
  

 

Abstract— Fault prognosis of air handling systems, which are 

key sub-systems of Heating, Ventilation and Air Conditioning 

systems, allows system operators to know the Remaining Useful 

Life (RUL), thus preventing unexpected breakdowns and 

reducing operational and maintenance costs.  In this paper, a 

new hidden Semi-Markov model-based method is developed.  In 

the method, only relevant state transition points are selected and 

estimated, leading to computational efficiency.  Physics-based 

models are used in a novel way to provide “mapping matrices” 

relating component capacities to fault severities, capturing 

impacts of multiple failure modes.  Experimental results show 

that our method can effectively estimate RUL of components and 

systems.  

 

Note to practitioners —Air handling systems within HVAC 

condition the air to satisfy human thermal comfort and air 

quality requirements.  The fault prognosis of these systems is 

critical since it allows system operators to know the Remaining 

Useful Life (RUL), thus preventing unexpected breakdowns and 

reducing operational and maintenance costs.  In this paper, a 

new hidden Semi-Markov model-based method is developed to 

estimate RUL of an air handling system and its components.  

Experimental results show that our method can predict RUL of 

components and systems with high accuracy. 

   
Index Terms— Air handling system, fault prognosis, 

remaining useful life, hidden semi-Markov model 

I. INTRODUCTION  

EATING, Ventilation, and Air-Condition (HVAC) 
systems constitute 57% of the energy used in the U.S. 

commercial and residential buildings [1].  Air-handling 
systems are key subsystems of HVAC systems that condition 
the air to satisfy the human thermal comfort and air quality 
requirements.  Variable Air Volume (VAV) air handling 
systems are the most common ones used today, and are 
comprised of components including 1) dampers; 2) filters; 3) 
cooling/heating coils; 4) fans; and 5) ducts, as shown in Fig. 1.   
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Fig. 1.  Structure of a specific air handling system considered  
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The recirculation air damper and the outdoor air damper mix 
the air in the desired proportion.  The mixed air then passes 
through coils to condition the air via heat exchange.  The 
supply fan delivers air to VAV boxes.  The return fan delivers 
1air to the exhaust air and the return air damper.  Components 
of the air handling systems typically have long lives [2]. 

In air handling systems, operational capacities of 
components and systems determine how well human comfort 
and air quality requirements are satisfied.  Degradation in 
component capacities thus captures effects of their faults.  
Sudden (abrupt) and gradual faults constitute two major 
categories of faults in components.  Sudden faults occur 
unexpectedly and are unpredictable.  Gradual faults, e.g., 
aging of equipment, cause a slow degradation in component 
and system capacities, and are predictable.  Because of gradual 
faults, a component or a system may no longer perform its 
intended function over time.  The remaining time that a 
component or a system is able to function in accordance with 
its intended purpose is termed its Remaining Useful Life 
(RUL).  Fault prognosis allows operators to know the RUL of 
components and systems, thereby preventing unexpected 
breakdowns and reducing operational and maintenance costs.  
Prognosis at the component-level helps in determining when 
components need repair or replacement; prognosis at the 
system-level provides a global view of the system health.  
However, prognosis is challenging because 1) estimating 
conditions of components and systems with low false 
identification rates may require high computational effort, 
leading to a slow inference; and 2) models capturing impacts 
of multiple failure modes may be too complex to be 
established. 

To keep a component or a system running normally, a fault 
diagnosis method identifies current failure modes and their 
severities.  If a fault is isolated, maintenance crews will repair 
or replace the failed component or system.  Otherwise, the 
fault prognosis method estimates RULs based on current 
conditions.  Thus, it is important to estimate the current 
conditions rapidly.  Hidden Markov Models (HMM) and 
Hidden Semi-Markov Models (HSMMs) are usually used to 
estimate current conditions.  In these methods, their model 
parameters are estimated first, and are re-estimated at intervals 
to adapt to changing environments.  Given parameters, their 
states, i.e., current conditions, are estimated.  Compared to 
HMMs, HSMMs have explicit time-duration distribution for 
each state, thus can capture more general time-evolution of 
degradations than HMMs can.  However, the Viterbi algorithm 
used to estimate parameters and states of HSMMs needs to 
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calculate probabilities of every possible time-durations in each 
state and at each time epoch iteratively, thus is time-
consuming (e.g., it requires 5.6 hours in our problem).  A fault 
is missed if it occurs when parameters are being estimated.   

This paper aims to address the problem of RUL predictions 
at both the component and the system levels for air handling 
systems by employing HSMMs.  Since cooling coils and 
supply fans are used to condition and circulate air to rooms and 
are the key components in air handling systems, they constitute 
as examples to illustrate our method.  However, our method 
easily extends to other components as well.  Based on accepted 
practice in HVAC systems [3], tube fouling and dust on fins in 
cooling coils, and a decrease in fan efficiency comprise the 
failure modes to illustrate our method.  Since tube fouling 
mainly depends on the quality of chilled water and dust on fins 
mainly relies on air quality, they are considered independent 
of each other.  This paper focuses on the following two aspects 
as shown in Fig. 2.  The first is a computationally efficient 
statistical method to estimate the parameters and states of 
HSMMs with low false identification rates.  The second is a 
statistical method to estimate the RUL of a component or a 
system by combining the influence of related failure modes via 
mapping matrices.   

