updated, and, therefore, the objective functions of subproblems

(3) will change. In turn, this will affect the optimal solution of

a subproblem. Proposition 2 removes this limitation.

Proposition 2. Convergence to optimal subproblem

solutions. Assuming that subproblem solutions satisfy (4), then

for each subproblem j there exist finite jK (>
'
jK) such that

solution to subproblem j is optimal for multiplier values jK
 :

 *()j jK K

j jx x . (13)

Proof: As proved in Proposition 1, for
'
jK and fixed

'
jK

 , a

subproblem-optimal solution is
'

*()jK

jx . What remains to prove

is that when multipliers are updated, there exist jK (>
'
jK) such

that optimal solutions at
'
jK

 and jK
 are the same:

'

* *() ()j jK K

j jx x . (14)

To prove (12), introduce the following operator:

 () () () arg min () () ()
j

T T
j j j j j j j j

x
A f x g x f x g x . (15)

Because subproblems are defined over bounded sets Xj,

solutions are finite and the following inequality holds:

 () ()
T

j j j jA f x g x . (16)

The operator A is thus bounded [43]. Therefore, there exists a

finite constant C’A > 0 such that the following inequality holds:

 '() () () ()
T T

j j j j A j j j jA f x g x C f x g x . (17)

To establish (14), consider the following norm:

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

7

'

* *() ()j jK K

j jx x . (18)

Using (15), equation (18) can be rewritten as:

'

() () () ()j j

T T
K K

j j j j j j j jA f x g x A f x g x

. (19)

Because Xj is bounded, subproblem objective functions (3) take

on finite values, therefore, the following inequality also holds:

'

'

'

() () () ()

() () () ()

() .

j j

j j

j j

T T
K K

j j j j j j j j

T T
K K

A j j j j j j j j

T T
K K

A j j

A f x g x A f x g x

C f x g x f x g x

C g x

 (20)

Here, CA is a finite positive constant. Using the Cauchy-

Schwarz inequality, equation (20) becomes:

'

'

() () () ()

() .

j j

j j

T T
K K

j j j j j j j j

K K

A j j

A f x g x A f x g x

C g x

 (21)

Since gj(xj) is a component of constraint violations, Assumption

1 is applicable, therefore:

' '

* *() () .j j j jK K K K

j j Ax x C C (22)

Since stepsizes (7)-(8) approach zero [23], there exist iteration

K’
j and Kj such that for any > 0 the following inequality holds:

'

2 '

jK

A j j

s
C C K K

. (23)

Therefore,

'

'
1

2 '
.

j
j j

i
j

K
j jK K i i

i K AA j j

C K K
g x s

C CC C K K

 (24)

From (22) and (24) is follows that

'

* *() () .j jK K

j jx x (25)

As reviewed in Section II, subproblem convex hulls contain a

finite number of vertices, each corresponding to a feasible

solution. Moreover, it can be assumed that distances between

any two adjacent vertices are greater than . Therefore, optimal

solutions at iterations
'
jK and jK are the same and (14) holds.

Since it takes a finite number of iterations to obtain
'

*()jK

jx

without updating multipliers, it will also take a finite number of

iterations to obtain *()jK

jx when multipliers are updated. □

Proposition 3. Convergence of “surrogate” dual values to

dual values. With stepsizing formula (7)-(8), Lagrange

multipliers (5) converge to a unique fixed point

 k , (26)

(not necessarily *), and surrogate dual values approach dual

values:

 (,) ()kL x q , (27)

where

 () min (,)
x X

q L x

 , (28)

2 If there are inequality constraints, then the violation would be positive.

is a dual value obtained by solving all subproblems optimally

and

1

(,) () () ()
I

k k T k
i i

i

L x f x g x

 , (29)

is a “surrogate” dual value obtained after solving one or few

subproblems subject to the surrogate optimality condition (4).

Proof: As proved in [23], stepsizes (7)-(8) approach zero. To

prove that surrogate dual values approach dual values, consider

first the surrogate optimality condition for one subproblem j:

1 1 1 1() () () () () ().k k T k k k T k

j j j j j j j jf x g x f x g x (30)

By using (5), inequality (30) can be rewritten as:

1 1 1

2

() () ()

() () () () .

k k T k
j j j j

k k T k k k
j j j j j j

f x g x

f x g x s g x

 (31)

The inequality (31) can then be equivalently rewritten as:

1 1 1

2

() () () () () ()

() .

k k T k k k T k
j j j j j j j j

k k
j j

f x g x f x g x

s g x

 (32)

As stepsizes approach zero, there exists 𝜅 so that for all k > 𝜅

and all 𝜀 > 0, the following inequality holds:

1 1 1

2
2

() () () () () ()

() .

k k T k k k T k
j j j j j j j j

k
j j

f x g x f x g x

g x C

 (33)

Therefore, () () ()k k T k
j j j jf x g x forms a convergent sequence:

 () () () () () ()k k T k T
j j j j j j j jf x g x f x g x . (34)

Indeed, as proved in Propositions 1-2, subproblem solutions

approach a limit, which here is denoted as jx . Moreover, the

situation whereby

 () ()k T k
j jg x (35)

is impossible. Multipliers cannot grow without bound because

that would imply that there is always positive or always

negative constraint violation,2 implying infeasibility of (1)-(2),

which is impossible. From Assumption 2, within any

consecutive D iterations, all subproblem solutions arrive at the

coordinator at least once. Moreover, by Propositions 1-2,

subproblem-feasible solutions are obtained within a finite

number of iterations. Therefore, optimal solutions to all

subproblems are obtained within a finite number of iterations,

implying that “surrogate” dual values approaches dual values:

 (,)kL x q as 0ks . □ (36)

Proposition 4. “Rate of Convergence” [23, p. 187]. When

stepsizes are updated per (7)-(8), there exists > 0 and the

following condition is satisfied “infinitely often”

 2
* *(,) ,k k kq L x k .

