
2377-3766 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/LRA.2020.3005125, IEEE Robotics
and Automation Letters

IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED JUNE 2020

Abstract—Many important optimization problems, such as

manufacturing scheduling and power system unit commitment,

are formulated as Mixed-Integer Linear Programming (MILP)

problems. Such problems are generally difficult to solve because

of their combinatorial nature, and may subject to strict

computation time limitations. Recently, our

decomposition-and-coordination method “Surrogate Absolute

Value Lagrangian Relaxation” (SAVLR) exploits the exponential

reduction of complexity upon problem decomposition and

effectively coordinates subproblem solutions. In the method,

subproblems are generally solved by using Branch-and-Cut

(B&C). When subproblems are complicated, however, the

approach might not be able to generate high-quality solutions

within time limitations. In this paper, motivated by the “Ordinal

Optimization” concept, this difficulty is resolved through

exploiting a specific property of SAVLR that subproblem

solutions only need to be “good enough” to satisfy a convergence

condition. Time consuming B&C is eliminated in many iterations

through obtaining “good enough” subproblem solutions based on

“crude models” (e.g., LP-relaxed problems) or from heuristics.

Testing results on generalized assignment problems demonstrate

that the approach obtains high-quality solutions in a

computationally efficient manner and significantly outperforms

other approaches. This approach also opens up a new way to solve

practical MILP problems that are subject to strict computation

time limitations.

Index Terms—Planning, Scheduling and Coordination,

Manufacturing, Surrogate absolute-value Lagrangian relaxation

(SAVLR), Ordinal optimization (OO), Generalized assignment

problems (GAPs), Mixed-integer linear programming (MILP)

Manuscript received February 15, 2020; Revised May 16, 2020; Accepted

June 9, 2020. This paper was recommended for publication by Editor Jingang

Yi upon evaluation of the Associate Editor and Reviewers’ comments. This

work is supported by the National Key Research and Development Project of
China, No. 2017YFC0704100.

A.-B. Liu is with the Center for Intelligent and Networked Systems (CFINS),

Department of Automation, Tsinghua University, Beijing 100084, China
(e-mail: liuab19@mails.tsinghua.edu.cn).

P. B. Luh and M. A. Bragin are with the Department of Electrical and

Computer Engineering, University of Connecticut, Storrs, CT 06269-4157
USA (e-mail: peter.luh@uconn.edu; mikhail.bragin@uconn.edu).

B. Yan is with the Department of Electrical and Microelectronic

Engineering, Rochester Institute of Technology, Rochester, NY 14623 USA
(e-mail: bxyeee@rit.edu).

Digital Object Identifier (DOI): see top of this page.

I. INTRODUCTION

any optimization problems, such as manufacturing

scheduling [1, 2], generalized assignment [3-5] and

power system unit commitment [6-8], are formulated as

Mixed-Integer Linear Programming (MILP) problems. The

quality of their solutions significantly affects system

performance. Moreover, many problems need to be solved

within limited time (e.g., 10, or 20 min). Good MILP methods

that can obtain near-optimal solutions within time limits are

therefore very important. That, however, is generally difficult

to achieve since problem complexity increases dramatically as

the problem size increases because of the presence of discrete

decision variables.

 To efficiently obtain near-optimal solutions for practical

MILP problems, our recently decomposition-and-coordination

method Surrogate Absolute Value Lagrangian Relaxation

(SAVLR) exploits the exponential reduction of complexity

upon decomposition, and effectively coordinates subproblem

solutions [9]. In the method, through relaxing system-wide

coupling constraints, the original problem is decomposed into

smaller subproblems, each with much reduced complexity. To

coordinate subproblem solutions, multipliers are iteratively

updated by using surrogate subgradient directions, which are

obtained by solving one or a few subproblems subject to the

algorithm converging “surrogate optimality condition.” To

exploit the linearity, Branch-and-Cut (B&C) is generally used

to solve subproblems. When subproblems are complicated,

however, the approach might not be able to generate

high-quality solutions in time limits.

To overcome the difficulties mentioned above, a novel

solution methodology based on SAVLR is developed in this

paper, motivated by the Ordinal Optimization (OO) concepts

[10-13]. This method exploits a specific property of SAVLR

that subproblem solutions only need to be “good enough” to

satisfy the surrogate optimality condition. Time consuming

B&C can thus be eliminated in many iterations through

obtaining “good enough” subproblem solutions based on

“crude models” (e.g., LP-relaxed problems) or from heuristics.

Computational efforts required can thus be drastically reduced.

Nevertheless, since the convergence condition is satisfied at

each iteration, subproblem solutions are still effectively

coordinated, leading to high-quality overall solutions. The

above is presented in Section III, after reviewing major MILP

Ordinal-Optimization Concept Enabled

Decomposition and Coordination of

Mixed-Integer Linear Programming Problems

An-Bang Liu, Peter B. Luh, Life Fellow, IEEE, Mikhail A. Bragin, Member, IEEE, and Bing Yan,

Member, IEEE

M

Authorized licensed use limited to: UNIVERSITY OF CONNECTICUT. Downloaded on June 27,2020 at 04:04:55 UTC from IEEE Xplore. Restrictions apply.

2377-3766 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/LRA.2020.3005125, IEEE Robotics
and Automation Letters

IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED JUNE 2020

methods and the Ordinal Optimization (OO) concepts in

Section Ⅱ.

