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Abstract—Many important optimization problems, such as 

manufacturing scheduling and power system unit commitment, 

are formulated as Mixed-Integer Linear Programming (MILP) 

problems. Such problems are generally difficult to solve because 

of their combinatorial nature, and may subject to strict 

computation time limitations. Recently, our 

decomposition-and-coordination method “Surrogate Absolute 

Value Lagrangian Relaxation” (SAVLR) exploits the exponential 

reduction of complexity upon problem decomposition and 

effectively coordinates subproblem solutions. In the method, 

subproblems are generally solved by using Branch-and-Cut 

(B&C). When subproblems are complicated, however, the 

approach might not be able to generate high-quality solutions 

within time limitations. In this paper, motivated by the “Ordinal 

Optimization” concept, this difficulty is resolved through 

exploiting a specific property of SAVLR that subproblem 

solutions only need to be “good enough” to satisfy a convergence 

condition. Time consuming B&C is eliminated in many iterations 

through obtaining “good enough” subproblem solutions based on 

“crude models” (e.g., LP-relaxed problems) or from heuristics. 

Testing results on generalized assignment problems demonstrate 

that the approach obtains high-quality solutions in a 

computationally efficient manner and significantly outperforms 

other approaches. This approach also opens up a new way to solve 

practical MILP problems that are subject to strict computation 

time limitations. 

 
Index Terms—Planning, Scheduling and Coordination, 

Manufacturing, Surrogate absolute-value Lagrangian relaxation 

(SAVLR), Ordinal optimization (OO), Generalized assignment 

problems (GAPs), Mixed-integer linear programming (MILP) 
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I. INTRODUCTION 

any optimization problems, such as manufacturing 

scheduling [1, 2], generalized assignment [3-5] and 

power system unit commitment [6-8], are formulated as 

Mixed-Integer Linear Programming (MILP) problems. The 

quality of their solutions significantly affects system 

performance. Moreover, many problems need to be solved 

within limited time (e.g., 10, or 20 min). Good MILP methods 

that can obtain near-optimal solutions within time limits are 

therefore very important. That, however, is generally difficult 

to achieve since problem complexity increases dramatically as 

the problem size increases because of the presence of discrete 

decision variables.  

 To efficiently obtain near-optimal solutions for practical 

MILP problems, our recently decomposition-and-coordination 

method Surrogate Absolute Value Lagrangian Relaxation 

(SAVLR) exploits the exponential reduction of complexity 

upon decomposition, and effectively coordinates subproblem 

solutions [9]. In the method, through relaxing system-wide 

coupling constraints, the original problem is decomposed into 

smaller subproblems, each with much reduced complexity. To 

coordinate subproblem solutions, multipliers are iteratively 

updated by using surrogate subgradient directions, which are 

obtained by solving one or a few subproblems subject to the 

algorithm converging “surrogate optimality condition.” To 

exploit the linearity, Branch-and-Cut (B&C) is generally used 

to solve subproblems. When subproblems are complicated, 

however, the approach might not be able to generate 

high-quality solutions in time limits. 

To overcome the difficulties mentioned above, a novel 

solution methodology based on SAVLR is developed in this 

paper, motivated by the Ordinal Optimization (OO) concepts 

[10-13]. This method exploits a specific property of SAVLR 

that subproblem solutions only need to be “good enough” to 

satisfy the surrogate optimality condition. Time consuming 

B&C can thus be eliminated in many iterations through 

obtaining “good enough” subproblem solutions based on 

“crude models” (e.g., LP-relaxed problems) or from heuristics. 

Computational efforts required can thus be drastically reduced. 

Nevertheless, since the convergence condition is satisfied at 

each iteration, subproblem solutions are still effectively 

coordinated, leading to high-quality overall solutions.  The 

above is presented in Section III, after reviewing major MILP 
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methods and the Ordinal Optimization (OO) concepts in 

Section Ⅱ. 

To demonstrate the performance of our method, the standard 

generalized assignment problems and generalized assignment 

problems with machine availability and job release times are 

tested in Section Ⅳ. Results are also compared with those 

obtained by using SAVLR with B&C (and indirectly with those 

obtained by using B&C, standard Lagrangian Relaxation, and 

Surrogate Lagrangian Relaxation). Testing results demonstrate 

that “good enough” subproblem solutions are efficiently 

obtained in many iterations based on our crude model and 

time-consuming B&C is only used as needed. Moreover, our 

method obtains high-quality overall solutions in a 

computationally efficient manner and significantly outperforms 

other approaches.  