Air handling 
system

Cooling coil

Tube fouling Dust on fins 

Supply fan

Decrease in fan efficiency …

…

A statistical method 

integrating fault impacts

Mapping matrices

Estimated fault 

severities and 

their evolutions
Evolutions of levels of 

capacity and RULs (system)

Evolutions of levels of 

capacity and RULs 

(components)

Physics-based model: 

Relationships between 

System & components

An efficient method to 

estimate severities of 

failure modes

Fig. 2.  The framework of our fault prognosis method 

The remaining sections of the paper are as follows.  Section 
2 provides a brief review of the fault prognosis methods in the 
literature.  In Section 3, an accurate and computationally 
efficient HSMM-based fault prognosis method is developed to 
estimate the RUL of components with a single failure mode.  
In Section 4, the HSMM method is extended to estimate the 
RUL of components with multiple failure modes.  In Section 
5, our fault prognosis method is tested using data from a small 
simulated building.  Experimental results show that our 
method performs well in estimating the RULs at both the 
component and system levels. 

II. LITERATURE REVIEW 

There is a paucity of literature on the fault prognosis of 

HVAC air handling systems and their components.  

Consequently, methods developed for other components (e.g., 

engines) are reviewed in subsection II-A.  Combining 

component-level results to system-level prognosis involves 

additional layers of difficulty, as reviewed in subsection II-B. 

A. Fault Prognosis Methods for Components 

Physics-based, black box and statistical models constitute 

three categories of prognosis methods.  First principles-based 

mathematical models of component degradations form the 

basis for the prognosis of physics-based methods.  In [4-6], 

extended Kalman filter and particle filter-based methods 

constitute the basis for estimating the parameters of time-

dependent degradation models. 

As typical black-box models, static neural networks (NNs), 

can approximate arbitrary nonlinear relationships, but they do 

not capture temporal evolutions, and thus are not suitable for 

fault prognosis.  Unlike static NNs, recurrent NNs represent 

the output at time t as a function of previous output and 

external inputs at the current and previous times, and are 

suitable for fault prognosis [7].  In [8], a neuro-fuzzy network-

based fault prognosis scheme predicted the spur gear 

condition one-step ahead.  The fuzzy inference structure was 

established based on domain knowledge, and the concomitant 

fuzzy membership functions were trained by NNs.  In [9], 

fault prognosis in traction motors used in wind turbines 

employs torque prediction via a least-squares support vector 

regression method as a prognostic indicator. 

Statistical models, e.g., dynamic Bayesian networks and 

HMMs, represent time evolution statistically.  In these models, 

the time-to-failure is assumed to follow a certain distribution, 

e.g., geometric distribution.  For instance, a dynamic 

Bayesian network model was used to estimate the RUL of a 

computer numerical control tool machine [10].  In [11], to 

estimate RUL of a component under degradation or shock 

damage, the degradation time was modeled as Gaussian, and 

the time between two consecutive shock damages was 

modeled as a Poisson distribution.  HMM-based methods are 

used to estimate the RUL of components, e.g., bearings [12].  

However, in HMMs, the time-duration distribution of each 

state is assumed to be geometric, and this assumption may not 

be realistic in practice.  HSMM is an extension of HMM by 

allowing the underlying process to be a semi-Markov chain 

with time-duration distributions for each state.  Compared to 

HMMs, HSMMs have explicit time-duration distributions 

and thus can capture the state evolutions more accurately.  In 

[13], a segmental HSMM-based method was used to predict 

the RUL of pumps.  However, unlike HMMs, estimating 

HSMM parameters and states needs to calculate probabilities 

of every possible time-duration for each state at each time 

epoch, leading to high computational cost.  Table I 

summarizes the fault prognosis methods for components. 

TABLE 1 

 COMPARISON OF FAULT PROGNOSIS METHODS 

Approaches Components/
systems 

Advantages Disadvant-
ages 

Physics-
based models 
[4-6] 

Pump, 

gearbox, 

bearings, etc. 

More precise 

than others,  

Physical 

knowledge 

may not be 

available  

Black-box 
models [7-9] 

Gearbox, 

bearings, 

engine, etc. 

Applicable 

without 

physical 

knowledge 

Lack of 

transparenc

y and 

robustness  

Statistical 
model-based 
[10-13] 

Pump, 

bearings, etc. 

Robust and easy 

to establish 

May be 

time-

consuming 

B. Fault Prognosis Methods for Systems 

Some papers carried out fault prognosis of systems by 

identifying the rate of change in damage indicators, e.g., in 

planes [14].  Some other papers considered fault prognosis by 



  

estimating RULs.  Typically, the system prognosis is assumed 

to depend upon a few critical components.  Tracking the 

remaining life of these critical components provides a 

measure of the remaining life of the entire system [15].  For 

instance, the prognosis of a suspension system depends on 

crack growth on the suspension spring which is a critical 

component in the suspension [15].  Some other methods 

consider the combined impacts of all components on the 

system.  For instance, in [16], a hierarchical architecture was 

used to analyze the effects of system-level parameters on 

component faults in an aero propulsion system of turbofans.  

In [17], system-level performance was calculated based on 

health factors of components to predict RULs of an aircraft’s 

air conditioning system.  These methods require complex 

models to capture relationships between components and 

systems, thus are hard to use. 

III. ESTIMATING RULS OF COMPONENTS UNDER ONE 

FAILURE MODE  

In subsection III-A, estimating the RUL of a component 
with one failure mode is considered first.  An HSMM is 
established to capture the transitions among fault severities, 
with their parameters estimated via Gibbs sampling.  In 
subsection III-B, an efficient statistical method with low false 
identification rates and low computational effort is developed 
to infer the states of HSMMs.  In subsection III-C, an improved 
backward recursion method is derived to estimate the RUL 
based on the estimated parameters and states. 