To demonstrate the performance of our method, the standard

generalized assignment problems and generalized assignment

problems with machine availability and job release times are

tested in Section Ⅳ. Results are also compared with those

obtained by using SAVLR with B&C (and indirectly with those

obtained by using B&C, standard Lagrangian Relaxation, and

Surrogate Lagrangian Relaxation). Testing results demonstrate

that “good enough” subproblem solutions are efficiently

obtained in many iterations based on our crude model and

time-consuming B&C is only used as needed. Moreover, our

method obtains high-quality overall solutions in a

computationally efficient manner and significantly outperforms

other approaches.

 A natural follow-up question to the above is whether B&C

can be completely eliminated in solving subproblems. This is

explored in Section Ⅴ by examining the examples considered in

Section Ⅳ. Testing results show that for the standard

generalized assignment problems, the crude models (the

LP-relaxed problems) can approximate the subproblems well,

and overall solutions of reasonable quality are obtained within

very short CPU times without using B&C to solve subproblems.

This, however, is not the case for the generalized assignment

problems with machine availability and job release time,

because good enough subproblem solutions are difficult to

obtain based on the LP-relaxed problems. Further efforts are

needed to develop good crude models, and a promising

direction for that is formulation tightening [1, 8, 14].

II. LITERATURE REVIEW

Branch-and-Cut is reviewed in Section Ⅱ-A. Decomposition

and coordination methods, such as Lagrangian Relaxation (LR)

and Surrogate Absolute Value Lagrangian Relaxation

(SAVLR), are reviewed in Section Ⅱ-B. Ordinal Optimization

(OO) is reviewed in Section Ⅱ-C.

A. Branch-and-Cut (B&C)

Branch-and-Cut [15-17] is a method to solve MILP problems

by exploiting linearity. The key idea is to find the convex hull

of the problem. If the convex hull is found, then the optimal

solution can be obtained at one of its vertices by solving a linear

programming problem. To obtain the convex hull, the

integrality requirement is first relaxed. The method then cuts

off regions outside the convex hull by adding “valid cuts.” The

fundamental difficulty is that finding convex hulls itself is NP

hard, and effective valid cuts may be difficult to obtain. If the

convex hull cannot be effectively obtained, the method then

relies on time-consuming Branch-and-Bound and heuristics.

B. Decomposition and coordination methods

Traditionally, Lagrangian Relaxation (LR) is a method for

mixed-integer separable optimization problems by exploiting

separability [6, 7, 18, 19]. In the method, a problem is

decomposed into smaller subproblems by relaxing

system-wide coupling constraints. The complexity of a

subproblem is exponentially reduced as compared with that of

the original problem, and subproblem solutions are coordinated

by using multipliers which are updated based on subgradients.

At convergence of multipliers, feasible solutions are obtained

by using heuristics. Because subgradients are obtained after

solving all subproblems, the computational requirements for

one iteration are high and multipliers may suffer from severe

zigzagging. Moreover, convergence requires the knowledge of

the optimal dual value, which is generally not available. While

adaptive estimates of the optimal dual value are used in practice,

such adaptive adjustments are computationally expensive. As a

result, the overall performance of the method is poor.

Surrogate Lagrangian Relaxation (SLR) overcomes all major

difficulties of standard LR presented above [20]. Within the

method, multipliers are updated by using surrogate subgradient

directions, which can be obtained by solving the relaxed

problem approximately (or solving one or multiple

subproblems) subject to the algorithm converging surrogate

optimality condition. The computational efforts required to

update multipliers, therefore, are significantly reduced, and

zigzagging behavior of multipliers is also alleviated. Moreover,

convergence is proven without requiring the knowledge of the

optimal dual value. The difficulty of SLR is that the levels of

constraint violations may not be reduced fast enough, resulting

in slow convergence.

To accelerate convergence, SAVLR is developed by

penalizing constraint violations using “absolute-value” penalty

terms, which are exactly linearized [9]. Moreover, a novel

adjustment of penalty coefficients is developed. SAVLR is

generally combined with B&C to exploit both separability and

linearity for MILP problems.

C. Ordinal Optimization (OO)

Ordinal Optimization is an efficient approach to solve

complicated simulation-based optimization problems [10-13].

The approach rests on two basic ideas. The first is that softening

the goal makes hard problem easier. If the goal of obtaining an

optimal solution is softened to obtaining a “good enough”

solution (e.g., top 5%), the complexity of the problem will be

significantly reduced [13]. Therefore, instead of finding the

best solution for sure, the goal of OO is to find a good enough

solution with a high probability. The second is that order is

much easier to determine than value. Instead of using accurate

performances which generally require long simulation times to

obtain, OO uses noisy performances obtained from crude

models or quick simulation runs to roughly evaluate the relative

orders of solutions, and then select good enough solutions.
Different from simulation-based optimization problems, the

objective function of an MILP problem can be easily calculated,

and “good enough” solutions (e.g., top 5%) might not be good

enough in terms of performance. Therefore, OO generally has

not been used to solve MILP problems.

III. METHODOLOGY

In subsection Ⅲ-A, a generic MILP problem is formulated,

and the key steps of Surrogate Absolute Value Lagrangian

Relaxation (SAVLR) [9] plus Branch-and-Cut (B&C) is

summarized. In subsection Ⅲ-B, the method is conceptually

improved by using a crude model to efficiently obtain good

enough subproblem solutions based on the Ordinal

Optimization concept [10-13] while satisfying the algorithm

Authorized licensed use limited to: UNIVERSITY OF CONNECTICUT. Downloaded on June 27,2020 at 04:04:55 UTC from IEEE Xplore. Restrictions apply.