 A natural follow-up question to the above is whether B&C 

can be completely eliminated in solving subproblems. This is 

explored in Section Ⅴ by examining the examples considered in 

Section Ⅳ. Testing results show that for the standard 

generalized assignment problems, the crude models (the 

LP-relaxed problems) can approximate the subproblems well, 

and overall solutions of reasonable quality are obtained within 

very short CPU times without using B&C to solve subproblems. 

This, however, is not the case for the generalized assignment 

problems with machine availability and job release time, 

because good enough subproblem solutions are difficult to 

obtain based on the LP-relaxed problems. Further efforts are 

needed to develop good crude models, and a promising 

direction for that is formulation tightening [1, 8, 14]. 

II. LITERATURE REVIEW 

Branch-and-Cut is reviewed in Section Ⅱ-A. Decomposition 

and coordination methods, such as Lagrangian Relaxation (LR) 

and Surrogate Absolute Value Lagrangian Relaxation 

(SAVLR), are reviewed in Section Ⅱ-B. Ordinal Optimization 

(OO) is reviewed in Section Ⅱ-C. 

A. Branch-and-Cut (B&C) 

Branch-and-Cut [15-17] is a method to solve MILP problems 

by exploiting linearity. The key idea is to find the convex hull 

of the problem. If the convex hull is found, then the optimal 

solution can be obtained at one of its vertices by solving a linear 

programming problem. To obtain the convex hull, the 

integrality requirement is first relaxed. The method then cuts 

off regions outside the convex hull by adding “valid cuts.” The 

fundamental difficulty is that finding convex hulls itself is NP 

hard, and effective valid cuts may be difficult to obtain. If the 

convex hull cannot be effectively obtained, the method then 

relies on time-consuming Branch-and-Bound and heuristics.  

B. Decomposition and coordination methods 

Traditionally, Lagrangian Relaxation (LR) is a method for 

mixed-integer separable optimization problems by exploiting 

separability [6, 7, 18, 19]. In the method, a problem is 

decomposed  into smaller subproblems by relaxing 

system-wide coupling constraints. The complexity of a 

subproblem is exponentially reduced as compared with that of 

the original problem, and subproblem solutions are coordinated 

by using multipliers which are updated based on subgradients. 

At convergence of multipliers, feasible solutions are obtained 

by using heuristics. Because subgradients are obtained after 

solving all subproblems, the computational requirements for 

one iteration are high and multipliers may suffer from severe 

zigzagging. Moreover, convergence requires the knowledge of 

the optimal dual value, which is generally not available. While 

adaptive estimates of the optimal dual value are used in practice, 

such adaptive adjustments are computationally expensive. As a 

result, the overall performance of the method is poor. 

Surrogate Lagrangian Relaxation (SLR) overcomes all major 

difficulties of standard LR presented above [20]. Within the 

method, multipliers are updated by using surrogate subgradient 

directions, which can be obtained by solving the relaxed 

problem approximately (or solving one or multiple 

subproblems) subject to the algorithm converging surrogate 

optimality condition. The computational efforts required to 

update multipliers, therefore, are significantly reduced, and 

zigzagging behavior of multipliers is also alleviated. Moreover, 

convergence is proven without requiring the knowledge of the 

optimal dual value. The difficulty of SLR is that the levels of 

constraint violations may not be reduced fast enough, resulting 

in slow convergence.  

To accelerate convergence, SAVLR is developed by 

penalizing constraint violations using “absolute-value” penalty 

terms, which are exactly linearized [9]. Moreover, a novel 

adjustment of penalty coefficients is developed. SAVLR is 

generally combined with B&C to exploit both separability and 

linearity for MILP problems. 

C. Ordinal Optimization (OO) 

Ordinal Optimization is an efficient approach to solve 

complicated simulation-based optimization problems [10-13]. 

The approach rests on two basic ideas. The first is that softening 

the goal makes hard problem easier. If the goal of obtaining an 

optimal solution is softened to obtaining a “good enough” 

solution (e.g., top 5%), the complexity of the problem will be 

significantly reduced [13]. Therefore, instead of finding the 

best solution for sure, the goal of OO is to find a good enough 

solution with a high probability. The second is that order is 

much easier to determine than value. Instead of using accurate 

performances which generally require long simulation times to 

obtain, OO uses noisy performances obtained from crude 

models or quick simulation runs to roughly evaluate the relative 

orders of solutions, and then select good enough solutions. 
Different from simulation-based optimization problems, the 

objective function of an MILP problem can be easily calculated, 

and “good enough” solutions (e.g., top 5%) might not be good 

enough in terms of performance. Therefore, OO generally has 

not been used to solve MILP problems.   