 (37)

Here is an infinite subset of natural numbers.

Proof: If condition (37) is not satisfied infinitely often for >

0, then starting from iteration 𝜅, the following inequality holds:

 2
* *(,) ,k k kq L x k .

(38)

There are three cases:

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

8

Case 1: The left-hand side of (38) is negative. Surrogate dual

values are greater than q* for all k > 𝜅, which contradicts

Proposition 3 that states that surrogate dual values approach

dual values.

Case 2: The left hand-side of (38) is positive, and
* (,)k kq L x for some 0 and k’ > k > 𝜅, then there exists

'

2
* '

0
k

, and the following condition holds:

 2
* ' ' ' * '(,)k k kq L x .

 (39)

There is a contradiction with (38) because in this case it is

possible to find ' 0 that satisfies (37).

Case 3: The left hand-side of (38) is positive, but infinitesimally

small, * (,)k kq L x for all 0 , then surrogate dual values

approach q*. Since, by Proposition 3, surrogate dual values

approach dual values, then dual values approach the optimal

dual value and convergence to the optimum is immediate. □

Step 2. Development of an upper bound for Lyapunov

functions

In this Step, the Lyapunov function is defined as

2

*k kV ,

(40)

which is the square of the distance from current to optimal

multipliers. Because subproblem solving times and

subproblem-coordinator communication times are uncertain,

different sequences of subproblem solutions arriving at the

coordinator lead to different trajectories of multipliers. As a

result, the exact representation of the Lyapunov function is

unknown. To resolve this issue, an upper bound of the

Lyapunov function is derived in Propositions 5-6 as an

envelope of all possible Lyapunov functions for any sequence

of subproblems arriving at the coordinator. Two inequalities

are derived based on whether condition (37) holds or not in

Proposition 5. In Proposition 6, these inequalities are combined

to derive an upper bound on all possible Lyapunov functions.

Proposition 5. As proved in [23, p. 187], under condition (37)

and assuming that stepsizes are “sufficiently small” 1/ (2)ks

the following inequality holds:

 2 2 2
* 1 * 2(1 2) () ()k k k k ks s g x .

(41)

If condition (37) is not satisfied or stepsizes are not “sufficiently

small” 1/ (2)ks , then the following inequality holds:

2 2

* 1 *

2

1 ()

1
() () () , 0.

k k k k k

k k k k

k

s g x

s g x g x

(42)

Proof: Inequality (41) has been derived in [23, Proposition 2.5].

To derive inequality (42) consider

2
* 1

2 2
* * 22 () () () .

k

k k k k k ks g x s g x

(43)

By using the Cauchy-Schwarz inequality, (43) becomes:

 2
* 1

2 2
* * 22 () () () .

k

k k k k k ks g x s g x

(44)

The right-hand side of (44) contains the Lyapunov function
2

* k at iteration k as well as its square root * k . In

order to express the inequality (44) in terms of the Lyapunov

function, the basic inequality 2 21
2ab a b

 [15] is used and

the inequality (44) becomes

 2 2 2
* 1 * *

2
2 2

()

1
() () () () .

k k k k k k

k k k k

k

s g x

s g x s g x

(45)

Therefore,

2 2

* 1 *

2

1 ()

1
() () () .

k k k k k

k k k

k

s g x

s g x g x

(46)

In Proposition 6 below, an upper bound on Lyapunov

functions at iteration k+1 in terms of Lyapunov functions at

iteration 0 is derived by induction taking into account all

possible realizations of Lyapunov functions.

Proposition 6. Upper bound for Lyapunov functions. The

following upper bound is valid for Lyapunov functions:

2
1 * 0

0

1 2

0 1

2

1

1
, 1,

k
k i

i

kk
j j j l

j
j l j

k k k

k

V P

s g x g x P

s g x g x k

(47)

where 1 2i iP s if condition (37) holds at iteration i, and

 1i i i iP s g x otherwise.

Proof: Proof will follow by induction by first proving that the

equation is true when k = 1, then assuming it is true for k,

showing it is true for k+1.

Before starting the induction, consider the situation

whereby k = 0. If condition (37) is satisfied, then inequality

(41) holds for k = 0:

222 2

* 1 * 0 0 0 01 2s s g x . (48)

If (37) is not satisfied, then inequality (42) holds for k = 0:

2 2
* 1 * 0 0 0 0

2
0 0 0 0

0

1

1
, 0.

s g x

s g x g x

(49)

Since the term
2

0 0 0

0

1
s g x g x

which appears in (49)

is greater than
22

0 0s g x which appears in (48), the following

expression is the upper bound for
2

* 1 :

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

9

2 2
* 1 * 0 0

2
0 0 0 0

0

1
, 0,

P

s g x g x

(50)

where 0 01 2P s if condition (37) holds at k = 0, and

 0 0 0 01P s g x if condition (37) does not holds at k = 0.

The inequality (50) is indeed an upper bound of
2

* 1

because if condition (37) does not hold, then (50) reduces to

(49), and if condition (37) holds, then (50) reduces to (48) plus

a positive extra term

2
0 0

0

s g x

.

Following the same logic, the following holds for k = 1:

22 2
* 2 * 1 1 1 1 1

1

22
* 0 0 1 0 0 0 1

0

2
1 1 1

1

1

1

1
,

P s g x g x

P P s g x g x P

s g x g x

 (51)

where 1 11 2P s if condition (37) holds at k = 1, and

 0 1 1 11P s g x if condition (37) does not holds at k = 1.

Inequality (51) is indeed the same as inequality (47) for k = 1.