2377-3766 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/LRA.2020.3005125, IEEE Robotics
and Automation Letters

Liu et al : Ordinal-Optimization Concept Enabled Decomposition and Coordination of MILP problems

convergence condition. In subsection Ⅲ-C, implementation of

the algorithm is presented.

A. Generic formulation of MILP problems and Surrogate

Absolute-Value Lagrangian Relaxation plus Branch-and-Cut

As reviewed in the Introduction, many practical problems are

formulated as MILP problems. These problems usually consist

of individual subsystems coupled through system-wide

constraints. The objective function is additive in terms of

individual subsystems, and can be written in the following way:

() () 
,

min , (,) R Z yx
T T nnx y

x y
d x d y x y+    ， (1)

where x is an nx×1 real decision vector, y is an ny×1 integer

decision vector. Related cost vectors dx and dy have appropriate

dimensions. Constraints of individual subsystems can be

written as:

, 1,..., ,x y

j j j j jA x A y b j J+  = (2)

where xj and yj are disjoint components of x and y and have

dimensions n
x

j ×1 and n
y

j ×1, respectively, such that ∑j n
x

j =nx and

∑j n
y

j =ny. Related matrices A
x

j , A
y

j and vector bj have appropriate

dimensions. Subsystems are coupled through system-wide

constraints
,0 ,0 0=x yA x A y b+ ， (3)

and related matrices Ax,0, Ay,0 and vector b0 have appropriate

dimensions.

Recently, SAVLR+B&C shows great abilities to solve

problem formulated by (1)-(3) through decomposition and

coordination. To decompose the problem, the system-wide

coupling constraints (3) is relaxed resulting in the following

“Relaxed Problem”:

()
,

min , , , s.t. (2), (,) ,k

k

cx y
L x y x y   (4)

where

() () () () 1
, , (,) (,)k

T T T
k x y k k

c
L x y d x d y g x y c g x y = + + +

 (5)

is the “absolute-value” Lagrangian function, in which
,0 ,0 0(,) x yg x y A x A y b= + − (6)

includes a vector of constraint violations and is penalized by

using L1-norms in (5). Subproblems are then formed based on

(5) by optimizing decision variables associated with one (or

multiple) subsystems while fixing variables associated with

other subsystems at values obtained at previous iterations:

()1 1

,
min , , , , , s.t. (2) (,) ,k

j j

k k k

j j j j j j jcx y
L x x y y x y− −

− − ， (7)

where x−j and y−j are components of x and y without xj and yj,

respectively. Solving subproblems (7) are much easier than

solving the original problem (1)-(3) because of their reduced

dimensionalities. These subproblems are generally solved by

using B&C to exploit linearity after penalty terms in (7) are

linearized in a standard way.

After solving a subproblem at iteration k, if the solution (x
k

j , y
k

j) satisfies the surrogate optimality condition

() ()1 1 1 1 1 1, , , , , , , , ,k k

k k k k k k k k k k

j j j j j j j jc c
L x x y y L x x y y − − − − − −

− − − − (8)

then multipliers are updated as
1 (,),k k k k ks g x y + = + (9)

where

() ,0 ,0 0,k k x k y kg x y A x A y b= + − (10)

is a surrogate subgradient, with
1 1 1 1

1 1(,..., ,...), (,..., ,...).k k k k k k k k

j J j Jx x x x y y y y− − − −= = (11)

If the subproblem solution obtained does not satisfy (8), the

method moves to solve the next subproblem. Since subproblem

do not need to be fully solved, B&C is stopped when a

subproblem solution that satisfies (8) is found to save CPU time.

To guarantee convergence without the knowledge of the

optimal dual value, the stepsize in (9) is set as
1 1 1

2

2

(,)
, 0 1,

(,)

k k k

k

k kk k

s g x y
s

g x y
 

− − −

=   (12)

with

1 1
1 , 1 , 1, 0 1.k r

M r
Mk k

 = − = −    (13)

After updating multipliers, the penalty coefficient is increased

as:
1 , 1.k kc c + =   (14)

When the penalty coefficient becomes too large, feasibility is

overemphasized and surrogate optimality condition (8) might

not be satisfied even after solving all subproblems. In this case,

the penalty coefficient is decreased as:

 1 / , 1.k kc c  + =  (15)

B. A crude method for good enough subproblem solutions

At each iteration of SAVLR, it is not necessary to fully solve

a subproblem, and a “good enough” solution subject to the

surrogate optimality condition (8) is sufficient. As reviewed in

subsection 2.3, finding good enough solutions is much easier

than finding the optimal one. Accurate optimization methods,

e.g., B&C, therefore, might not be needed, and computationally

efficient methods can be developed to generate good enough

subproblem solutions.

Inspired by the ordinal comparison concepts, an efficient

method to obtain good enough subproblem solutions is

developed below based on the idea of “approximate solutions.”

LP-relaxed problems, which are formed by relaxing integer

requirements in subproblems (7), are used as “crude models” to

approximate subproblems, and the “approximate solution” (x’,

y’) is the solution obtained by using a linear programming

method. If all components of y’ are integers, then (x’, y’) is the

optimal solution to the subproblem. If not, the non-integer

components are modified by rounding up or down to generate a

set of solutions feasible to (7), and the set is denoted as S. To

illustrate this step, suppose that all ny components of y’ are

non-integers:

1 2' (, ,...,).
yny y y y= (16)

Through rounding up or down, multiple integer variables are

obtained as:

Authorized licensed use limited to: UNIVERSITY OF CONNECTICUT. Downloaded on June 27,2020 at 04:04:55 UTC from IEEE Xplore. Restrictions apply.