A. HSMMs Capturing Transitions among Fault Severities  

To establish an HSMM for the severities of a failure mode, 
impacts of the fault are analyzed first.  Based on the analysis, 
appropriate observations are selected for the HSMM.  Then, 
parameters of the HSMM are estimated.  To illustrate the 
process, a single failure mode of a supply fan is used as an 
illustrative example.  Supply fans deliver air to rooms.  The 
fan capacity is a function of the supply fan efficiency esf.  A 
decrease in fan efficiency esf results in the fan consuming more 

electricity to maintain a specified ,supam .  Based on this 

concept, a physics-based empirical model of a fan is derived 
as follows [18]:   

2 3 4
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
with (1) 

,sup sup, .sf a desf m m  (2) 

where Qsf is the power of the supply fan; ρair is the air density; 

ΔPsf is the pressure rise through the supply fan; sup,desm  is the 

design value of ,supam ; and c1, c2, c3, c4, and c5 are 

coefficients.  Since the decrease in esf reflects performance 
degradation, it is considered as the degradation state of the 
supply fan, and a fault indicator.  As presented in [13], the 
supply fan is assumed to have four states Ssf = 0, 1, 2 and 3, 
including a normal condition (Ssf = 0) and three severities of 
the gradual fault (Ssf = 1, 2 and 3), where Fault Severity 3 is 
considered as the unaccepted level, as shown in Fig. 3.  An 
HSMM is characterized by four parameters: 1) the initial 
probability vector π; 2) the state transition matrix P; 3) the 
observation symbol probability distribution B = {bi(O(k))}, 

where bi(O(k)) is the probability that the observation O at time 
k belongs to State i, governing distributions of observations; 
and 4) a parameter set λ containing parameters of time-
duration distributions in each state [13].   
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Fig. 3.  HSMM representing state evolutions of a supply fan 

To select appropriate observations for HSMMs, as discussed 
in [19], three kinds of variables are considered, including 1) 
fault-related sensor readings; 2) errors between some sensor 
readings and set-points; and 3) residuals between some sensor 
readings and their predictions obtained from models.  For 
instance, for the supply fan, the supply air mass flow rate

,supam may decrease because of a decrease in esf.  Since the 

fan consumes more electricity under the faulty condition, 

temperature rise Tsf of the air through the fan may increase.  
The residual Rphy,sf between the left-side and the right-side of 
(1) approximates to zero under normal conditions, but 
increases with a decrease in esf.  Thus, the three fault-related 
variables compose the fault indicator matrix as:   

1 1 1
,sup ,

,sup ,

. . . ,

a sf phy sf

sf

K K K
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m T R
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m T R

 
 

  
 

  

 (3) 

where K is the length of the observation sequence.  These 
variables may be related and contain redundant information.  
To remove redundancy, principal component analysis is used.  
For Xsf, the first component captures 98.052% of variation in 
the data and is used as the observation Osf.   

To estimate parameters of HSMMs, the expectation-
maximization algorithm (EM) and Gibbs sampling are usually 
used.  Unlike the EM, Gibbs sampling is a Markov chain 
Monte Carlo algorithm.  In the method, parameters are 
sampled randomly based on their posterior distributions 
conditioned on other parameters (like in a Gauss-Seidel 
iteration) until the iterations converge.  It ensures that a 
Markov chain converges to a stationary distribution that is the 
distribution of HSMM parameters.    Since Gibbs sampling 
avoids local minima, it is used to estimate parameters of 
HSMMs in our problem [20].  Both HMMs and HSMMs have 
initial probability vectors, state transition matrices, and 
emission probabilities, and thus posterior distributions used 
for HMMs are used for HSMMs [19].  Posterior distributions 
of the three parameters are as (9)-(16) in [19].  Additionally, 
HSMMs have extra parameters of time-duration distributions.  
As presented in (7) of [21], the posterior distributions of the 
time-duration parameters are  

 ( ) ! ,ii d
i i iP d e d

 
   (4) 

where di is the time-duration of State i; λi is the parameter of 

the Poisson distribution.  The prior distribution of  λi follows 

a gamma distribution as, 

 1
~ ( , ) ( ) ,ii i i

i i i i i ie
       
 

    (5) 



  

where αi is the shape parameter, and βi is the rate parameter 

of State i.  The posterior distribution of λi also follows a 

gamma distribution as [21] 

| , ~ ( , ),i i i i i i il m        (6) 

where mi is the number of segments in State i; 1 ( ) ,
T
ti S tl    

and S(t) is the Kronecker delta function 

( )

1, ( )
;

0,
S t i

s t i

otherwise
 


 


 (7) 

B. An Efficient Method to Estimate States of HSMMs with 

Low Computational Effort  

As discussed before, to make a component perform its 

intended function, it is important to quickly estimate states of 

HSMM to know whether a fault occurs, and when a fault 

occurs in the future.  The Viterbi algorithm is usually used to 

estimate HSMM parameters and states [22].  In this algorithm, 

at time t, the probability of observations corresponding to a 

state segment of staying in State i from time t-d+1 to time t 

needs to be calculated.  This probability depends on 1) the 

probability of starting a time-duration in State i at time t-d+1; 

2) the probability of staying in State i for a time-duration d; 

and 3) the probability that observations from time t-d+1 to 

time t belong to State i.  The maximum value of this 

probability is calculated as: 

1

( ) max max ( ) ( ) ( ( )),
t

i j ji i i
d j s t d

t t d a p d b O s 
  

 
   

 
 (8) 

where pi(d) is the probability that the time-duration of State i 

is d.  As shown in (8), to obtain i(t), probabilities of each state 
and each possible time duration should be calculated at each 
time.  Since estimating states of HMMs does not need to 
calculate probabilities for each possible time-duration, 
estimating states of HSMMs is much more time consuming 
than that of HMMs.  In our problem, the Viterbi algorithm runs 
iteratively with Gibbs sampling to estimate HSMM 
parameters, and the computation time is 5.6 hours.  To adapt 
to changing environments, the parameters need to be re-
estimated at intervals.  A fault is said to be missed if it occurs 
when parameters are being estimated.  