What remains to prove is that assuming that (47) holds at

iteration k, it also holds for k+1:

12 2
* 2 * 0

0

12

0 1

2
1 1 1

1

1

1
.

k
k i

i

kk
j j j l

j
j l j

k k k

k

P

s g x g x P

s g x g x

(52)

The validity of (52), is derived using the same logic as that used

in deriving (50). Consider the following inequality:

2 2
* 2 * 1 1

2
1 1 1

1

1
,

k k k

k k k

k

P

s g x g x

(53)

After substituting the expression for
2

* 1k from (47) into

(53) one obtains the following inequality:

2
* 2

2
* 0

0

1 2
1

0 1

2

2
1 1 1

1

1

1

1
.

k

k
i

i

kk
j j j l k

j
j l j

k k k

k

k k k

k

P

s g x g x P P

s g x g x

s g x g x

(54)

The inequality (54) simplifies to the following:

12 2
* 2 * 0

0

1 2
1

0 1

2
1

1

2
1 1 1

1

1

1

1
.

k
k i

i

kk
j j j l k

j
j l j

k k k k

k

k k k

k

P

s g x g x P P

s g x g x P

s g x g x

(55)

After further simplifications, the inequality (55) becomes:

12 2
* 2 * 0

0

12

0 1

2
1 1 1

1

1

1
.

k
k i

i

kk
j j j l

j
j l j

k k k

k

P

s g x g x P

s g x g x

(56)

The inequality (56) is the sought-for inequality (47).

Step 3. Convergence of the upper bound to zero.

In this Step, the Main Theorem is proved, mainly, it is

proved that the upper bound on the Lyapunov function defined

in (47) asymptotically approaches zero, thereby leading to

convergence of multipliers to 𝜆∗.

Proof of the Main Theorem: In order to prove that 𝜆𝑘 → 𝜆∗, it

is necessary to prove that the upper bound on Lyapunov

function (right-hand side of (47)) approaches zero. This leads

the Lyapunov function to converge to zero and to the

convergence of multipliers.

Since 𝜆∗ that maximizes the dual function (10), is assumed

to exist, the term
2

* 0 is finite. Therefore, it is sufficient

to prove that the following expression approaches zero:

1 1 1

0 0: / 0:

1 () 1 2
k k k

i i i k i

i i i i i

P s g x s

 ,

(57)

where ℵ is the set is iteration numbers whereby inequality (41)

holds, and is the set of natural numbers.

 To prove that (57) approaches zero, the stepsizing formula

(7)-(8) is plugged in first, then the resulting function is upper-

bounded by using standard functions and their asymptotical

representation, then, though algebraic manipulations, the

condition for i is derived to ensure that (57) approaches zero.

By exploiting the fact that set ℵ is a proper subset of natural

numbers and that each term 1 ()i i is g x is greater

than 1, the following inequality holds:

1 1

0: / 0:

1 1
0 0

0: 1 0:

1 () 1 2

1 2 () 1 2 .

k k
i i i i

i i i i

k i k
i i

j
i i j i i

s g x s

s g x s

(58)

Assuming that condition (37) is satisfied at least every N (< ∞)

iterations the entire expression (58) is upper-bounded as:

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

10

1 1

0: / 0:

1
0 0

0: 1

0 0
1 /

0 1

1 () 1 2

1 2 ()

()
1 2 .

()

k k
i i i i

i i i i

k i
i

j
i i j

k N iN

j i
i j

s g x s

s g x

s g x

g x

(59)

If such N does not exist and condition (37) does not hold

infinitely often, then there is a contradiction with Proposition 3.

To prove that the right-hand side of (59) approaches zero,

consider 𝛼𝑘 from (8) which asymptotically behaves as 1 −
1

𝑀𝑘

as 𝑘 → ∞ [23], therefore, asymptotically, the right hand-side of

(59) becomes

0 0

0: 1

0 0

0 1

1
1 2 1 ()

()1
1 2 1 .

()

i
i

i i N j

iN

i
i j

s g x
Mj

s g x

Mj g x

(60)

The product
1

1
1

i

j Mj

can be expressed in terms of a

“Pochhammer function,” [44] which asymptotically behaves as
1

1
1

M
M

i
M

 [44] where 𝛾 is the Euler’s gamma function.

Therefore, asymptotically, (60) approaches the following

expression:

0 0 0 0

1 1
0 0

2 () 2 ()
1 1 .

11 ()

i

i i iN
M M

s g x s g x

MM g x iNi
MM

 (61)

After regrouping terms, (61) becomes

0 0

1
1

1

0 0

1

2 ()
1

1

2 ()
1

1
()

i
jN

i N jN
M

j

jN
M

s g x

M
i

M

s g x

M
g x jN

M

.

(62)

After expanding the inner product, and ignoring involving
(𝑗)−2/𝑀 and higher order terms, (62) becomes

0 0 0 0

1 1
11

2 () 2 ()
1 .

11 ()

i
jN

i N jNj jN
M M

s g x s g x

MM g x jNi
MM

(63)

To ensure that products involve terms less than 1 each, consider

0 0

1

1 ,...,

1 1

2 ()
1

1

max

()(1)

ij

i N jN jN

jN
M M

s g x

M

M

N

g x jNN jN

.

(64)

To ensure that every terms is less than 1, consider

1

1

(1)
,

()

1 ,..., , 1,2,....

M
i

jN
M

N jN

N g x jN

i N jN jN j

(65)

The second term of the right-hand side of (47) also approaches

zero, because it involves similar products as in (57), and the

proof follows exactly the same logic. The last term in the right-

hand side of (47) approaches zero because stepsizes approach

zero. □

E. Practical Implementations of the Method.

In practical implementation, the following considerations

are important. The coordinator needs to initialize stepsizes and

multipliers at the beginning of the algorithm. Also, the

coordinator needs to obtain feasible costs and to provide the

quality of the feasible solutions during or after the iterative

process. These considerations are discussed next.

Initialization. The coordinator initializes multipliers and

stepsizes. Multiplier initialization is typically problem-

dependent; specific initialization for generalized assignment

problems tested in this paper will be explained in Section IV.

