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A B S T R A C T

Local energy communities (LECs), as locally and collectively organized multi-energy systems, are expected to
play an important role in energy transition, since they enable deployment of sustainable energy technologies and
consumer engagement, bringing various benefits to the community users and contributing to the overall energy
and climate objectives. An LEC may consist of multiple distributed energy systems (DESs), which, interconnected
through local grid and heating network, can share power and thermal energy with no costs for community's
users. This paper focuses on stochastic daily operation optimization of multiple DESs with renewables in an LEC.
The problem is to find the optimized operation strategies of energy devices in each DES, and decide the amount
of electrical and thermal energy to be shared among DESs with the objective to minimize the total expected net
energy and CO2 emission cost of the LEC, while meeting given day-ahead demand of community's users. The
problem is challenging because of the intermittent and uncertain nature of renewable generation and the cou-
pling of energy devices and energy processes intra and inter DESs. To address these issues, a stochastic mixed-
integer linear programming model is established with uncertain renewable generation modeled by a Markovian
process to avoid the difficulties and drawbacks associated with scenario-based methods. The problem is solved
by using branch-and-cut. Numerical testing results show that the total expected cost of the LEC is reduced by the
integrated management of the DESs as compared to the costs attained under other operation modes where there
are no interconnections among DESs, demonstrating the potential benefits that can be achieved with LECs
through the optimized management of local energy resources aiming to foster efficient use of the available
energy. Results also highlight the benefits of the stochastic approach as compared with the deterministic one.

1. Introduction

The worldwide increasing energy demand and environmental pro-
blems define the compelling need of energy system decentralization and
evolution in the role of final users from passive consumers to active
prosumers who both produce and consume energy [1–3]. The ongoing
energy transition brings new opportunities for distributed renewable
generation integration and deployment, and active involvement of in-
dividual consumers to achieve common goals such as reduction of en-
ergy costs and environmental impacts. As compared to the traditional
centralized energy systems, decentralized local energy systems enable
self-sufficiency and sustainability of the energy supply, and research on
these systems has considerably increased in recent years [4–8]. In such
a context, local energy communities (LECs) play an important role in
the energy transition, since they enable deployment of sustainable

energy technologies and consumer engagement, bringing various ben-
efits to the community users and contributing to the overall energy and
climate objectives [9, 10]. The LEC concept refers to a set of energy
users deciding to make common operation choices in terms of satisfying
their energy needs, in order to maximize the benefits deriving from this
collegial approach, thanks to the implementation of a variety of elec-
tricity and heat technologies and energy storages and the optimized
management of energy flows. As a result of the integrated approach,
LECs are able to fulfil the multi-energy demand of the community users
through the optimized operation of local electricity and heat generation
and storage by exploiting synergies among the various energy carriers.

By representing a locally and collectively organized energy system,
an LEC may consist of multiple distributed energy systems (DESs) in-
terconnected through local grid and heating network to satisfy multi-
energy demand (i.e., electricity and thermal) of the users in the LEC
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[11]. In turn, each DES may consist of different types of electrical and
heat technologies including renewables and storage systems, which
convert and store energy carriers, such as solar energy, gas, electricity,
and thermal energy, to satisfy users’ multi-energy demand [12, 13].
With multiple DESs connected with each other in an LEC, several en-
ergy sources including renewables can be integrated, and waste heat
from power generation can be recovered to satisfy thermal demand of
the entire LEC. This may offer interesting economic and environmental
benefits by fostering local energy sources usage and cross-sector in-
tegration at the local level, thereby supporting the efficient use of the
available energy. Since DESs can share power and thermal energy with
no costs, they are also beneficial to the grid operators since higher self-
consumption levels from prosumers cause less problems for peaking
loads or renewable energy curtailment. To achieve these benefits, the
daily operation of the multiple DESs in the LEC is crucial. The multiple
DESs should be coordinated considering energy cost and environmental
impacts to satisfy local multi-energy demand. The problem is challen-
ging due to the intermittent nature of renewables, and the coupling of
energy devices and energy processes intra and inter DESs. Such chal-
lenges require novel approaches to optimally operate local generation
and storage in the context of multiple DESs while accounting for the
stochastic nature of the problem.

Operation optimization of individual DESs has been widely in-
vestigated in the literature. Most works in the literature focused on
DESs consisting of single technologies as Combined Heat and Power
(CHP) systems coupled with storage units, by considering economic
aspects through minimization of energy costs [14–18]. When con-
sidering energy systems with multiple energy technologies, several
works have been also found addressing operation optimization of

individual DESs by considering economic and environmental objectives
through a deterministic approach [19, 20]. In our previous work
[21–23], operation optimization of individual DESs was investigated
with a deterministic approach, and a multi-objective approach was
developed to take into account economic and environmental aspects.