III. METHODOLOGY 

In subsection Ⅲ-A, a generic MILP problem is formulated, 

and the key steps of Surrogate Absolute Value Lagrangian 

Relaxation (SAVLR) [9] plus Branch-and-Cut (B&C) is 

summarized. In subsection Ⅲ-B, the method is conceptually 

improved by using a crude model to efficiently obtain good 

enough subproblem solutions based on the Ordinal 

Optimization concept [10-13] while satisfying the algorithm 
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convergence condition. In subsection Ⅲ-C, implementation of 

the algorithm is presented. 

A. Generic formulation of MILP problems and Surrogate 

Absolute-Value Lagrangian Relaxation plus Branch-and-Cut 

As reviewed in the Introduction, many practical problems are 

formulated as MILP problems. These problems usually consist 

of individual subsystems coupled through system-wide 

constraints. The objective function is additive in terms of 

individual subsystems, and can be written in the following way: 

( ) ( ) 
,

min  , ( , ) R Z yx
T T nnx y

x y
d x d y x y+    ，       (1) 

where x is an nx×1 real decision vector, y is an ny×1 integer 

decision vector. Related cost vectors dx and dy have appropriate 

dimensions. Constraints of individual subsystems can be 

written as: 

,  1,..., ,x y

j j j j jA x A y b j J+  =                        (2) 

where xj and yj are disjoint components of x and y and have 

dimensions n
x 

j ×1 and n
y 

j ×1, respectively, such that ∑j n
x 

j =nx and 

∑j n
y 

j =ny. Related matrices A
x 

j , A
y 

j  and vector bj have appropriate 

dimensions. Subsystems are coupled through system-wide 

constraints  
,0 ,0 0=x yA x A y b+ ，                                (3) 

and related matrices Ax,0, Ay,0 and vector b0 have appropriate 

dimensions.  

Recently, SAVLR+B&C shows great abilities to solve 

problem formulated by (1)-(3) through decomposition and 

coordination. To decompose the problem, the system-wide 

coupling constraints (3) is relaxed resulting in the following 

“Relaxed Problem”: 

( )
,

min , , , s.t.  (2), ( , ) ,k

k

cx y
L x y x y                      (4) 

where  

( ) ( ) ( ) ( ) 1
, , ( , ) ( , )k

T T T
k x y k k

c
L x y d x d y g x y c g x y = + + +  

    (5) 

is the “absolute-value” Lagrangian function, in which  
,0 ,0 0( , ) x yg x y A x A y b= + −                            (6) 

includes a vector of constraint violations and is penalized by 

using L1-norms in (5). Subproblems are then formed based on 

(5) by optimizing decision variables associated with one (or 

multiple) subsystems while fixing variables associated with 

other subsystems at values obtained at previous iterations: 

( )1 1

,
min , , , , , s.t.  (2)  ( , ) ,k

j j

k k k

j j j j j j jcx y
L x x y y x y− −

− − ，      (7) 

where x−j and y−j are components of x and y without xj and yj, 

respectively. Solving subproblems (7) are much easier than 

solving the original problem (1)-(3) because of their reduced 

dimensionalities. These subproblems are generally solved by 

using B&C to exploit linearity after penalty terms in (7) are 

linearized in a standard way. 

After solving a subproblem at iteration k, if the solution (x
k 

j , y
k 

j ) satisfies the surrogate optimality condition 

( ) ( )1 1 1 1 1 1, , , , , , , , ,k k

k k k k k k k k k k

j j j j j j j jc c
L x x y y L x x y y − − − − − −

− − − −   (8)  

then multipliers are updated as 
1 ( , ),k k k k ks g x y + = +                           (9) 

where 

( ) ,0 ,0 0,k k x k y kg x y A x A y b= + −                    (10) 

is a surrogate subgradient, with 
1 1 1 1

1 1( ,..., ,... ),  ( ,..., ,... ).k k k k k k k k

j J j Jx x x x y y y y− − − −= =       (11) 

If the subproblem solution obtained does not satisfy (8), the 

method moves to solve the next subproblem. Since subproblem 

do not need to be fully solved, B&C is stopped when a 

subproblem solution that satisfies (8) is found to save CPU time. 

To guarantee convergence without the knowledge of the 

optimal dual value, the stepsize in (9) is set as 
1 1 1

2

2

( , )
,  0 1,

( , )

k k k

k

k kk k

s g x y
s

g x y
 

− − −

=              (12) 

with 

1 1
1 ,  1 ,  1,  0 1.k r

M r
Mk k

 = − = −            (13) 

After updating multipliers, the penalty coefficient is increased 

as: 
1 ,  1.k kc c + =                                 (14) 

When the penalty coefficient becomes too large, feasibility is 

overemphasized and surrogate optimality condition (8) might 

not be satisfied even after solving all subproblems. In this case, 

the penalty coefficient is decreased as: 

 1 / ,  1.k kc c  + =                                 (15) 

B. A crude method for good enough subproblem solutions 

At each iteration of SAVLR, it is not necessary to fully solve 

a subproblem, and a “good enough” solution subject to the 

surrogate optimality condition (8) is sufficient. As reviewed in 

subsection 2.3, finding good enough solutions is much easier 

than finding the optimal one. Accurate optimization methods, 

e.g., B&C, therefore, might not be needed, and computationally 

efficient methods can be developed to generate good enough 

subproblem solutions. 