Components of air handling systems have long lives, thus 

they usually stay in the normal condition for a relatively long 

time.  Therefore, state transitions are low probability events.  

Consequently, the number of state transition points is much 

smaller than that of non-transition ones.  Since the non-

transition points do not transit to other states, their estimates 

are the same as their previous transition point.  If the transition 

points are estimated accurately, it is not necessary to estimate 

the states of non-transition points, leading to a substantial 

decrease in the computational effort.  Based on this concept, 

a new statistical method is developed to estimate the states of 

HSMMs in an efficient manner as shown in Fig. 4.  This 

method selects points that are more likely to transit to other 

states as potential transition points (black circles).  L1 points 

before and L2 points after each selected point are included as 

potential state transition points (green triangles) to cover 

actual transition points.  The rest of the points are considered 

as non-transition points (blue pentagons).  Since only 

potential transition points need to be estimated and non-

transition points are the same as their previous transition 

points, the computational requirements are reduced.  In our 

method, actual state transition points may not be 100% 

covered by potential ones.  If certain actual points are not 

covered, the estimation accuracy decreases.  In our 

experiments, by selecting appropriate L1 and L2, all actual 

points are covered. 
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Fig. 4.  Selecting potential state transition points to cover all actual ones 

The key issue here is to find state transition points in an 

efficient way.  To determine potential transition points, it is 

important to calculate the transition probability and the non-

transition probability for each point.  For instance, if the 

current state is i at time t, the probability of transiting from 

State i to another state is 

υij(t)=Pr(O(1:t), S(1)=s1,…, S(t)=i, S(t+1)=j|j  i), (9) 

and the probability of staying in State i is 

υii(t)=Pr(O(1:t), S(1)=s1, …, S(t)=i, S(t+1)=i).   (10) 

As long as υij(t) > υii(t) holds for at least one State j, the 
transition probability is deemed to be larger than the non-
transition probability.  Thus, let  

 ( ) max ( ) ,i ij
j

t t   (11) 

and the point at time t is more likely to transit to other states if  

υi(t) > υii(t).  (12) 

The point satisfying (14) is considered as a potential state 
transition point.  The probabilities υij(t) and υii(t) can be 

calculated by using the forward variable  [22].  However, to 
do this, probabilities for each state and each possible time 
duration need to be calculated at each time epoch, leading to 
high computational requirements.  To address this issue, the 
forward variable not considering probabilities of different 

possible time durations is used to approximate .  For instance, 
the current state is j at time t, and thus the forward variable not 
considering time-durations is  

 ( ) Pr (1: ), ( )i t O t S t i    (13) 

1

0

( 1) ( ( )),
N

j ji i
j

t a b O t




 
   
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  (14) 

Given (9), (10) and (13), it follows 
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Then, it is easy to obtain 
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 and (16) 

( ) ( 1) ( ( )).ii i ii it t a b O t     (17) 

Based on (16) and (17), υij(t+1) and υii(t+1) are calculated.  By 
checking (12), potential state transition points are determined.  
The computational complexity of this standard Viterbi 
algorithm is O((ND2+N2)K), where N is the number of states; 
K is the length of the original state sequence; and D is the 
maximum duration allowed for any state.  By using our 
method, the length of the state sequence is reduced from K to 
C, where C is the length of the shorter sequence.  Thus, the 
computational complexity is reduced from O((ND2+N2)K) to 
O((ND2+N2)C).  Since our paper focuses on fault prognosis, 
the sensitivity analysis of HSMMs is not considered.  

C. An improved Backward Recursive Algorithm to Estimate 

RULs of Components under One Failure Mode 

As mentioned in subsection III-A, each failure mode is 
assumed to have three fault severities.  Fault Severity 3 is 
considered as the unacceptable level, and thus the time to 
Fault Severity 3 is regarded as the RUL.  The state of the 
HSMM established in subsection III-A is the fault severity.  
Based on the estimated fault severity and parameters of the 
HSMM, a backward recursion was developed to estimate 
RULs [12].  This method assumes that the component will 
stay in the current state or transits from Severity i to Severity 
i+1.  However, in practice, the component may transit to an 
even worse fault severity, e.g., from Severity i to Severity i+2.  
In our improved method, these ignored situations are covered 
as shown in Fig. 5.  
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Fig. 5.  Transitions among severities of decrease in the supply fan efficiency 

In the figure, the supply fan could transit from State i to State 

j, where  i ≤ j ≤ 3 since the upper bound of fault severities 

is 3 in our problem.  Thus, RULs are calculated as follows: 

In State 3: RUL3 = 0, (18) 

In State 2: RUL2 = a22∙(D2- tstay,2), (19) 

In State 1: RUL1 = a11∙(D1- tstay,1+RUL2) + a12∙RUL2, (20) 

In State 0: RUL0 = a00∙(D0 - tstay,0 +RUL1) + a01∙RUL1  

                                + a02∙RUL2, (21) 

where RULi is the RUL of the supply fan in State i; the variable 
tstay,i is the length of time so far in State i; and Di is the time 
duration in State i.  As shown in (18), the RUL is zero for a 
component in State 3 (Fault Severity 3), since State 3 is 
deemed unacceptable.  If the component is in State 2, it has 
two possible evolutions, including staying in State 2 for D2- 
tstay,2 time units with probability a22 or transiting to State 3 with 
probability a23 immediately.  In the first case, the RUL is D2- 
tstay,2; in the second case, the RUL is 0.  Thus, the summation 
is a22∙D2 as shown in (19).  RULs of the supply fan in other 
states are computed similarly. 