The assessment of uncertainties in individual DES operation has also
received increasing attention recently. A mixed integer linear pro-
gramming model was developed in [24] for daily operation of a DES
with multiple energy technologies to minimize the daily energy cost.
The problem was solved by using branch-and-cut, which is powerful for
mixed integer linear programming problems, and the impacts of de-
mand and renewable generation uncertainties were analyzed by using
the scenario tree method. A methodology for jointly optimizing the
sizing and power management of PV household-prosumers, namely, PV
power, electric vehicle charging load, household consumption load,
battery bank, and power converters was proposed in [25] through
probabilistic PV power generation modeling. An economic optimization
model for a CHP microgrid system was defined in [26] by considering
the random feature of renewables and loads through the chance con-
strained programming, and an algorithm of particle swarm optimiza-
tion based on stochastic simulation was used to solve the problem. In
[27], a mixed-integer nonlinear model was developed, where genera-
tion uncertainties of wind and photovoltaics (PV) were assessed
through a set of scenarios. The problem was solved by using a meta-
heuristic algorithm. However, selecting an appropriate number of sce-
narios while accounting for model accuracy, solution feasibility, and
computational efficiency is challenging. Moreover, the quality of the
solution obtained by using the metaheuristic algorithm cannot be
quantified.

Nomenclature

APV area of installed PV panels (m2)
C cooling rate (kW)
CarbonTax total expected daily cost of CO2 emissions related to the

carbon tax ($)
COP coefficient of performance
Cost total expected net daily cost ($)
E electric power (kW)
Env environmental impact in terms of CO2 emissions (kg CO2)
G gas volumetric flow rate (Nm3/h)
Gcin carbon intensity of gas (kg CO2/kWh)
H heat rate (kW)
I solar irradiance (kW)
k generation level of the generic technology (kW)
li,j distance from DES i to user j
LHVGas lower heat value of gas (kWh/Nm3)
N total number of PV states
PCTax carbon tax on CO2 emissions ($/kgCO2)
PGas natural gas price ($/Nm3)
PPG, buy time-of-day unit price of buying grid power ($/kWh)
PPG,sell time-of-day unit price of selling power back to the grid

($/kWh)
Pnm state transition matrix
t time (h)
W weather uncertainty
x binary decision variable (on/off state of the device)

Greek symbols

βi, j heat loss factor when transferring heat from DES i to user j
Δt length of the time interval (h)
η efficiency
φ PV state probability

Superscript/Subscripts

AB auxiliary boiler
ABH auxiliary boiler for heating
AChill absorption chiller
Bat battery
BatC battery charging
BatD battery discharging
buy bought from the power grid
dem demand
dev device
ex exhaust gas
Gas natural gas
HP heat pump
HN heating network
i index of DES
ICE internal combustion engine
j index of end-user
m, n indices of PV states
max maximum
min minimum
out output
sell sold back to the power grid
sto stored
TES thermal storage system
th thermal
TOT total

Acronyms

CHP combined heat and power
DES distributed energy system
LEC local energy community
PV photovoltaic
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When also considering the environmental objective in the operation
optimization problem of individual DESs, a stochastic model was es-
tablished in [28] to minimize both energy costs and CO2 emissions,
where renewable generation and demand uncertainties were modeled
by using the scenario method. The resulting stochastic problem was
solved by using a teaching-learning-based optimization algorithm. In
[29], a stochastic model was developed for optimized operation of a
DES considering both economic and environmental objectives. To
model uncertain parameters at both supply and demand sides, a set of
scenarios were generated through the roulette wheel mechanism and
Monte Carlo simulation method. The multi-objective optimization
problem was solved by using branch-and-cut. In [30], renewables un-
certainties where modeled by a Markovian process, and a mixed integer
linear programming model was established to minimize the total energy
and emission cost of a microgrid through optimized operation. Branch-
and-cut method was used to solve the optimization problem.

Some efforts have been also done for addressing the interactions
among multiple microgrids for operation optimization and distributed
control purposes, by mainly focusing on the electrical energy carrier
[31–33]. When considering also the thermal energy carrier, in [34], an
online decentralized and cooperative dispatch algorithm was developed
for multi-microgrids with the aim to minimize the overall cost of the
community. In the configuration under study, the thermal energy car-
rier was considered only within the individual microgrids through the
CHP technology, and only electricity sharing among the multi-micro-
grids was addressed thereby neglecting thermal interactions among the
systems. A similar approach was established in [35], where a co-
operative model predictive control framework was established for
urban districts comprising multiple microgrids sharing certain dis-
tributed energy resources. The operation of the microgrids were opti-
mized through a deterministic approach with the aim to achieve a
common goal such as the minimization of energy exchanged with the
distribution grid and the overall energy costs, and the energy man-
agement problem was solved through model predictive control in
combination with mixed integer linear programming. Environmental
impacts assessments were missing in the aforementioned studies.