Inspired by the ordinal comparison concepts, an efficient 

method to obtain good enough subproblem solutions is 

developed below based on the idea of “approximate solutions.” 

LP-relaxed problems, which are formed by relaxing integer 

requirements in subproblems (7), are used as “crude models” to 

approximate subproblems, and the “approximate solution” (x’, 

y’) is the solution obtained by using a linear programming 

method. If all components of y’ are integers, then (x’, y’) is the 

optimal solution to the subproblem. If not, the non-integer 

components are modified by rounding up or down to generate a 

set of solutions feasible to (7), and the set is denoted as S. To 

illustrate this step, suppose that all ny components of y’ are 

non-integers: 

1 2' ( , ,..., ).
yny y y y=                             (16) 

Through rounding up or down, multiple integer variables are 

obtained as: 
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0 1 2

1 1 2

2 1 2

1 22

( , ,..., ),

( , ,..., ),

( , ,..., ),

( , ,..., ).

y

y

y

n
y

n

n

n

n

y y y y

y y y y

y y y y

y y y y

 =         

 =         

 =         

 =         

                       (17) 

The corresponding continuous variables are modified to satisfy 

(2). Set S is then formed by selecting from the above solutions 

feasible to subproblem (7). Since subproblem solutions in S are 

close to the approximate solution, they are expected to have 

high performances and contain good enough subproblem 

solutions with a high probability. A subproblem solution with 

the minimal cost can be obtained from S through calculating 

subproblem costs in (7). If the solution satisfies the surrogate 

optimality condition (8), it is accepted as a good enough 

solution. If not, B&C is used to solve the subproblems. 

Because the crude models (LP-relaxed problems) are 

generally easy to solve, the computational efforts required are 

much less than those required by B&C. If such solutions are 

obtained in a significant number of iterations, then the speed-up 

can be drastic. Moreover, since the convergence condition is 

satisfied at each iteration, subproblem solutions are still 

effectively coordinated, leading to high-quality overall 

solutions. 

C. Implementation of SAVLR+OO 

In this subsection, algorithm initialization, searching for 

solutions feasible to the original problem (1)-(3), and stopping 

criteria are discussed. The steps of the algorithm are then 

presented.   

1) Initialization, Finding Feasible Solutions and Stopping 

Criteria 

Good multiplier initialization can reduce the number of 

iterations needed. The multipliers are generally initialized by 

using heuristics [18]. For daily operation optimization 

problems which need to be solved multiple times a day, 

multipliers can also be initialized with the values obtained from 

the previous optimization run. In this paper, for simplicity, 

multipliers are initialized at zero. For a given set of initial 

multipliers, subproblem solutions are initialized by solving the 

relaxed problem (4), and the stepsize is then initialized as ([20, 

equation (76)]: 

( )0

0 0 0

0

2
0 0

2

, ,
,

( , )

c
q L x y

s
g x y

−
=                            (18) 

where q is the best estimation of cost for problem (1)-(3). 

Since system-wide constraints (3) have been relaxed, 

solutions obtained from subproblems, when put together, 

generally do not form a solution feasible to the original problem 

(1)-(3). When the norm of constraint violations (6) reduce 

below a threshold, i.e.,  
2

( , ) ,k kg x y                                   (19) 

heuristics are used to find an overall feasible solution. This step 

is generally problem dependent. In this paper, feasible solutions 

are obtained through fixing variables of most subsystems at 

their latest available values, and optimizing remaining variables 

to satisfy the system-wide constraints (3) by using B&C.  

 When the norm of constraint violations (6) or the stepsize 

reduces to a small value, i.e.,  
2

( , )   ,k k kg x y or s                        (20) 

multipliers change little. At this time, the algorithm stops. 