IV. ESTIMATING RULS OF COMPONENTS AND SYSTEMS 

UNDER MULTIPLE FAILURE MODES 

In this section, estimating RULs of components or systems 

under multiple failure modes is considered.  In subsection IV-

A, mapping matrices are extracted from physics-based 

models to capture discrete relationships between states of a 

component and states of failure modes.  In subsection IV-B, a 

statistical method is developed to estimate RULs of a 

component while considering the impacts of multiple failure 

modes, and the method is then extended to that of an air 

handling system. 

A. Extract Mapping Matrices from a Physics-based Model 

As discussed before, two failure modes of a cooling coil 
are considered: tube fouling and dust on fins.  To estimate 
states (i.e., both failure modes and fault severities) of the 
cooling coil, HSMMs should capture the impacts of these two 
failure modes.  By using the method presented in subsection 
III-A, two kinds of HSMMs are established.  One kind is used 
to estimate failure modes with states Sfalmod,cc being 
combinations of failure modes, e.g., Sfalmod,cc = 1 representing 
(ftube, ffin) = (0, 1) which means that tube fouling does not occur 
and dust on fins occurs.  The other kind is used to estimate 
severities of the two failure modes.  To estimate RULs of the 
cooling coil, an HSMM describing state evolution of the 
cooling coil is required.  States Scc of the cooling coil are levels 
of capacity.  Since the cooling capacity depends on severities 
of the two failure modes, Scc relies on joint states Sjs of the two 
failure modes.  With each failure mode having four states, 
there are Njs = 42=16 joint states, e.g., Sjs = 3 is equivalent to 
(Stube = 0, Sfin = 3).  With HSMMs of the two failure modes 
established, they are directly combined to create the HSMM 
for the cooling coil.  To achieve the above, a discrete model 
describing the discrete relationship between HSMM states of 
failure modes and those of the cooling coil is required but is 
not available.  To address this issue, a cooling coil’s physics-
based model is discretized to obtain the discrete model as 
shown in Fig. 6.  In the figure, Scc is the discrete form of the 
cooling capacity.  Sjs is the discrete form of fault-related 
parameters, e.g., the tube inside diameter dtube,in and the fin 
surface area Afin.  Since the physics-based model describe the 
continuous relationship between cooling capacity and fault-
related parameters [18], the “mapping matrices” discretized 
from the physics-based model represent discrete relationships 
between Scc and Sjs. 

Capacities of cooling coil Fault-related parameters

Levels of capacity (States 

of cooling coil Scc)

Fault severities (States of 

two failure modes Sjs)

Physics-based model

 Mapping matrix  

Fig. 6.  The relationship between Scc and Sjs 

To discretize the physics-based model, fault-related 
parameters are sampled randomly.  By using Monte-Carlo 
simulation, Nsmp sets of (dtube,in, Afin) are randomly sampled 
from fault-related parameters.  Two mapping matrices 
representing relationships between Sjs and Scc are extracted 
from these samples.  One mapping matrix represents 



  

probabilities of Sjs given Scc and is denoted by 

| , |{ }js cc ij js ccM m , with 

, | , ,Pr( | ) ,ij js cc js cc ij cc i ccm S j S i n n     (22) 

where nij,cc is the number of sample points corresponding to 
Scc = i and Sjs = j, and ni,cc is the number of points belonging 

to Scc = i.  Similarly, a mapping matrix | , |{ }cc js ji cc jsM m , 

with , | Pr( | )ji cc js cc jsm S i S j   , representing 

probabilities of the cooling coil’s states given the joint states, 
is also calculated.   

B. Method of Estimating RULs of a Component or a System 

under Multiple Failure Modes 

In this subsection, the estimate of state at time t, the state 
transition matrix, and parameters of time-duration 
distributions are estimated by combining those of the two 
failure modes given mapping matrices Mcc|js and Mjs|cc first.  
Given these estimates, the method presented in subsection III-
C is used to estimate RULs of the cooling coil.  Since the two 
failure modes are independent, it is reasonable to assume that 
Pr(Stube(t)=n) and Pr(Sfin(t) = m) are independent, and the 
probability Pr(Sjs(t) = i) is calculated as: 

     Pr ( ) Pr ( ) Pr ( ) ,js tube finS t i S t n S t m      (23) 

where the joint state Sjs (t) = i  corresponds to Stube(t) = n  and 
Sfin(t) = m.  Given probabilities of each joint state Sjs, the state 
Scc of the cooling coil can then be estimated based on the 
mapping matrix mij,cc|js as  

 
1

, |
0

ˆ ( ) arg max Pr Pr ( ) .
jsN

cc ij cc js js
ij

S t m S t i




 
   

 
 (24)   

To estimate the state transition matrix Pcc = {aij,cc}, where 

, ( ( ) | ( 1) )ij cc cc cca P S t j S t i    , of the cooling coil, the 

state transition matrix  Pjs of joint states is required.  Since the 
joint state relies on states of tube fouling and dust on fins, Pjs 
is the Kronecker product of Ptube and Pfin which are state 
transition matrices of the two failure modes:  

.js tube finP P P   (25) 

Based on the Bayes rule, the relationship between Pcc and Pjs 
is obtained as: 