2377-3766 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/LRA.2020.3005125, IEEE Robotics
and Automation Letters

IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED JUNE 2020

0 1 2

1 1 2

2 1 2

1 22

(, ,...,),

(, ,...,),

(, ,...,),

(, ,...,).

y

y

y

n
y

n

n

n

n

y y y y

y y y y

y y y y

y y y y

 =         

 =         

 =         

 =         

 (17)

The corresponding continuous variables are modified to satisfy

(2). Set S is then formed by selecting from the above solutions

feasible to subproblem (7). Since subproblem solutions in S are

close to the approximate solution, they are expected to have

high performances and contain good enough subproblem

solutions with a high probability. A subproblem solution with

the minimal cost can be obtained from S through calculating

subproblem costs in (7). If the solution satisfies the surrogate

optimality condition (8), it is accepted as a good enough

solution. If not, B&C is used to solve the subproblems.

Because the crude models (LP-relaxed problems) are

generally easy to solve, the computational efforts required are

much less than those required by B&C. If such solutions are

obtained in a significant number of iterations, then the speed-up

can be drastic. Moreover, since the convergence condition is

satisfied at each iteration, subproblem solutions are still

effectively coordinated, leading to high-quality overall

solutions.

C. Implementation of SAVLR+OO

In this subsection, algorithm initialization, searching for

solutions feasible to the original problem (1)-(3), and stopping

criteria are discussed. The steps of the algorithm are then

presented.

1) Initialization, Finding Feasible Solutions and Stopping

Criteria

Good multiplier initialization can reduce the number of

iterations needed. The multipliers are generally initialized by

using heuristics [18]. For daily operation optimization

problems which need to be solved multiple times a day,

multipliers can also be initialized with the values obtained from

the previous optimization run. In this paper, for simplicity,

multipliers are initialized at zero. For a given set of initial

multipliers, subproblem solutions are initialized by solving the

relaxed problem (4), and the stepsize is then initialized as ([20,

equation (76)]:

()0

0 0 0

0

2
0 0

2

, ,
,

(,)

c
q L x y

s
g x y

−
= (18)

where q is the best estimation of cost for problem (1)-(3).

Since system-wide constraints (3) have been relaxed,

solutions obtained from subproblems, when put together,

generally do not form a solution feasible to the original problem

(1)-(3). When the norm of constraint violations (6) reduce

below a threshold, i.e.,
2

(,) ,k kg x y  (19)

heuristics are used to find an overall feasible solution. This step

is generally problem dependent. In this paper, feasible solutions

are obtained through fixing variables of most subsystems at

their latest available values, and optimizing remaining variables

to satisfy the system-wide constraints (3) by using B&C.

 When the norm of constraint violations (6) or the stepsize

reduces to a small value, i.e.,
2

(,) ,k k kg x y or s   (20)

multipliers change little. At this time, the algorithm stops.

2) Steps of the Algorithm

The steps are as follows:

Step 0: Initialize λ0, x0 and s0;

Step 1: For given λk and ck, solve the LP-relaxed problem

corresponding to subproblem (7) to obtain the

approximate solution (x’, y’);

Step 2: Modify (x’, y’) through rounding non-integer

components of y’ to obtain multiple feasible solutions,

denoted as set S;

Step 3: Compute the subproblem costs in (7) for solutions in S,

and select the best one. If the surrogate optimality

condition (8) is satisfied, go to Step 6;

Step 4: Solve the subproblem by using B&C. If the surrogate

optimality condition (8) is satisfied, go to Step 6;

Step 5: If the surrogate optimality condition (8) is not satisfied

after solving all the subproblems, reduce the penalty

coefficient ck per (15) and go to Step 1. If not, move to the

next subproblem and go to Step 1;

Step 6: Update λk, sk and ck as (9)-(14);

Step 7: Check the criteria (19). If satisfied, search for solutions

feasible to the original problem. Otherwise, go to step 1;

Step 8: Check the stopping criteria (20). If satisfied, stop.

Otherwise go to step 1.

IV. NUMERICAL TESTING

The method was implemented by using MATLAB R2018a

and CPLEX 12.8.0.0, and is tested on a computer with the Intel

I5-8250U processor with four cores at 3.3-GHz, 8GB of RAM,

and Windows 10. The dual simplex method of the CPLEX

linear programming solver is used to solve the crude models

(LP-relaxed problems) and the B&C solver is used to solve

MILP subproblems. During testing, parallel computing of the

CPLEX solver is on. To demonstrate the efficiency of

SAVLR+OO, two examples are presented. In Example 1, the

standard generalized assignment problems [3-5] are considered.

In Example 2, job release times and machine availability are

included following [9]. The codes implementing SAVLR+OO

(as well as SAVLR+B&C) for both examples, and the

corresponding data sets are available in the supplementary

material of this paper.

 Example 1. The Standard Generalized Assignment Problems

A standard generalized assignment problem is to assign a set of

jobs to a set of machines. To capture assignments of jobs to

machines, a set of binary variables is introduced:

,

1, if job is assigned to machine ,

0, otherwise,

1,..., , 1,..., ,

i j

i j
y

i I j J


= 



= =

 (21)

where I is the total number of jobs, and J is the total number of

machines. One job can only be assigned to one machine, i.e.,

Authorized licensed use limited to: UNIVERSITY OF CONNECTICUT. Downloaded on June 27,2020 at 04:04:55 UTC from IEEE Xplore. Restrictions apply.