One possible way to initialize stepsizes is [23, eq. 76, p. 190]:

0 0

0

2
0

ˆ ,q L x
s

g x

 ,

(66)

where q̂ is an estimate of the optimal dual value. Specific ways

to obtain this estimate are discussed in the Numerical Testing

Section.

Criteria to search for feasible solutions. To find the feasible

cost to the original problem, feasible solutions need to be

searched for within the method. Several criteria can be used to

start searching for feasible solutions: 1) Search with a

predetermined frequency, e.g., once every 100 iterations or 2)

Search after surrogate subgradient norm is below a certain

threshold. There could be other criteria such as the CPU time

limit. Once some of these criteria are satisfied, feasible

solutions are searched as explained next.

Obtaining of feasible solutions. The process of obtaining

feasible solutions is generally problem-dependent. Solutions to

subproblems are feasible with respect to subproblems, but these

solutions when put together may not satisfy relaxed constraints.

To satisfy these constraints, some subproblem solutions are

adjusted. This can be performed by selecting a few

subproblems and fixing decision variables associated with other

subproblems within the original problem (1)–(2) at 𝑥𝑘, the most

recent values obtained by solving subproblems, and the

resulting problem is solved by B&C. If a solution feasible with

respect to the original problem is obtained, then the feasible cost

is computed, otherwise, multipliers are adjusted for a few more

iterations, and a feasible solution is searched again.

Calculation of the lower bound. It is assumed that subsystems

can solve subproblems (3) optimally. Dual values provide valid

lower bounds, which are obtained by minimizing the

Lagrangian function (10), which is equivalent to solving all

subproblems optimally without updating the multipliers.

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

11

Stopping criteria. The algorithm is terminated after the duality

gap, which is the relative difference between the feasible cost

and the lower bound value, is below a predetermined threshold.

Flow chart of the algorithm. The algorithm is summarized in

the flow chart shown in Figure 3.

Fig 3. Flow chart of the DA-SLR method.

IV. NUMERICAL TESTING

The purpose of this section is to demonstrate performance of

the new method. In Example 1, a small integer linear problem

is considered to demonstrate that the Lyapunov function

approaches zero fast. In Example 2, a generalized assignment

problem with 20 machines and 1600 jobs is considered to

demonstrate capability of DA-SLR to solve large-scale

optimization problems fast with near-optimal performance.

Because of difficulties associated with other methods as

reviewed in subsection II.B of Literature Review, comparison

of DA-SLR is performed against its sequential version – SLR

[23], which, in turn, has been shown to outperform other

previous coordination methods in [24] such as ADMM.

Moreover, another variation of SLR - distributed and

synchronous SLR (DS-DLR) is used for further comparison.

The new method is implemented using IBM ILOG CPLEX

Optimization Studio Version: 12.7.1.0 on a PC with 3.10GHz

Intel(R) Xeon(R) CPU and 32G RAM.

Example 1. A Small Integer Programming Problem.

Consider the following integer optimization problem

1 2 3 4 5 6

1 2 3 4 5 6
, , , , ,

min 2 3 2 3
x x x x x x

x x x x x x

 (67)

1 2 3 4 5 6

1 2 3 4 5 6

. .

3 5 3 5 26 0,

2 1.5 5 2 0.5 16 0,

0 3, 1,...,6.i

s t

x x x x x x

x x x x x x

x i

(68)

After constraints (68) are relaxed by using multipliers 1 and

2, the Lagrangian function becomes

 1 2 3 4 5 6 1 2

1 2 3 4 5 6

1 1 2 3 4 5 6

2 1 2 3 4 5 6

(, , , , , , ,)

2 3 2 3

(3 5 3 5 26)

(2 1.5 5 2 0.5 16).

L x x x x x x

x x x x x x

x x x x x x

x x x x x x

(69)

The relaxed problem is then separated into six individual

subproblems, one for each variable:

1

1 1 1 2 1

1

min{ 2 },

. .0 3,

x
x x x

s t x

2

2 1 2 2 2

2

min{2 3 1.5 },

. .0 3,

x
x x x

s t x

3

3 1 3 2 3

3

min{3 5 5 },

. .0 3,

x
x x x

s t x

4

4 1 4 2 4

4

min{ 2 },

. .0 3,

x
x x x

s t x

5

5 1 5 2 5

5

min{2 3 0.5 },

. .0 3,

x
x x x

s t x

6

6 1 6 2 6

6

min{3 5 },

. .0 3.

x
x x x

s t x

(70)

Derivation of dual function and optimal multipliers. Since

the purpose of this example is to demonstrate the convergence

of multipliers to their optimal values, the knowledge of the dual

function and optimal multipliers is needed. The dual function

is obtained by minimizing the Lagrangian function (6669) by

using software Mathematica [45], which allows symbolic

manipulations. Because of technical limitations that do not

allow performing symbolic minimization with respect to 6

integer variables, the dual function is obtained iteratively. The

Lagrangian function is minimized over {x1, x2, x3} and the

resulting function is minimized over {x4, x5, x6}. The analytical

expression for the dual function then becomes:

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

12

 1 2 3 4 5 6

1 2 1 2 3 4 5 6 1 2
, , , , ,

1 2 1 2 1 2

1 2 1 2 1 2

1 2 1 2 1 2

1 2 1 2 1 2 1

(,) min (, , , , , , ,)

26 16 , if 0.6, 2 1

6 20 4 , if 0.6, 2 1

21 4 15.5 , if 3 1.5 2, 5 3

18 2 2 , if 5 3, 2 1, 3

x x x x x x
q L x x x x x x

 2

1 2 1 2 1 2 1 2

1 2 1 2 1 2 1 2

1 2 1 2 1 2

1 2 1 2 1 2 1 2

1 2

0.5 2

30 19 18.5 , if 5 3, 2 1, 3 0.5 2

9 11 , if 0.6, 5 3, 2 1

18 4 2 , if 5 3, 3 0.5 2

15 5 11 , if 0.6, 2 1, 3 0.5 2

24 13 6.5 , if

 1 2 1 2 1 2

1 2 1 2 1 2

3 1.5 2, 2 1, 3 0.5 2

30 22 8 , if 3 0.5 2, 2 1

0, otherwise.