2) Steps of the Algorithm  

The steps are as follows: 

Step 0: Initialize λ0, x0 and s0;  

Step 1: For given λk and ck, solve the LP-relaxed problem 

corresponding to subproblem (7) to obtain the 

approximate solution (x’, y’);  

Step 2: Modify (x’, y’) through rounding non-integer 

components of y’ to obtain multiple feasible solutions, 

denoted as set S; 

Step 3: Compute the subproblem costs in (7) for solutions in S, 

and select the best one. If the surrogate optimality 

condition (8) is satisfied, go to Step 6; 

Step 4: Solve the subproblem by using B&C. If the surrogate 

optimality condition (8) is satisfied, go to Step 6;  

Step 5: If the surrogate optimality condition (8) is not satisfied 

after solving all the subproblems, reduce the penalty 

coefficient ck per (15) and go to Step 1. If not, move to the 

next subproblem and go to Step 1;  

Step 6: Update λk, sk and ck as (9)-(14); 

Step 7: Check the criteria (19). If satisfied, search for solutions 

feasible to the original problem. Otherwise, go to step 1;  

Step 8: Check the stopping criteria (20). If satisfied, stop. 

Otherwise go to step 1. 

IV. NUMERICAL TESTING 

The method was implemented by using MATLAB R2018a 

and CPLEX 12.8.0.0, and is tested on a computer with the Intel 

I5-8250U processor with four cores at 3.3-GHz, 8GB of RAM, 

and Windows 10. The dual simplex method of the CPLEX 

linear programming solver is used to solve the crude models 

(LP-relaxed problems) and the B&C solver is used to solve 

MILP subproblems. During testing, parallel computing of the 

CPLEX solver is on. To demonstrate the efficiency of 

SAVLR+OO, two examples are presented. In Example 1, the 

standard generalized assignment problems [3-5] are considered. 

In Example 2, job release times and machine availability are 

included following [9]. The codes implementing SAVLR+OO 

(as well as SAVLR+B&C) for both examples, and the 

corresponding data sets are available in the supplementary 

material of this paper. 

 Example 1. The Standard Generalized Assignment Problems 

A standard generalized assignment problem is to assign a set of 

jobs to a set of machines. To capture assignments of jobs to 

machines, a set of binary variables is introduced: 

,

1,    if job  is assigned to machine ,

0,    otherwise,                                  

1,..., ,  1,..., ,

i j

i j
y

i I j J


= 



= =

     (21) 

where I is the total number of jobs, and J is the total number of 

machines. One job can only be assigned to one machine, i.e., 
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Fig. 1. Comparison of SAVLR+OO versus SAVLR+B&C for the standard 

GAPs with 20 machines 2400 jobs.  

 
Fig. 2. The number of using B&C during the optimization process in 
Example 1.  

 ,

1

1,  1,  ...,  .
J

i j

j

y i I
=

= =                         (22) 

For machine j, its capacity Tj  cannot be exceeded, i.e., 

, ,

1

,  1,  ...,  ,
I

i j i j j

i

t y T j J
=

 =                       (23) 

where ti,j is the time required to process job i on machine j. The 

objective function is to minimize the total assignment cost, i.e., 

,
, ,

1 1

min  ,
i j

J I

i j i j
y

j i

g y
= =

                              (24) 

where gi,j is the cost for assigning job i to machine j.  

After relaxing assignment constraints (22) and adding 

absolute-value penalty terms, a subproblem associated with 

machine j can be formulated as ([9, equation (25)]: 

,
, , ,

,
1

1

, ,

1 to : 

min  ,
2

. .  (23), 1  1,..., .

i j i

kI
k

i j i j i i j i
y q

i

k

i i j i s i

s J s j

c
g y y q

s t q y y q i I


=

−

= 

+ +

−  + −  =




  (25) 

In the above, absolute-value penalty terms are linearized by 

introducing extra variables qi. In actual implementation of this 

example, four machines are grouped to form one subproblem, 

and solving one subproblem is counted as one iteration. The 

multipliers are updated as in (9), where the stepsizes are set as 

in (12) and (13), and a surrogate subgradient is given by: 

( ) ,

1

1.
J

k k

i j

j

g y y
=

= −                                   (26) 

The penalty coefficient is updated as in (14) and (15). Three 

problem instances with 20, 40 and 80 machines, each with 2400 

jobs, are considered. The iterative process stops when the norm 

of constraint violations reduces below 3 or stepsize sk < 0.01. 