2377-3766 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/LRA.2020.3005125, IEEE Robotics
and Automation Letters

Liu et al : Ordinal-Optimization Concept Enabled Decomposition and Coordination of MILP problems

Fig. 1. Comparison of SAVLR+OO versus SAVLR+B&C for the standard

GAPs with 20 machines 2400 jobs.

Fig. 2. The number of using B&C during the optimization process in
Example 1.

 ,

1

1, 1, ..., .
J

i j

j

y i I
=

= = (22)

For machine j, its capacity Tj cannot be exceeded, i.e.,

, ,

1

, 1, ..., ,
I

i j i j j

i

t y T j J
=

 = (23)

where ti,j is the time required to process job i on machine j. The

objective function is to minimize the total assignment cost, i.e.,

,
, ,

1 1

min ,
i j

J I

i j i j
y

j i

g y
= =

 (24)

where gi,j is the cost for assigning job i to machine j.

After relaxing assignment constraints (22) and adding

absolute-value penalty terms, a subproblem associated with

machine j can be formulated as ([9, equation (25)]:

,
, , ,

,
1

1

, ,

1 to :

min ,
2

. . (23), 1 1,..., .

i j i

kI
k

i j i j i i j i
y q

i

k

i i j i s i

s J s j

c
g y y q

s t q y y q i I


=

−

= 

+ +

−  + −  =




 (25)

In the above, absolute-value penalty terms are linearized by

introducing extra variables qi. In actual implementation of this

example, four machines are grouped to form one subproblem,

and solving one subproblem is counted as one iteration. The

multipliers are updated as in (9), where the stepsizes are set as

in (12) and (13), and a surrogate subgradient is given by:

() ,

1

1.
J

k k

i j

j

g y y
=

= − (26)

The penalty coefficient is updated as in (14) and (15). Three

problem instances with 20, 40 and 80 machines, each with 2400

jobs, are considered. The iterative process stops when the norm

of constraint violations reduces below 3 or stepsize sk < 0.01.

For the problem instance with 20 machines and 2400 jobs,

feasible costs and lower bounds against CPU times are plotted

in Fig. 1. In the figure, CPU times include subproblem solving

time, multiplier updating time and feasible solution searching

time. The lower bound is obtained at convergence by

evaluating the absolute-value Lagrangian function (5). The

results show that near-optimal solutions are effectively

obtained. A cost of 142,945 is obtained after 318s, and 142,894

after 539s. The gaps are 0.064% and 0.007%, respectively,

showing that the feasible solutions obtained are good. There are

three reasons for such efficiency. First, the complexity of the

original problem is significantly reduced through

decomposition. Second, subproblem solutions are effectively

coordinated by using SAVLR. Third, good enough subproblem

solutions are efficiently obtained based on the crude model. To

demonstrate the last aspect, computational efforts required and

the quality of subproblem solutions obtained by using B&C and

the crude method per iteration are compared in Table Ⅰ. It can be

seen that CPU time consumed by solving LP-relaxed problems

and modifying the approximate solutions is only 0.0442s on

average, as compared to that of 0.2652s by using B&C. The

“average performance difference” in the table is the average

percentage difference in subproblem cost vs. the optimal

subproblem cost, i.e.,
,*

,*
= 100%, 1,2,...

k k
k

k

p p
D k

p

−
 =

with pk,* the optimal subproblem cost at iteration k and pk the

subproblem cost obtained by using either the crude model or by

using B&C. It can be seen that the average performance

difference of the solutions obtained based on crude model is

0.7139%. As counted, these solutions satisfy the surrogate

optimality condition in 1,455 out of a total 3,033 iterations,

leading to significant speed-up.

To better demonstrate the usage of B&C in our method, the

number of iterations in which B&C is used is depicted in Fig. 2.

In the figure, the horizontal axis is the number of iterations, and

the vertical axis is the number of B&C used thus far. As can be

seen, at the early stage of optimization, good enough

subproblem solutions are obtained based on the crude model at

almost all iterations, and B&C is rarely called. This, however,

is not the case at the later stage of optimization. This is because

the surrogate optimality condition is more difficult to be

satisfied as the multipliers converge. Nevertheless, as shown in

Fig. 1, even the first solution obtained is with a very small

duality gap.

 For comparison purpose, SAVLR+B&C is also tested. As

shown in Fig. 1, near-optimal solutions are obtained slower

than those obtained by using SAVLR+OO. A cost of 142,976 is

TABLE Ⅰ

COMPARISON OF CRUDE METHOD AND BRANCH-AND-CUT IN EXAMPLE 1

Method Instance CPU time

consumed per

iteration (s)

Average

performance

difference

Branch-and-Cut 202400 0.2652 0.1100%

402400 0.2589 0.3686%

802400 0.2614 0.8676%

Crude method1 202400 0.0392 0.7139%

402400 0.0473 1.4625%

802400 0.0491 3.7655%

1: Solving LP-relaxed problem plus modifying the approximate solution

Authorized licensed use limited to: UNIVERSITY OF CONNECTICUT. Downloaded on June 27,2020 at 04:04:55 UTC from IEEE Xplore. Restrictions apply.