(71)

By maximizing the dual function (71) over 1 and 2 in

Mathematica, the optimal dual value and optimal multipliers are

obtained as:
* *
1 2(,) 15.6q , with *

1 0.6 and *
2 0 . (72)

Initialization. The stepsize is initialized by using [23, eq. (76),

p. 190], whereby the optimal dual value q* from (72), rather

than its estimate, is used. Multipliers are initialized at zero.

Simulation. Because of the lack of distributed computing and

communicating facilities, asynchronous coordination is

simulated by simulating subproblem-solving, multiplier-

updating, and communication times. Simulated solving and

updating times are based on real times obtained by SLR first.

According to the SLR results, subproblem solving times range

from 2 milliseconds (ms) to 115 ms with an average value of

5.36 ms. The multiplier-updating time is either 0 or 1 ms with

an average value of 0.036 ms (the updating time is very short

and the time resolutions within OPL CPLEX is 1 ms).

Subproblem-solving and multiplier-updating times, thus,

follow empirical distributions, which for simulation purposes

are used to generate solving and updating times using discrete

random number generators in MS Excel [48]. Communication

time between the coordinator and subproblem solvers is

randomly generated following a uniform distribution U[0.95,

1.05] as the average wireless 5G speed is 1 ms.3 Based on the

above data, absolute arrival times (the time when one

subproblem solver finishes solving one subproblem +

communication time) of subproblem solutions are computed.

Based on these absolute timestamps, a sequence of subproblem

solution arrivals at the coordinator is obtained. Given solution

arrival times, the sequence, and the multiplier-updating time,

the set of latest subproblem solutions used to update multipliers

at each coordinator iteration is determined. Then the time of

multiplier arrivals to each subproblem solver is obtained.

Given the time when one subproblem solver starts solving,

appropriate multipliers to be used are also determined based on

multiplier arrival times. In simulations, subproblems are solved

and multipliers are updated based on simulated sequences,

which are, in turn, based on empirical distributions as described

above. To test the robustness of DA-SLR, 10 testing cases are

generated following the above procedure. To demonstrate the

convergence of DA-SLR when there is a “slow” subsystem,

3 https://5g.co.uk/guides/how-fast-is-5g/

another testing case with one “slow” subproblem solver is also

considered. The solving time of the “slow” subproblem solver

is assumed to range from 20 ms to 450 ms. The other five

subproblem solver remain the same. For comparison purposes,

one more testing case with a “slow” subsystem is also generated

for sequential SLR.

Results. Distances from multipliers to the optimum, which are

square a square root of Lyapunov functions, for DA-SLR

(average, minimum and maximum over 10 cases) and

sequential SLR are shown in Figure 4. The results for the case

with a “slow” subsystem are shown in Figure 5.

Fig. 4. Distances from multipliers to the optimum (square root of Lyapunov

function) within DA-SLR and SLR

As demonstrated in Figure 4, average as well as minimum

and maximum values of Lyapunov functions within DA-SLR

while non-monotonic, approach zero fast. Moreover, distances

to the optimum within DA-SLR approach zero faster, as

compared to those within SLR.

Fig. 5. Distances from multipliers to the optimum (square root of Lyapunov

functions) within DA-SLR and sequential SLR for a system with one “slow”

subsystem; comparison with results of Fig. 4.

As demonstrated in Figure 5, when there is a “slow” subsystem,

distances to the optimum within DA-SLR also approach zero.

While in this case, the Lyapunov function approaches zero

slower than within the system without “slow” subsystems, and

still faster than within sequential SLR.

0.0000001

0.000001

0.00001

0.0001

0.001

0.01

0.1

1

0 2 4 6 8 10

D
is

ta
n

ce
 t

o
 t

h
e

o
p

ti
m

u
m

Simulated time (sec)

SLR

DA-SLR (Average)

DA-SLR (Min and Max)

0.0000001

0.000001

0.00001

0.0001

0.001

0.01

0.1

1

0 2 4 6 8 10

D
st

an
ce

 t
o

 t
h

e
o

p
ti

m
u

m

Simulated Time (sec)

SLR

DA-SLR (with one 'slow' subsystem)

DA-SLR (Average (Fig. 4))

https://5g.co.uk/guides/how-fast-is-5g/

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

13

Example 2. Generalized Assignment Problems [23, 24, 46,

47]. The Generalized Assignment Problem (GAP) can be

viewed as a futuristic and albeit simplified optimization

problem that arises within “factories of tomorrow,” whereby

each machine or a job will have computational and

communicational capabilities. The DA-SLR method will then

serve as a foundation for self-optimization to efficiently

coordinate machines and jobs.

Problem formulation. Mathematically, the generalized

assignment problem is formulated in the following way:

 ,

, ,
1 1

min
i j

I J

i j i j
x i j

g x

 ,

 , , ,0,1 , 0, 0, 0i j i j i j jx g a b ,
(73)

 , ,
1

. . , 1,...,
I

i j i j j
i

s t a x b j J

 , (74)

 ,
1

1, 1,...,
J

i j
j

x i I

 , (75)

where I is the number of jobs and J is the number of machines,

ai,j is the time required by machine j to perform job i, and gi,j is

the cost of assigning job i to machine j. Capacity constraints

(74) ensure that the total amount of time required by the jobs to

be performed on machine j does not exceed its available time

bj. Assignment constraints (75) ensure that each job is to be

performed on one and one machine only.