For the problem instance with 20 machines and 2400 jobs, 

feasible costs and lower bounds against CPU times are plotted 

in Fig. 1. In the figure, CPU times include subproblem solving 

time, multiplier updating time and feasible solution searching 

time. The lower bound is obtained at convergence by 

evaluating the absolute-value Lagrangian function (5). The 

results show that near-optimal solutions are effectively 

obtained. A cost of 142,945 is obtained after 318s, and 142,894 

after 539s. The gaps are 0.064% and 0.007%, respectively, 

showing that the feasible solutions obtained are good. There are 

three reasons for such efficiency. First, the complexity of the 

original problem is significantly reduced through 

decomposition. Second, subproblem solutions are effectively 

coordinated by using SAVLR. Third, good enough subproblem 

solutions are efficiently obtained based on the crude model. To 

demonstrate the last aspect, computational efforts required and 

the quality of subproblem solutions obtained by using B&C and 

the crude method per iteration are compared in Table Ⅰ. It can be 

seen that CPU time consumed by solving LP-relaxed problems 

and modifying the approximate solutions is only 0.0442s on 

average, as compared to that of 0.2652s by using B&C. The 

“average performance difference” in the table is the average 

percentage difference in subproblem cost vs. the optimal 

subproblem cost, i.e.,   
,*

,*
= 100%,  1,2,...

k k
k

k

p p
D k

p

−
 =  

with pk,* the optimal subproblem cost at iteration k and pk the 

subproblem cost obtained by using either the crude model or by 

using B&C. It can be seen that the average performance 

difference of the solutions obtained based on crude model is 

0.7139%. As counted, these solutions satisfy the surrogate 

optimality condition in 1,455 out of a total 3,033 iterations, 

leading to significant speed-up. 

To better demonstrate the usage of B&C in our method, the 

number of iterations in which B&C is used is depicted in Fig. 2. 

In the figure, the horizontal axis is the number of iterations, and 

the vertical axis is the number of B&C used thus far. As can be 

seen, at the early stage of optimization, good enough 

subproblem solutions are obtained based on the crude model at 

almost all iterations, and B&C is rarely called. This, however, 

is not the case at the later stage of optimization. This is because 

the surrogate optimality condition is more difficult to be 

satisfied as the multipliers converge. Nevertheless, as shown in 

Fig. 1, even the first solution obtained is with a very small 

duality gap. 

 For comparison purpose, SAVLR+B&C is also tested. As 

shown in Fig. 1, near-optimal solutions are obtained slower 

than those obtained by using SAVLR+OO. A cost of 142,976 is 

TABLE Ⅰ 

COMPARISON OF CRUDE METHOD AND BRANCH-AND-CUT IN EXAMPLE 1 

Method Instance CPU time 

consumed per 

iteration (s) 

Average 

performance 

difference 

Branch-and-Cut 202400 0.2652 0.1100% 

402400 0.2589 0.3686% 

802400 0.2614 0.8676% 

Crude method1 202400 0.0392 0.7139% 

402400 0.0473 1.4625% 

802400 0.0491 3.7655% 

1: Solving LP-relaxed problem plus modifying the approximate solution 

Authorized licensed use limited to: UNIVERSITY OF CONNECTICUT. Downloaded on June 27,2020 at 04:04:55 UTC from IEEE Xplore.  Restrictions apply. 



2377-3766 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/LRA.2020.3005125, IEEE Robotics
and Automation Letters

IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED JUNE 2020 

  

 
Fig. 3. Comparison of SAVLR+OO versus SAVLR+B&C for the standard 

GAPs with 40 machines 2400 jobs. 

 
Fig. 4. Comparison of SAVLR+OO versus SAVLR+B&C for the standard 

GAPs with 80 machines 2400 jobs. 

 
Fig. 5. Comparison of SAVLR+B&C and SAVLR+OO with 60 machines 

and 200 jobs and with a
machine 

j  and a
job 

i  generated using the uniform 

distribution U[0, 200]. 

obtained after 468s, and 142,909 after 729s. Although B&C is 

stopped when a subproblem solution satisfying the surrogate 

optimality condition is found, as shown in Table Ⅰ, it consumes 

0.2652s on average while using the crude model only consumes 

0.0392s on average. Moreover, SAVLR+B&C requires 2,964 

iterations, and SAVLR+OO requires 3,033 iterations, showing 

that eliminating B&C does not significantly increase the 

number of iterations needed. 

For the problem instance with 40 machines and 2400 jobs, 

SAVLR+OO obtains near-optimal solutions fast and 

significantly outperforms SAVLR+B&C. As shown in Fig. 3, a 

cost of 140,702 is obtained after 444s, and 140,579 after 748s. 

For the problem instance with 80 machines and 2400 jobs, 

near-optimal overall solutions are also obtained in a 

computationally efficient manner. A cost of 134,864 with gap 

0.0267% is obtained after 732s and good enough subproblem 

solutions are efficiently obtained base on the crude model in 

1,687 out of a total of 3,091 iterations. This instance 

demonstrates the scalability of our method. 