2377-3766 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/LRA.2020.3005125, IEEE Robotics
and Automation Letters

IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED JUNE 2020

Fig. 3. Comparison of SAVLR+OO versus SAVLR+B&C for the standard

GAPs with 40 machines 2400 jobs.

Fig. 4. Comparison of SAVLR+OO versus SAVLR+B&C for the standard

GAPs with 80 machines 2400 jobs.

Fig. 5. Comparison of SAVLR+B&C and SAVLR+OO with 60 machines

and 200 jobs and with a
machine

j and a
job

i generated using the uniform

distribution U[0, 200].

obtained after 468s, and 142,909 after 729s. Although B&C is

stopped when a subproblem solution satisfying the surrogate

optimality condition is found, as shown in Table Ⅰ, it consumes

0.2652s on average while using the crude model only consumes

0.0392s on average. Moreover, SAVLR+B&C requires 2,964

iterations, and SAVLR+OO requires 3,033 iterations, showing

that eliminating B&C does not significantly increase the

number of iterations needed.

For the problem instance with 40 machines and 2400 jobs,

SAVLR+OO obtains near-optimal solutions fast and

significantly outperforms SAVLR+B&C. As shown in Fig. 3, a

cost of 140,702 is obtained after 444s, and 140,579 after 748s.

For the problem instance with 80 machines and 2400 jobs,

near-optimal overall solutions are also obtained in a

computationally efficient manner. A cost of 134,864 with gap

0.0267% is obtained after 732s and good enough subproblem

solutions are efficiently obtained base on the crude model in

1,687 out of a total of 3,091 iterations. This instance

demonstrates the scalability of our method.

As reported in [9], SAVLR+B&C significantly outperforms

other methods including B&C, Lagrangian Relaxation (LR),

Surrogate Lagrangian Relaxation (SLR) and Alternate

Direction Method of Multipliers (ADMM) because of

decomposition and effective coordination. Since SAVLR+OO

outperforms SAVLR+B&C, it also significantly outperforms

B&C, LR, SLR, and ADMM.

Example 2. Generalized Assignment Problems with Machine

Availability and Job Release Times. In this example, jobs

release time and machine availability time are considered as in

[9, p. 538]. Job i is not released until a certain time a
job

i , and

machine j is only available after a certain time a
machine

j and until

certain time Tj. To account for job release and machine

availability, integer decision variables bi,j for all i and j are

introduced representing the beginning time of job i on machine

j subject to the following constraints:
job machine

, ,, , 1,..., , 1,..., .i j i i j jb a b a i I j J  = = (27)

Also, integer decision variables ci,j for all i and j are introduced

representing the completion time of job i on machine j subject

to the following constraints:

, , 1,..., , 1,..., .i j jc T i I j J = = (28)

As presented in [9, equations (29) and (31)], if job i is assigned

to machine j, i.e., yi,j=1, its completion time should equal its

beginning time plus processing time on machine j, i.e.,

, , , ,1 , 1,..., , 1,..., ,i j i j i j i jy c b t i I j J=  − = = = (29)

and time slots [bi,j, ci,j] during which jobs are processed on

machine j should not intersect for all j, i.e.,

, ', ', , OR , ', ', 1,..., , 1,..., .i j i j i j i jc b c b i i i i I j J   = = (30)

The assignment constraints and the objective function are the

same as in (22) and (24), respectively. After relaxing

assignment constraints (22), a subproblem associated with

machine j can be formulated as in [9]:

() ()

1 2
, , , , ', , ',

, , ,
, , , , ,

1

1

, ,

1 to :

, , , , , ,

1

, ', , ', ', ,

min ,
2

s.t. (27),(28), 1 ,

 1 1 ,

 ,

i j i j i j i i i j i i j

kI
k

i j i j i i j i
y c b q z z

i

k

i i j i s i

s J s j

i j i j i j i j i j i j

i j i j i i j i j i

c
g y y q

q y y q

t M y c b t M y

c b Mz c b


=

−

= 

+ +

−  + − 

− −  −  + −

 + 





2 1 2

, ', , ', , ',

'

, 1,

 , 1,..., , .

j i i j i i j i i jMz z z

i i I i i

+ + =

 = 

(31)

In the above, the logic constraints (29) and (30) are linearized

as in [9, equations (30) and (32)]. Because the problem is

complicated, one subproblem in this example only contains one

machine. The updating of multipliers and the adjustments of the

penalty coefficient are the same as in Example 1. The iterative

process stops when the norm of constraint violations reduces

below 3 or stepsize sk < 0.005.

Three problem instances with 60 machines and 200 jobs are

considered, and these instances are larger than those with 40

machines and 100 jobs in [9]. Data a
machine

j and a
job

i in three

instances are individually generated from uniform distributions

U[0, 200], U[0, 400], and U[0, 600], which have wider ranges

as compared to U[0, 100] and U[0, 300] in [9].

Authorized licensed use limited to: UNIVERSITY OF CONNECTICUT. Downloaded on June 27,2020 at 04:04:55 UTC from IEEE Xplore. Restrictions apply.

2377-3766 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/LRA.2020.3005125, IEEE Robotics
and Automation Letters

Liu et al : Ordinal-Optimization Concept Enabled Decomposition and Coordination of MILP problems

Fig. 6. The number of using B&C during the optimization process in
Example 2.

Fig. 7. Comparison of SAVLR+B&C and SAVLR+OO with 60 machines

and 200 jobs and with a
machine

j and a
job

i generated using the uniform

distribution U[0, 400].