Relaxed problem. After relaxing assignment constraints (75),

the relaxed problem is formulated in a separable form as follows

[23]:

, ,

, ,
1 1 1

min , min
i j i j

I J J

i j i i j i
x x i j i

L x g x

 ,

, ,
1

. . , 1, ...,
I

i j i j j
i

s t a x b j J

 , , ,0,1 , 0, 0, 0i j i j i j jx g a b .

(76)

Subproblems. The above relaxed problem (76) is decomposed

into J individual machine subproblems, and subproblem j is

formulated as follows:

,

, ,
1

min
i j

I

i j i i j
x i

g x

 , , ,
1

. . ,
I

i j i j j
i

s t a x b

 , , ,0,1 , 0, 0, 0i j i j i j jx g a b .

(77)

These subproblems are solved using branch-and-cut

implemented in CPLEX. The simulation follows the same

process as that explained in Example 1. The resulting

subproblem solving times follow uniform distributions U[0.15,

0.20], and updating times follow U[0.01, 0.02].

Communication times follow the same 5G assumption with

uniform distribution U[0.95, 1.05].

Initialization. The stepsize is initialized by using [23, eq. (76),

p 190], whereby an estimate of the optimal dual value q* is used.

This estimate is obtained by solving (70)-(72) after relaxing

integrality requirements. Initial values of multipliers are

obtained based on heuristic initialization rules following [47],

whereby the second highest cost of assigning a job is used.

4 It is expected that surrogate dual value approach dual values at convergence,
but for demonstration purposes, dual values are obtained every 500 iterations.

Results. Because this example is complicated, optimal

multipliers are difficult to obtain. Therefore, Lyapunov

functions are not plotted. Rather, dual values and feasible costs

obtained by using DA-SLR as well as sequential (SLR) and

distributed and synchronous (DS-SLR) versions and are plotted

in Figure 6.

Fig. 6. Performance of DA-SLR and comparison against SLR and DS-

SLR for the GAP d201600 instance

 Figure 6 demonstrates the performance of DA-SLR for the

GAP d201600 instance with 20 machines and 1600 jobs. The

dual value is obtained every 500 iterations by solving all

subproblems to optimality.4 As shown in Figure 6, with

asynchronous coordination, a feasible cost 97,852 is obtained

with a duality gap of 0.0316% after 78 seconds. This

demonstrates that DA-SLR converges and finds high-quality

solutions significantly fast. As shown in Figure 6, within

sequential SLR, the best feasible cost 97,855 is obtained with a

duality gap of 0.0332% after 950 seconds; within DS-SLR, the

best feasible cost 97,870 is obtained with a duality gap of

0.0528% after 121 seconds.

Fig. 7. Norm squared reduction within DA-SLR and comparison against

SLR and DS-SLR for the GAP d201600 instance

97790

97800

97810

97820

97830

97840

97850

97860

97870

97880

0 200 400 600 800 1000
C

o
st

Simulated time (sec)

Feasible cost (DA-SLR)

Lower bound (DA-SLR)

Feasible cost (SLR)

Lower Bound (SLR)

Feasible cost (DS-SLR)

Lower bound (DS-SLR)

0

100

200

300

400

500

10 100 1000

N
o

rm
 S

q
u

ar
ed

Simulated time (sec) - log scale

DA-SLR

SLR

DS-SLR

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

14

As demonstrated in Figure 7, within DA-SLR surrogate

subgradient norms reduce fast. The norm-squared reduction is

faster than within DS-SLR, which translates into better feasible

cost shown in Figure 6, and much faster than within sequential

SLR, which leads to the overall drastic CPU time reduction,

also shown in Figure 6.

V. CONCLUSION

 In anticipation of trends toward self-optimizing factories,

there is a need for efficient asynchronous price-based

coordination of distributed subproblems. The novel distributed

and asynchronous Surrogate Lagrangian Relaxation is

developed and convergence is proved based on the novel use of

Lyapunov energy function without requiring its strict

monotonic decrease for convergence. Numerical results

demonstrate that the novel approach converges fast. With this

effective distributed and asynchronous coordination, the

method has a strong potential to be used in future self-

optimizing factories to coordinate machines and in future power

systems to efficiently coordinate distributed energy resources.

REFERENCES

1. A. Al-Fuqaha, M. Guizani, M. Mohammadi, M. Aledhari and M. Ayyash,
“Internet of Things: A Survey on Enabling Technologies, Protocols, and

Applications,” in IEEE Communications Surveys and Tutorials, vol. 17, no. 4,

pp. 2347-2376, Fourthquarter 2015. doi: 10.1109/COMST.2015.2444095
2. S. Li, L. D. Xu, and S. Zhao, “The internet of things: a survey,” Inf. Syst.

Front., vol. 17, no. 2, pp. 243–259, 2015. https://doi.org/10.1007/s10796-014-

9492
3. J. Lee, B. Bagheri, and H.-A. Kao, “A cyber-physical systems architecture

for industry 4.0-based manufacturing systems,” Manuf. Lett., vol. 3, pp. 18–23,

Jan. 2015
4. T. Stock and G. Seliger, “Opportunities of sustainable manufacturing in

industry 4.0,” Procedia CIRP, vol. 40, pp. 536–541, Jan. 2016.

5. A. Giret, D. Trentesaux, and V. Prabhu, “Sustainability in manufacturing
operations scheduling: A state of the art review,” J. Manuf. Syst., vol. 37, pp.

126–140, 2015.

6. C. Gahm, F. Denz, M. Dirr, and A. Tuma, “Energy-efficient scheduling in
manufacturing companies: A review and research framework,” Eur. J. Oper.

Res., vol. 248, no. 3, pp. 744–757, 2016.

7. M. L. Fisher, “Optimal solution of scheduling problems using Lagrange
multipliers, Part I,” Operations Res., vol. 21, pp. 1114-1127, 1973.