1 1

, | , |
0 0

( ) ( ) Pr( ( 1) )
js jsN N

jm cc js in cc js js
i j

m t m t S t i
 

 


    


 

Pr( ( ) | ( 1) )js jsS t j S t i     

 Pr( ( ) | ( 1) ) Pr( ( 1) ).cc cc ccS t m S t n S t n        (26) 

Given (26), the elements of the Pcc are obtained as: 

Pr( ( 1) | ( ) )cc ccS t m S t n     

, | , |
1 1

( 1) ( ) Pr( ( ) )
js jsN N

jm cc js in cc js js
i j

m t m t S t i
 

 
      
 

 

Pr( ( 1) | ( ) ) Pr( ( ) ) ,js js ccS t j S t i S t n      (27) 

where Pr(Sjs(t+1)=j|Sjs (t)=i) is the element of Pjs;  Pr(Sjs(t) = i) 

is obtained based on (23); and Pr(Scc(t) = n) is obtained based 

on (24).  To estimate parameters of time-duration 

distributions of the cooling coil’s HSMM, Nsmp state 

sequences Qi,tube, i = 1, …, Nsmp and Qi,fin, i = 1, …, Nsmp of 

fault severities are generated for tube fouling and dust on fins 

based on parameters of their HSMMs.  Then, Nsmp joint state 

sequences Qi,js, i = 1, …, Nsmp are determined based on Qi,tube 

and Qi,fin since Sjs = (Stube, Sfin).  After counting time-durations 

of each joint state in Qi,js, the average value of time-durations 

of State j is calculated and denoted by ( )jsD S j .  The 

expected time-duration of State i of the cooling coil is then 

calculated as 
1

, |
0

( ) ( ).
jsN

cc ji cc js js
j

D S i m D S j




     (28) 

Thus, the estimated Poisson distribution parameter of State i 

for the cooling coil is obtained as ˆ ( )i ccD S i   . 

To estimate RULs of the air handling system, the method 
developed above is used.  Since both the cooling coil and the 
supply fan influence the performance of the air handling 
system, it is reasonable to create the system’s HSMM by 1) 
combining HSMMs of the cooling coil and the decrease in 
supply fan efficiency; or 2) by combining HSMMs of tube 
fouling, dust on fins and decrease in supply fan efficiency.  
The first way needs to discretize physics-based models twice, 
and the second way only need to discretize the physics-based 
model once.  The second way introduces less information loss, 
thus is used.  Since three failure modes are considered, the 
system has 43 = 64 joint states.  By substituting the physics-
based model of fans into the model of cooling coils [18], the 
cooling capacity is a function of dtube,in, Afin and esf.  Two 
mapping matrices are extracted from this function to estimate 
RULs of the system in a similar way.  Since (24)-(28) 
combine HSMM parameters of the three failure modes 
directly rather than calculated iteratively via Gibbs sampling, 
the method is computationally practical.  

V. EXPERIMENTAL RESULTS  

Our method is tested against a small simulated building 
introduced in subsection V-A.  To illustrate our methods, three 
cases are considered, including 1) estimating states of a 
cooling coil under multiple failure modes in subsection V-B; 
3) estimating RUL of the cooling coil in V-C; and 4) 
estimating RUL of the air handling system in V-D.  

A. The Small Simulated Building to Test Our Methods 

Therefore, simulation data are used to test our methods.  
Since the fault-prognosis problem is not sensitive to problem 
size, a small building with two rooms and a VAV air handling 
system is considered.  By using DesignBuilder [23], the rough 
building and HVAC structures were established, and were then 
imported into EnergyPlus [18] to select appropriate 
component models and parameters to simulate faults.  The 
simple building has two 95.517 m3 rooms.  Most parameters 
of the HVAC system are set by EnergyPlus automatically 
based on loads.  For instance, under the normal condition, the 
tube diameter dtube,in is 0.01445 m; the surface area of fins is 
43.59555 m2; and the fan efficiency is 0.7.  The system 
operation is simulated for three years.  For the cooling coil, 



  

tube fouling is simulated six times by following a Poisson 
distribution.  Each time dtube,in is gradually reduced by 50% and 
recovers instantly at the end of the time duration.  Dust on fins 
is also simulated six times, and Afin is reduced by 50% each 
time.  Similarly, for the supply fan, a decrease in fan efficiency 
is simulated five times.  To simplify the problem, compound 
faults are not considered.  Simulation data are collected every 
10 minutes and are divided into two groups, where 50% of the 
data is used for training and the rest for testing. 

B. Estimate States of a Cooling Coil  

For the cooling coil, two failure modes are estimated by 
using our method as shown in Fig. 7.  In the figure, the x-axis 
is the time and the y-axis is the state of the cooling coil.  Actual 
states and estimated states are represented by black dashed 
lines and blue stars, respectively.  States corresponding to the 
normal condition, tube fouling, and dust on fins are denoted by 
‘0,’ ‘1’ and ‘2.’  In the figure, most actual states and their 
estimates are the same and are overlapped.  However, some 
false alarms do exist.  For instance, there is no fault on 8/17 in 
the second year, but a dust on fins is falsely detected because 
of measurement noise.  To evaluate the estimated states of 
HSMMs, F-measure is used.  This is because F-measure is the 
harmonic mean of precision and recall, namely, it tells how 
precise the estimator is, as well as how robust it is [24].  Four 
statistical measures are used to generate F-measure, including 
1) True Positive (TP); 2) True Negative (TN); 3) False Positive 
(FP); and 4) False Negative (FN).  The F-measure of Failure 
Mode i or Fault Severity i is defined as [24] 

F-measurei = 2TPi / (2TPi + FNi + FPi). (29) 

If false identification rates are 0, then FNi and FPi are 0, and 
F-measurei is 1 as shown in (29).  Thus, F-measures is close 
to 1 if estimates are accurate.  F-measures of the normal 
condition, tube fouling, and dust on fins are 0.996, 0.974 and 
0.973, indicating that false identification rates are low.  The 
estimation of parameters and states took 1.4 hours and 0.162 
seconds, respectively.  