Fig. 8. Comparison of SAVLR+B&C and SAVLR+OO with 60 machines

and 200 jobs and with a
machine

j and a
job

i generated using the uniform

distribution U[0, 600].

 Results with a
machine

j and a
job

i generated by using the uniform

distribution U[0, 200] are presented first. As shown in Fig. 5,

near-optimal overall solutions are efficiently obtained. A cost

of 3,382 is obtained after 581s, and the lower bound obtained at

convergence is 3,373, with a gap of 0.27%, showing that the

solution obtained is good. As shown in Table Ⅱ, CPU time

required by crude model is only 0.006s, and the average

performance difference is 24.66%, which is significantly larger

than that of B&C. Nevertheless, as counted, the crude model is

good enough in 2,027 out of a total of 3,240 iterations, and

therefore the speed-up is drastic.

For comparison purpose, SAVLR+B&C is also tested. As

shown in Table Ⅱ, using B&C to solve a subproblem takes

0.3602s on average, which is much longer than using the crude

model of 0.006s. As shown in Fig. 5, a cost of 3,400 is obtained

after 580s and a cost of 3,383 is obtained after 968s. Therefore,

near-optimal solutions are obtained much slower using

SAVLR+R&C than those obtained by using SAVLR+OO.

Moreover, SAVLR+B&C requires 3,060 iterations, and

SAVLR+OO requires 3,240 iterations, showing that

eliminating B&C does not significantly increase the number of

iterations needed.

Results with a
machine

j and a
job

i generated by using the uniform

distribution U[0, 400] are shown in Fig. 6. With SAVLR+OO,

good enough subproblem solutions are efficiently obtained

based on the crude model in 1,657 iterations, and a cost of

3,484 with gap 0.52% is efficiently obtained after 738s.

Lastly, results with a
machine

j and a
job

i generated by using the

uniform distribution U[0, 600] are presented. Although a
machine

j

and a
job

i have wide ranges, good enough subproblem solutions

are still efficiently obtained based on the crude model and

near-optimal solutions are obtained fast. As shown in Fig. 8, a

cost of 3,927 with gap 2.42% is obtained after 331s, and a cost

of 3,848 with gap 0.42% is obtained after 1,027s.

V. THE METHOD WITHOUT BRANCH-AND-CUT TO SOLVE

SUBPROBLEMS

As mentioned in Section Ⅲ, B&C is used to solve

subproblems when the crude method cannot find a good enough

solution. A natural follow-up question is whether B&C can be

completely eliminated in solving subproblems. This possibility

is explored by examining both Examples 1 and 2 with test

settings the same as in Section Ⅳ. The results are shown in

Table Ⅲ.

For Example 1, SAVLR+OO without B&C to solve

subproblems can obtain solutions with less than 5% gap within

about 200s. This is because for the standard generalized

assignment problems, the LP-relaxed problems approximate

the subproblems well, and therefore the crude model can

generate good enough subproblem solutions within almost all

first 1500 iterations. This can also be seen from Fig. 2.

Therefore, multipliers can approach the optimal multipliers,

TABLE Ⅱ
COMPARISON OF CRUDE METHOD AND BRANCH-AND-CUT IN EXAMPLE 2

Method Instance CPU time

consumed per
iteration (s)

Average

performance
difference

Branch-and-Cut U[0, 200] 0.3602 2.28%1

U[0, 400] 0.4131 3.46%1

U[0, 600] 0.4225 4.11%1

Crude method3 U[0, 200] 0.0060 24.66%2

U[0, 400] 0.0068 26.37%2

U[0, 600] 0.0063 27.62%2

1: Average MIP gap reported by CPLEX solver 2: Average difference
between costs obtained by the crude method and optimal costs 3: Solving
LP-relaxed problem plus modifications

TABLE Ⅲ

RESULT OF SOLVING STANDARD GAPS BY USING SAVLR+OO WITHOUT

B&C TO SOLVE SUBPROBLEMS

Instance Feasible

Cost

Lower

Bound1

Gap CPU time

(s)

20M2400J 143,971 142,864 0.77% 74.5

40M2400J 142,747 140,564 1.55% 109

80M2400J 137,662 134,828 2.10% 201

1: Since the multipliers cannot fully converge in this section, the lower

bound may not be obtained by calculating (5). The lower bound shown

here is the value obtained from Section Ⅳ.

Authorized licensed use limited to: UNIVERSITY OF CONNECTICUT. Downloaded on June 27,2020 at 04:04:55 UTC from IEEE Xplore. Restrictions apply.

2377-3766 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/LRA.2020.3005125, IEEE Robotics
and Automation Letters

IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED JUNE 2020

leading to a reasonable overall solution. For Example 2,

however, the method cannot obtain an overall feasible solution

without B&C. This is because good enough subproblem

solutions are difficult to obtain based on LP-relaxed problems

only. Therefore, multipliers cannot approach the optimal

multipliers, and the norms of constraint violations cannot be

reduced to a small value. As a result, an overall feasible

solution cannot be obtained.

In practice, many formulations are themselves crude.

Therefore, the gap requirement might not be strict, and 5% or

10% might still be acceptable especially under strict time

limitations. Moreover, many practical problems may need to be

solved with limited computing resources (in terms of both

hardware and software) such that B&C may be difficult or too

expensive to implement, e.g., problems to be solved by

embedded processors. For such problems, SAVLR+OO

without B&C to solve subproblems and using heuristics to

obtain overall feasible solutions might be an efficient and

viable approach. Further efforts are needed to develop good

crude models, and a promising direction for that is formulation

tightening [1, 8, 14].