8. M. L. Fisher, “Lagrangian relaxation method for solving integer

programming problems,” Manag. Sci., vol. 27, pp. 1-18, 1981.
9. M. L. Fisher, B. J. Lageweg, J. K. Lenstra, and A. H. G. Rinnooy Kan,

“Surrogate duality relaxation for job shop scheduling,” Discrete Appl. Math.,
vol. 5, pp. 65-75, Jan. 1983.

10. D. J. Hoitomt, P. B. Luh, K. R. Pattipati, “A Practical Approach to Job Shop

Scheduling Problems,” IEEE Transactions on Robotics and Automation, vol. 9,
no. 1, pp. 1-13, February 1993.

11. X. Guan, P. B. Luh, H. Yan and P. M. Rogan, “Optimization-based

Scheduling of Hydrothermal Power Systems with Pumped-storage Units,”
IEEE Trans. Power Syst., vol. 9, no. 2, pp. 1023-1031, 1994.

12. N. Z. Shor, “On the Rate of Convergence of the Generalized Gradient

Method,” Cybernetics, vol. 4, no. 3, pp. 79-80, 1968.
13. N. Z. Shor, “Generalized Gradient Methods for Non-smooth Functions and

Their Applications to Mathematical Programming Problems,” Econ. Math.

Methods, vol. 12, no. 2, pp. 337–356, 1976 (in Russian)
14. A. Nedić and D. Bertsekas, “Convergence Rate of Incremental Subgradient

Algorithms,” in Stochastic Optimization: Algorithms and Applications, pp.

223-264, Springer, Boston, MA, 2001
15. A. Nedić, D. P. Bertsekas and V. S. Borkar, “Distributed Asynchronous

Incremental Subgradient Methods,” Studies in Computational Mathematics,

vol. 8, pp. 381-407, 2001
16. F. Iutzeler, P. Bianchi, P. Ciblat and W. Hachem, “Explicit convergence

rate of a distributed alternating direction method of multipliers,” IEEE

Transactions on Automatic Control, vol. 61, no. 4, pp. 892-904, 2016

17. S. Boyd, N. Parikh, E. Chu, B. Peleato and J. Eckstein, “Distributed

Optimization and Statistical Learning via the Alternating Direction Method of

Multipliers,” Foundations and Trends® in Machine Learning, vol. 3, no. 1, pp.

1-122, 2010

18. E. Wei and A. Ozdaglar, “On the O(1/k) Convergence of Asynchronous

Distributed Alternating Direction Method of Multipliers,” In Global conference
on signal and information processing (GlobalSIP), pp. 551-554, 2013

19. R. Zhang and J. T. Kwok, “Asynchronous distributed ADMM for consensus

optimization,” in Proc. 31th ICML, Beijing, China, Jun. 21–26, 2014, pp. 1–9
20. Y. Wang, L. Wu, and S. Wang, “A Fully-Decentralized Consensus Based

ADMM Approach for DC-OPF with Demand Response,” IEEE Transactions

on Smart Grid, vol. 8, no. 6, pp. 1–11, 2016
21. Y. Wang, L. Wu, and J. Li, “A fully distributed asynchronous approach for

multi-area coordinated network-constrained unit commitment,” Optim. Eng.,

vol. 19, pp. 419–452, 2018.
22. X. Zhao, P. B. Luh and J. Wang, “Surrogate Gradient Algorithm for

Lagrangian Relaxation,” Journal of Optimization Theory and Applications, vol.

100, no. 3, pp. 699–712, 1999
23. M. A. Bragin, P. B. Luh, J. H. Yan, N. Yu and G. A. Stern, “Convergence

of the Surrogate Lagrangian Relaxation Method,” Journal of Optimization

Theory and Applications, vol. 164, no. 1, pp. 173-201, 2015
24. M. A. Bragin, P. B. Luh, B. Yan, and X. Sun, “A Scalable Solution

Methodology for Mixed-Integer Linear Programming Problems Arising in

Automation,” IEEE Trans. Autom. Sci. Eng., vol. 16, no. 2, Jun. 2018 doi:
10.1109/TASE.2018.2835298

25. M. R. Hestenes, “Multiplier and gradient methods,” J. Optim. Theory Appl.,

vol. 4, no. 5, pp. 303–320, 1969.
26. M. J. D. Powell, “A method for nonlinear constraints in minimization

problems,” in Optimization, R. Fletcher, Ed. New York, NY, USA: Academic,

1969
27. A. M. Lyapunov, “The General Problem of the Stability of Motion,” (In

Russian), Doctoral dissertation, Univ. Kharkov 1892 English translations:

(1) Stability of Motion, Academic Press, New-York & London, 1966 (2) The
General Problem of the Stability of Motion, (A. T. Fuller trans.) Taylor &

Francis, London 1992.

28. D. P. Bertsekas, Nonlinear Programming, 3rd Edition, Athena Scientific,
2016.

29. P. B. Luh, D. Zhang, R. N. Tomastik, “An Algorithm for Solving the Dual

Problem of Hydrothermal Scheduling,” IEEE Transactions on Power Systems,
мol. 13, тo. 2, pp. 593-600, May 1998.

30. J.-L. Goffin and K. Kiwiel, “Convergence of a simple subgradient level

method,” Math. Program., vol. 85, no. 11, pp. 207–211, 1999.
31. A. Nedic, and D. P. Bertsekas, “Convergence rate of incremental

subgradient algorithms,” In: Uryasev, S., Pardalos, P.M. (eds.) Stochastic
Optimization: Algorithms and Applications, pp. 263–304. Kluwer Academic,
New York, 2000.
32. R. Zhang and J. T. Kwok, “Asynchronous Distributed ADMM for

Consensus Optimization,” Proceedings of the 31st International Conference on
Machine Learning (ICML-14), pp.1701-1709, 2014.