 

Fig. 7. Estimate failure modes of cooling coil using our method (HSMM)  

If the HMM is used, as shown in Fig. 8, there are more false 
alarms as compared to those using HSMMs.  F-measures of 
the normal condition, tube fouling, and dust on fins are 0.993, 
0.958 and 0.933, and are worse than those of HSMMs.  This is 
because the geometric distribution is implicitly used in HMMs 
but this assumption may not be reasonable in practice. 

 

Fig. 8. Estimate failure modes in the cooling coil using an HMM 

If the standard Viterbi algorithm is used, it takes 5.6 hours 
to estimate the parameters of HSMM by using Gibbs 
sampling, and is much larger than 1.4 hours required by our 
method.  Similarly, it takes 0.736 sec to estimate states of the 
HSMM by using the Viterbi algorithm, and is larger than 0.162 
sec required by our method.  Additionally, F-measures of the 
normal condition, tube fouling, and dust on fins are 0.996, 
0.969 and 0.975 as shown in Fig. 9, and are approximately the 
same as those obtained by using our method.  This is because 
all actual state transition points are covered by potential state 
transition points under consideration.  

 

Fig. 9. Estimate failure modes in the cooling coil using the standard Viterbi 
algorithm (HSMM) 

Severities of the cooling coil’s failure modes are estimated 
as shown in Fig. 10.  The normal condition is denoted by ‘0,’ 
and the three fault severities are denoted by ‘1,’ ‘2,’ and ‘3.’  
Their F-measures are 0.999, 0.965, 0.829 and 0.917.  Since F-
measures are close to one, estimates are accurate. 

 

Fig. 10. Estimated severities of tube fouling by using an HSMM 

C. Estimate RUL of a Cooling Coil 

By using our method presented in subsection III-C, RULs 
of the cooling coil are estimated in Fig. 11.  It can be seen that 
differences between actual RULs and estimates are small.   

 

Fig. 11. Actual and estimated RULs of the cooling coil  

To evaluate the performance of our fault prognosis method, 
five performance metrics discussed in [25] are used, including 
1) “accuracy” representing the difference between the real 
RUL and its estimated value; 2) “precision” quantifying the 
dispersion of prediction errors around its mean; 3) the mean 
absolute percentage error; 4) the prognostics horizon 
estimating the time at which the first prediction is within the 
confidence interval; and 5) the Relative Accuracy (RA) 
measure permitting one to assess accuracies of estimated 
RULs at a different time t.  For the cooling coil, RULs are 
relatively precise (accuracy equals 0.666). The value of the 
precision measure is good with a dispersion of around 151.634 
time units, or 15.163 hours.  The mean absolute percentage 

False alarms 

 

False alarms 

 



  

error is 65.828.  The value of the prognostics horizon is equal 
to 46 time units, or 4.6 hours.  This is small compared to the 
cooling coil’s mean-time-to-failure that is usually several 
months.  RA illustrates the accuracy of estimates at three 
intervals: the beginning, the middle and the end of data, and 
is [0.704 0.946 0.745].  Thus, estimates are accurate since they 
are close to one. 

D. Estimate RUL of an Air Handling System  

RULs of the air handling system are estimated as shown in 
Fig. 12 by using our method presented in subsection III-C.  In 
this case, accuracy is 0.615; the precision measure is 197.43 
time units, namely 19.743 hour; the mean absolute percentage 
error is equal to 88.58 time units (8.58 hours); the value of the 
prognostics horizon is equal to 50 time units (5 hours); and 
relative accuracies are [0.668 0.835 0.604].  Compared to 
errors of cooling coils’ RUL, errors here are larger.  This is 
because RUL of the air handling system is influenced by more 
failure modes than those for the cooling coil.  The 
discretization of the physics-based model of the air handling 
system introduces additional information loss.  

 

Fig. 12. Actual and estimated RULs of the air handling system   

VI. CONCLUSION 

This paper presented an HSMM-based method to estimate 
the RULs of an air handling system and its components for 
gradual faults.  To estimate parameters and states of HSMMs 
with low false identification rates and low computational 
effort, an efficient statistical method is developed.  To estimate 
the RUL of a component or a system, a statistical method is 
developed to discretize physics-based models to capture the 
impacts of multiple failure modes.  Our method provides a 
generic framework to estimate the RUL of an air handling 
system and its components and can be extended to other 
complex systems. 

REFERENCES 

[1] U.S. Department of Energy, Building Energy Data Book. Available: 

http://buildingsdatabook.eren.doe.gov, 2009. 

[2] ASHRAE equipment life expectancy chart, Available: chrome-

extension://oemmndcbldboiebfnladdacbdfmadadm/http://www.cullum

inc.com/wp-
content/uploads/2013/02/ASHRAE_Chart_HVAC_Life_Expectancy

%201.pdf 

[3] Building optimization and fault diagnosis source book, IEA ANNEX 
25, 1996. 

[4] R. K. Singleton, E. G. Strangas and S. Aviyente, “Extended Kalman 
filtering for remaining-useful-life estimation of bearings,” IEEE 

Transactions of Industrial Electronics, Vol. 62, No. 3, 2015, pp. 1781-

1790. 