As reported in [9], SAVLR+B&C significantly outperforms 

other methods including B&C, Lagrangian Relaxation (LR), 

Surrogate Lagrangian Relaxation (SLR) and Alternate 

Direction Method of Multipliers (ADMM) because of 

decomposition and effective coordination. Since SAVLR+OO 

outperforms SAVLR+B&C, it also significantly outperforms 

B&C, LR, SLR, and ADMM. 

Example 2. Generalized Assignment Problems with Machine 

Availability and Job Release Times. In this example, jobs 

release time and machine availability time are considered as in 

[9, p. 538]. Job i is not released until a certain time a
job 

i , and 

machine j is only available after a certain time a
machine 

j  and until 

certain time Tj. To account for job release and machine 

availability, integer decision variables bi,j for all i and j are 

introduced representing the beginning time of job i on machine 

j subject to the following constraints: 
job machine

, ,, ,  1,...,  ,  1,...,  .i j i i j jb a b a i I j J  = =           (27) 

Also, integer decision variables ci,j for all i and j are introduced 

representing the completion time of job i on machine j subject 

to the following constraints: 

, , 1,...,  ,  1,...,  .i j jc T i I j J = =                       (28) 

As presented in [9, equations (29) and (31)], if job i is assigned 

to machine j, i.e., yi,j=1, its completion time should equal its 

beginning time plus processing time on machine j, i.e.,  

, , , ,1 ,  1,...,  ,   1,...,  ,i j i j i j i jy c b t i I j J=  − = = =         (29) 

and time slots [bi,j, ci,j] during which jobs are processed on 

machine j should not intersect for all j, i.e., 

, ', ', , OR  ,  ',   ', 1,...,  ,   1,...,  .i j i j i j i jc b c b i i i i I j J   = =  (30) 

The assignment constraints and the objective function are the 

same as in (22) and (24), respectively. After relaxing 

assignment constraints (22), a subproblem associated with 

machine j can be formulated as in [9]:  

( ) ( )

1 2
, , , , ', , ',

, , ,
, , , , ,

1

1

, ,

1 to : 

, , , , , ,

1
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2
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       ,

i j i j i j i i i j i i j

kI
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i j i j i i j i
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i i j i s i

s J s j
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i j i j i i j i j i

c
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q y y q
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
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− −  −  + −

 + 


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2 1 2

, ', , ', , ',

'

, 1,

       , 1,..., , .

j i i j i i j i i jMz z z

i i I i i

+ + =

 = 

(31) 

In the above, the logic constraints (29) and (30) are linearized 

as in [9, equations (30) and (32)]. Because the problem is 

complicated, one subproblem in this example only contains one 

machine. The updating of multipliers and the adjustments of the 

penalty coefficient are the same as in Example 1. The iterative 

process stops when the norm of constraint violations reduces 

below 3 or stepsize sk < 0.005. 

Three problem instances with 60 machines and 200 jobs are 

considered, and these instances are larger than those with 40 

machines and 100 jobs in [9]. Data a
machine 

j  and a
job 

i  in three 

instances are individually generated from uniform distributions 

U[0, 200], U[0, 400], and U[0, 600], which have wider ranges 

as compared to U[0, 100] and U[0, 300] in [9].  
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Fig. 6. The number of using B&C during the optimization process in 
Example 2. 

 

 
Fig. 7. Comparison of SAVLR+B&C and SAVLR+OO with 60 machines 

and 200 jobs and with a
machine 

j  and a
job 

i  generated using the uniform 

distribution U[0, 400]. 

 
Fig. 8. Comparison of SAVLR+B&C and SAVLR+OO with 60 machines 

and 200 jobs and with a
machine 

j  and a
job 

i  generated using the uniform 

distribution U[0, 600]. 
 

 Results with a
machine 

j  and a
job 

i  generated by using the uniform 

distribution U[0, 200] are presented first. As shown in Fig. 5, 

near-optimal overall solutions are efficiently obtained. A cost 

of 3,382 is obtained after 581s, and the lower bound obtained at 

convergence is 3,373, with a gap of 0.27%, showing that the 

solution obtained is good. As shown in Table Ⅱ, CPU time 

required by crude model is only 0.006s, and the average 

performance difference is 24.66%, which is significantly larger 

than that of B&C.  Nevertheless, as counted, the crude model is 

good enough in 2,027 out of a total of 3,240 iterations, and 

therefore the speed-up is drastic. 

For comparison purpose, SAVLR+B&C is also tested. As 

shown in Table Ⅱ, using B&C to solve a subproblem takes 

0.3602s on average, which is much longer than using the crude 

model of 0.006s. As shown in Fig. 5, a cost of 3,400 is obtained 

after 580s and a cost of 3,383 is obtained after 968s. Therefore, 

near-optimal solutions are obtained much slower using 

SAVLR+R&C than those obtained by using SAVLR+OO. 