33. S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein, “Distributed
optimization and statistical learning via the alternating direction method of

multipliers,” Found. Trends Mach. Learn., vol. 3, no. 1, pp. 1–122, Jan. 2011.

34. J. Yang and X. Yuan, “Linearized Augmented Lagrangian and Alternating
Direction Methods for Nuclear Norm Minimization,” Math. Computation, vol.

82, pp. 301-329, 2013.

35. W. T. Elsayed and E. F. El-Saadany, “A fully decentralized approach for
solving the economic dispatch problem,” IEEE Trans. Power Syst., vol. 30, no.

4, pp. 2179–2189, Jul. 2015.

36. J. E. Mitchell, “Branch-and-cut,” in Wiley Encyclopedia of Operations

Research and Management Science. Hoboken, NJ, USA: Wiley, 2010.

37. G. B. Dantzig, “Expected number of steps of the simplex method for a linear

program with a convexity constraint,” Technical Report SOL 80-3, Stanford
University, 1980.

38. M. Brusco and S. Stahl, Branch-and-Bound Applications in Combinatorial

Data Analysis. Springer, 2005.
39. A. H. Land and A. Doig, "An automatic method of solving discrete

programming problems" Econometrica, vol. 28, pp. 497-520, July 1960.

40. M. Padberg, “Classical cuts for mixed-integer programming and branch-
andcut,” Ann. Oper. Res., vol. 139, pp. 321–352, 2006

41. R. Misener and A. F. Christodoulos “Global Optimization of Mixed-integer

Quadratically Constrained Quadratic Programs (MIQCQP) through Piecewise-
linear and Edge-concave Relaxations,” Mathematical Programming Journal

on Computing, vol. 136, no. 1, pp. 155-182, May 2012.

https://doi.org/10.1007/s10796-014-9492
https://doi.org/10.1007/s10796-014-9492
https://msl.engr.uconn.edu/paper/hoitmot/PracticalJobShop93.pdf
https://msl.engr.uconn.edu/paper/hoitmot/PracticalJobShop93.pdf
https://en.wikipedia.org/wiki/Aleksandr_Lyapunov

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

15

42. B. W. Wah, Y. X. Chen, “Subgoal Partitioning and Global Search for

Solving Temporal Planning Problems in Mixed Space,” International Journal

of Artificial Intelligence Tools, vol. 13, no. 4, pp. 767-790, 2004

43. S. G. Kreĭn, and N. I︠A︡. Vilenkin, Functional analysis, Foreign Technology

Division, Wright-Patterson Air Force Base, Ohio, 1967. (Translation from

Russian)
44. R. Dıaz, and E. Pariguan, “On Hypergeometric Functions and Pochhammer

k-symbol,” Divulgaciones Matemticas, vol. 15, no. 2, pp. 179-192, 2007.

45. Wolfram Research, Inc., “Mathematica, Version 11.3,” Wolfram Research,
Inc., Champaign, Illinois, 2018

46. M. Yagiura, T. Ibaraki, and F. Glover, “A Path Relinking Approach with

Ejection Chains for the Generalized Assignment Problem,” Eur. J. Oper. Res.,
vol. 169, no. 2, pp. 548–569, 2006
47. M. L. Fisher, R. Jaikumar and L. N. Van Wassenhove, “A Multiplier

Adjustment Method for the Generalized Assignment Problem,” Management
Science, vol. 32, no. 9, pp. 1095-1103, 1986

48. Discrete random number generator in Excel,

https://stackoverflow.com/questions/43226094/discrete-random-number-
generator-in-excel

49. X. Sun, P. B. Luh, M. A. Bragin, Y. Chen, J. Wan, and F. Wang, “A

decomposition and coordination approach for large-scale security constrained
unit commitment problems with combined cycle units,” IEEE Trans. Power

Syst., vol. 33, issue 5, September 2018, pp. 5297-5308

Mikhail A. Bragin (S’11-M’17) received his B.S. and

M.S. degrees in Mathematics from the Voronezh State
University, Russia, in 2004, the M.S. degree in Physics and

Astronomy from the University of Nebraska-Lincoln,

USA, in 2006, and the M.S. and Ph.D. degree in Electrical
and Computer Engineering from the University of

Connecticut, USA, in 2014 and 2016, respectively. He is

an Assistant Research Professor in electrical and computer
engineering at the University of Connecticut. His research interests include

operations research, mathematical optimization, including power system

optimization, grid integration of renewables (wind and solar), energy-based
operation optimization of distributed energy systems, scheduling of

manufacturing systems and machine learning through deep neural networks.

Bing Yan (S’11-M’17) received the B.S. degree from

Renmin University of China in 2010, M.S. and Ph.D.

degrees from University of Connecticut in 2012 and 2016,
respectively. She is currently an Assistant Professor in the

Department of Electrical and Microelectronic Engineering,

Rochester Institute of Technology. Before joining
Rochester Institute of Technology, she was an Assistant

Research Professor in the Department of Electrical and Computer Engineering,

University of Connecticut. Her research interests include power system
optimization, manufacturing system scheduling, mathematical optimization,

formulation tightening, operation optimization of microgrids and distributed
energy systems, and grid integration of renewables (wind and solar).

Peter B. Luh (S’77–M’80–SM’91–F’95-LF’16) received
his B.S. degree from National Taiwan University, M.S.

degree from M.I.T., and Ph.D. degree from Harvard

University. He has been with the University of Connecticut
since 1980, and is the SNET Professor of communications

& information technologies. His interests include smart

power systems – smart grid, design of auction methods for

electricity markets, effective renewable (wind and solar)

integration to the grid, electricity load and price forecasting

with demand response, and micro grid. He is a fellow of IEEE, was the vice
president of publication activities for the IEEE Robotics and Automation

Society.

https://stackoverflow.com/questions/43226094/discrete-random-number-generator-in-excel
https://stackoverflow.com/questions/43226094/discrete-random-number-generator-in-excel