VI. CONCLUSION

In this paper, a novel decomposition and coordination

methodology for MILP problems is developed. Through

obtaining good enough subproblem solutions by using a crude

method, computational requirements of SAVLR+B&C is

drastically reduced. The possibility of totally eliminating B&C

in solving subproblems also opens up a way for fast resolution

of MILP problems with strict time limitations.

ACKNOWLEDGMENT

The authors would like to thank Professor Yu-Chi Ho of

Harvard University for his insightful and inspirational

suggestion of combining Surrogate Absolute Value Lagrangian

Relaxation with the Ordinal Optimization concept.

REFERENCES

[1] B. Yan, M. A. Bragin, and P. B. Luh, "Novel Formulation and Resolution
of Job-Shop Scheduling Problems," IEEE Robotics and Automation

Letters, vol. 3, no. 4, pp. 3387-3393, 2018.

[2] A. Che, W. Lei, J. Feng, and C. Chu, "An improved mixed integer
programming approach for multi-hoist cyclic scheduling problem," IEEE

Transactions on Automation Science and Engineering, vol. 11, no. 1, pp.

302-309, 2013.
[3] G. T. Ross and R. M. Soland, "A branch and bound algorithm for the

generalized assignment problem," Mathematical programming, vol. 8, no.

1, pp. 91-103, 1975.

[4] D. G. Cattrysse and L. N. Van Wassenhove, "A survey of algorithms for

the generalized assignment problem," European journal of operational

research, vol. 60, no. 3, pp. 260-272, 1992.
[5] M. L. Fisher, R. Jaikumar, and L. N. Van Wassenhove, "A multiplier

adjustment method for the generalized assignment problem,"

Management science, vol. 32, no. 9, pp. 1095-1103, 1986.
[6] W. Ongsakul and N. Petcharaks, "Unit commitment by enhanced adaptive

Lagrangian relaxation," IEEE Transactions on Power Systems, vol. 19, no.

1, pp. 620-628, 2004.
[7] Q. Zhai, X. Guan, and J. Cui, "Unit commitment with identical units

successive subproblem solving method based on Lagrangian relaxation,"

IEEE Transactions on Power Systems, vol. 17, no. 4, pp. 1250-1257,
2002.

[8] B. Yan, P. Luh, T. Zheng, D. Schiro, M. Bragin, F. Zhao, J. Zhao, and I.
Lelic, "A Systematic Formulation Tightening Approach for Unit

Commitment Problems," IEEE Transactions on Power Systems, 2019.

[9] M. A. Bragin, P. B. Luh, B. Yan, and X. Sun, "A Scalable Solution
Methodology for Mixed-Integer Linear Programming Problems Arising

in Automation," IEEE Transactions on Automation Science and

Engineering, vol. 16, no. 2, pp. 531-541, 2018.
[10] Y.-C. Ho, R. S. Sreenivas, and P. Vakili, "Ordinal optimization of

DEDS," Discrete event dynamic systems, vol. 2, no. 1, pp. 61-88, 1992.

[11] Y.-C. Ho, Q.-C. Zhao, and Q.-S. Jia, Ordinal optimization: Soft
optimization for hard problems. Springer Science & Business Media,

2008.

[12] T. E. Lau and Y.-C. Ho, "Universal alignment probabilities and subset
selection for ordinal optimization," Journal of Optimization Theory and

Applications, vol. 93, no. 3, pp. 455-489, 1997.

[13] L. H. Lee, T. W. E. Lau, and Y. C. Ho, "Explanation of goal softening in
ordinal optimization," IEEE Transactions on Automatic Control, vol. 44,

no. 1, pp. 94-99, 1999.

[14] B. Yan, P. B. Luh, E. Litvinov, T. Zheng, D. Schiro, M. A. Bragin, F.
Zhao, J. Zhao, and I. Lelic, "A systematical approach to tighten unit

commitment formulations," in 2018 IEEE Power & Energy Society

General Meeting (PESGM), 2018: IEEE, pp. 1-5.

[15] M. Padberg and G. Rinaldi, "A branch-and-cut algorithm for the

resolution of large-scale symmetric traveling salesman problems," SIAM

review, vol. 33, no. 1, pp. 60-100, 1991.
[16] R. Gomory, "An algorithm for the mixed integer problem," RAND CORP

SANTA MONICA CA, 1960.
[17] R. E. Gomory, "Solving linear programming problems in integers,"

Combinatorial Analysis, vol. 10, pp. 211-215, 1960.

[18] X. Guan, P. B. Luh, H. Yan, and J. Amalfi, "An optimization-based
method for unit commitment," International Journal of Electrical Power

& Energy Systems, vol. 14, no. 1, pp. 9-17, 1992.

[19] F. Zhuang and F. D. Galiana, "Towards a more rigorous and practical unit
commitment by Lagrangian relaxation," IEEE Transactions on Power

Systems, vol. 3, no. 2, pp. 763-773, 1988.

[20] M. A. Bragin, P. B. Luh, J. H. Yan, N. Yu, and G. A. Stern, "Convergence
of the surrogate Lagrangian relaxation method," Journal of Optimization

Theory and applications, vol. 164, no. 1, pp. 173-201, 2015.

Authorized licensed use limited to: UNIVERSITY OF CONNECTICUT. Downloaded on June 27,2020 at 04:04:55 UTC from IEEE Xplore. Restrictions apply.