Moreover, SAVLR+B&C requires 3,060 iterations, and 

SAVLR+OO requires 3,240 iterations, showing that 

eliminating B&C does not significantly increase the number of 

iterations needed. 

Results with a
machine 

j  and a
job 

i  generated by using the uniform 

distribution U[0, 400] are shown in Fig. 6. With SAVLR+OO, 

good enough subproblem solutions are efficiently obtained 

based on the crude model in 1,657 iterations, and a cost of 

3,484 with gap 0.52% is efficiently obtained after 738s. 

Lastly, results with a
machine 

j  and a
job 

i  generated by using the 

uniform distribution U[0, 600] are presented. Although a
machine 

j  

and a
job 

i  have wide ranges, good enough subproblem solutions 

are still efficiently obtained based on the crude model and 

near-optimal solutions are obtained fast. As shown in Fig. 8, a 

cost of 3,927 with gap 2.42% is obtained after 331s, and a cost 

of 3,848 with gap 0.42% is obtained after 1,027s. 

V. THE METHOD WITHOUT BRANCH-AND-CUT TO SOLVE 

SUBPROBLEMS 

As mentioned in Section Ⅲ, B&C is used to solve 

subproblems when the crude method cannot find a good enough 

solution. A natural follow-up question is whether B&C can be 

completely eliminated in solving subproblems. This possibility 

is explored by examining both Examples 1 and 2 with test 

settings the same as in Section Ⅳ. The results are shown in 

Table Ⅲ. 

For Example 1, SAVLR+OO without B&C to solve 

subproblems can obtain solutions with less than 5% gap within 

about 200s. This is because for the standard generalized 

assignment problems, the LP-relaxed problems approximate 

the subproblems well, and therefore the crude model can 

generate good enough subproblem solutions within almost all 

first 1500 iterations. This can also be seen from Fig. 2. 

Therefore, multipliers can approach the optimal multipliers, 

TABLE Ⅱ 
COMPARISON OF CRUDE METHOD AND BRANCH-AND-CUT IN EXAMPLE 2 

Method Instance CPU time 

consumed per 
iteration (s) 

Average 

performance 
difference 

Branch-and-Cut U[0, 200] 0.3602 2.28%1 

U[0, 400] 0.4131 3.46%1 

U[0, 600] 0.4225 4.11%1 

Crude method3 U[0, 200] 0.0060 24.66%2 

U[0, 400] 0.0068 26.37%2 

U[0, 600] 0.0063 27.62%2 

1: Average MIP gap reported by CPLEX solver 2: Average difference 
between costs obtained by the crude method and optimal costs 3: Solving 
LP-relaxed problem plus modifications 

TABLE Ⅲ 

RESULT OF SOLVING STANDARD GAPS BY USING SAVLR+OO WITHOUT 

B&C TO SOLVE SUBPROBLEMS 

Instance Feasible 

Cost 

Lower 

Bound1 

Gap CPU time 

(s) 

20M2400J 143,971 142,864 0.77% 74.5 

40M2400J 142,747 140,564 1.55% 109 

80M2400J 137,662 134,828 2.10% 201 

1: Since the multipliers cannot fully converge in this section, the lower 

bound may not be obtained by calculating (5). The lower bound shown 

here is the value obtained from Section Ⅳ. 
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leading to a reasonable overall solution. For Example 2, 

however, the method cannot obtain an overall feasible solution 

without B&C. This is because good enough subproblem 

solutions are difficult to obtain based on LP-relaxed problems 

only. Therefore, multipliers cannot approach the optimal 

multipliers, and the norms of constraint violations cannot be 

reduced to a small value. As a result, an overall feasible 

solution cannot be obtained. 

In practice, many formulations are themselves crude. 

Therefore, the gap requirement might not be strict, and 5% or 

10% might still be acceptable especially under strict time 

limitations. Moreover, many practical problems may need to be 

solved with limited computing resources (in terms of both 

hardware and software) such that B&C may be difficult or too 

expensive to implement, e.g., problems to be solved by 

embedded processors. For such problems, SAVLR+OO 

without B&C to solve subproblems and using heuristics to 

obtain overall feasible solutions might be an efficient and 

viable approach. Further efforts are needed to develop good 

crude models, and a promising direction for that is formulation 

tightening [1, 8, 14]. 

VI. CONCLUSION 

In this paper, a novel decomposition and coordination 

methodology for MILP problems is developed. Through 

obtaining good enough subproblem solutions by using a crude 

method, computational requirements of SAVLR+B&C is 

drastically reduced. The possibility of totally eliminating B&C 

in solving subproblems also opens up a way for fast resolution 

of MILP problems with strict time limitations. 
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