[5] M. E. Orchard and G. J. Vachtsevanos, “A particle-filtering approach 

for on-line fault diagnosis and failure prognosis,” Transactions of the 

Institute of Measurement and Control, Vol. 31, No. 3-4, 2009, pp. 221-
246. 

[6] X. H. Jin, Y. Sun, Y. Wang, T. W. S. Chow, “Anomaly Detection and 

Fault Prognosis for Bearings,” IEEE Transactions on Instrumentation 
and Measurement, Vol. 65, No. 9, 2016, pp. 2046-2054. 

[7] P. Tse, D. Atherton, “Prediction of machine deterioration using 
vibration based fault trends and recurrent neural networks,” 

Transactions of the ASME: Journal of Vibration and Acoustics, Vol. 

121, No. 3, 1999, pp. 355–362. 

[8] W. Q. Wang, M. F. Golnaraghi and F. Ismail, “Prognosis of machine 

health condition using neuro-fuzzy systems,” Mechanical Systems and 

Signal Processing, Vol. 18, No. 4, 2004, pp. 813–831. 

[9] W. Teng, X. L. Zhang, Y. B. Liu, A. Kusiak and Z. Y. Ma, “Fault 

Prognosis and Remaining Useful Life Prediction of Wind Turbine 
Gearboxes Using Current Signal Analysis,” Energies, Vol. 10, No. 1, 

2016, pp. 1-16. 

[10] D. A. Tobon-Mejia, K. Medjaher and N. Zerhouni, “CNC machine 
tool’s wear diagnostic and prognostic by using dynamic Bayesian 

networks,” Mechanical Systems and Signal Processing, Vol. 28, 2012, 

pp. 167-182. 

[11] H. K. Wang, Y. F. Li, Y. Liu, Y. J. Yang and H. Z. Huang, “Remaining 

useful life estimation under degradation and shock damage,” Journal of 
risk and reliability, Vol. 229, No. 3, 2015, pp. 200-208. 

[12] X. Zhang, R. Xu, C. Kwan, S. Y. Liang, Q. Xie and L. Haynes, “An 

integrated approach to bearing fault diagnostics and prognostics,” in 
Proceedings of American Control Conference, Portland, OR, USA, 

2005. 

[13] M. Dong and D. He, “A segmental hidden semi-Markov model 

(HSMM)-based diagnostics and prognostics framework and 

methodology,” Mechanical Systems and Signal Processing, Vol. 21, No. 
5, 2007, pp. 2248–2266. 

[14] D. E. Adams, “Nonlinear damage models for diagnosis and prognosis 
in structural dynamic systems,” in SPIE Conference Proceedings, vol. 

4733, 2002, pp. 180–191. 

[15] J. Luo, K. R. Pattipati, L. Qiao, and S. Chigusa, “Model-based 
prognostic techniques applied to a suspension system,” Transactions on 

Systems, Man, and Cybernetics, vol. 38, 2003, pp. 1156–1168. 

[16] M. Abbas and G. J. Vachtsevanos, “A System-level approach to fault 

progression analysis in complex engineering systems,” in Proceedings 

of the Annual Conference of the Prognostics and Health Management 
Society, Sans Diego, CA, 2009. 

[17] L. R. Rodrigues, “Remaining useful life prediction for multiple-

component systems based on a system-level performance indicator,” 
IEEE Transactions on Mechatronics, 2017, DOI 

10.1109/TMECH.2017.2713722. 

[18] EnergyPlus Engineering Reference,  

http://apps1.eere.energy.gov/buildings/energyplus/pdfs/engineeringref

erence.pdf. 

[19] Y. Yan, P. B. Luh and K. R. Pattipati, “Fault Diagnosis of Components 

and Sensors in HVAC Air Handling Systems with New Types of Faults,” 
IEEE Access, DOI (identifier) 10.1109/ACCESS.2018.2806373. 

[20] T. Ryden, “EM versus Markov chain Monte Carlo for estimation of 

hidden Markov Models: A computational perspective,” Bayesian 
Analysis., Vol. 3, No. 4, 2008, pp. 659–688. 

[21] P. M. Djuric and J. H. Chun, “An MCMC sampling approach to 

estimation of nonstationary hidden Markov model," IEEE Transactions 

on Signal Processing, Vol. 50, No. 5, 2002, pp. 1113 -1123. 

[22] J. Sansom and P. J. Thomson, Fitting hidden semi-Markov models, 

NIWA Technical Report 77, ISSN 1174-2631, 2000. 

[23] DesignBuilder 2.1 User Manual,  

http://www.designbuildersoftware.com/docs/designbuilder/DesignBuil

der_2.1_Users-Manual_Ltr.pdf. 

[24] T. Mulumba, A. Afshari, K. Yan, W. Shen, and L. K. Norford, “Robust 

model-based fault diagnosis for air handling units,” Energy Buildings, 

Vol. 86, 2015, pp. 698–707. 

[25] K. Medjaher, D. Tobon-Mejia and N. Zerhouni, “Remaining useful life 

estimation of critical components with application to bearings,” IEEE 
Transactions on Reliability, Vol. 61, No. 2, 2012, pp. 292-302. 

http://apps1.eere.energy.gov/buildings/energyplus/pdfs/engineeringreference.pdf
http://apps1.eere.energy.gov/buildings/energyplus/pdfs/engineeringreference.pdf
http://www.designbuildersoftware.com/docs/designbuilder/DesignBuilder_2.1_Users-Manual_Ltr.pdf
http://www.designbuildersoftware.com/docs/designbuilder/DesignBuilder_2.1_Users-Manual_Ltr.pdf