In the above literature, the operation optimization problem was
addressed on the one hand by considering individual DESs, and on the
other hand by addressing interactions among multiple DESs from the
electrical point of view and by neglecting environmental aspects. The

possible benefits for both energy costs and emissions deriving from
exploiting synergies among interconnected DESs through electricity
and thermal energy sharing within an LEC were not investigated. Also,
these studies lack a comprehensive and integrated approach for the
optimized daily operation of local electrical and thermal generation and
storage in an LEC by considering the community's users as the only
beneficiaries of this collegial approach established to manage local re-
sources. For a DES, the multiple energy generation, conversion and
storage technologies are lumped, and it is thus not possible to in-
vestigate the benefits and impacts on both costs and emissions of po-
tential synergies among interconnected DESs within an LEC. The ad-
vantage to extend the optimization framework to multiple DESs (each
of them associated to a specific user) lies in the possibility to exploit
synergies among the multiple generation, conversion and storage
sources, and among various energy carriers to minimize costs and
emissions while satisfying the given day-ahead demand of community's
users. In this way, it is possible to increase the flexibility of the entire
system. Indeed, when users cooperate through sharing energy for sa-
tisfying their needs, which is behind the concept of an LEC, more en-
ergy options become feasible at the community level, and both energy
costs and CO2 emissions can be minimized through the optimized op-
eration.

Preliminary results presented in [36], are extended in the present
paper. In detail, in [36], the operation optimization problem for mul-
tiple DESs was addressed through a deterministic approach without
considering the stochastic nature of renewables, which is a key issue for
distributed renewable generation integration and deployment. In this
paper, the goal is to establish a mathematical model for stochastic day-
ahead operation optimization of multiple DESs in an LEC, with the aim
to minimize the expected net energy cost and CO2 emission cost by
considering carbon tax, while satisfying time-varying power, heat and
cooling demands of the users in the LEC. In each DES, several dis-
tributed energy devices are considered, such as PV, CHP, heat pump,
absorption chiller, boiler, battery and thermal energy storage systems.
The DESs are interconnected and can share electricity provided by their
CHPs through the local grid, and thermal energy through the heating
network. The scheme of the LEC under consideration is shown in Fig. 1.

The problem is to decide the daily operation strategies of the energy
devices in each DES and the amount of electrical and thermal energy
shared across DESs with the aim to minimize the total daily cost of the

Fig. 1. Scheme of the LEC under consideration.
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LEC. It is challenging due to the intermittent and uncertain behaviour of
PV generation. In addition, the devices in each DES convert and store
various energy carriers with different efficiencies or environmental
impacts. Therefore, energy devices and energy processes are coupled
within individual DESs, and across DESs because of electricity sharing
through local grid and thermal energy sharing through the heating
network with thermal losses. To overcome such difficulties, a stochastic
mixed integer linear programming model is established with the de-
tailed modeling of energy devices and interactions intra and inter DESs,
while integrating the intermittent and uncertain PV generation through
a Markov-based model to avoid the difficulties and drawbacks asso-
ciated with scenario-based methods. The problem is then solved by
using branch-and-cut.

The main contributions of this paper are summarized as follows:

• A novel linear model is established for stochastic day-ahead opera-
tion optimization of multiple DESs with renewables in an LEC,
considering both economic and environmental aspects and con-
sidering the community's users as the only beneficiary of this col-
legial approach.

• The mathematical formulation established addresses the interac-
tions of the various energy carriers within each DES, e.g., electricity,
gas, thermal energy, as well as the electrical and thermal interac-
tions among the DESs in the LEC, and the uncertain renewable
generation modeled by a Markovian process to avoid the difficulties
and drawbacks associated with scenario-based methods.

• The proposed optimization framework is scalable and flexible for
adaptation to a number of real contexts thanks to the wide variety of
generation, conversion and storage technologies considered and the
general mathematical formulation established. This framework can
thus represent a valid tool to provide support to decision-makers in
understanding the benefits derived by a collegial approach

established to manage local energy resources.

An LEC located in U.S is considered for the case study, where there
are multiple DESs associated with buildings belonging to residential
and commercial sectors. Numerical testing results attained for a winter
day and a summer day demonstrate the effectiveness of the method for
guarantying the economic and environmental sustainability of the LEC.
By comparing four different DES operation modes in the LEC, it is found
that the interconnected DESs have the best economic and environ-
mental performances, whereas when DESs are independent and operate
in the islanded mode, both the economic and the environmental per-
formances dramatically reduce. Moreover, the results highlight that by
accounting for the uncertainties of PV generation through the Markov-
based approach, the total expected daily net energy cost of the LEC
reduces by 43.7-71.1% as compared with that found through the de-
terministic approach.

In the following, the stochastic mixed integer linear programming
model is established for operation optimization of multiple DESs in an
LEC in Section 3. The numerical testing results are presented in
Section 4. Conclusions and outlook are discussed in Section 5.

2. Problem formulation

The detailed energy flows among the multiple DESs in the LEC
under consideration are shown in Fig. 2 below.

The DESs have their own energy devices, and have the possibility to
share power provided by the CHPs via the pre-existing local grid, and
the heat recovered from CHPs via the heating network. Heat losses
within DESs are not considered, whereas heat losses across DESs are
assumed to be a function of the distance of two DESs. The distance
between the DES i and the associated end-user j (i.e., i = j), is assumed
null, whereas the distance among the various DESs is assumed known.

Fig. 2. Energy flows intra and inter DESs in the LEC under consideration.
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For each user: (1) power demand can be met by grid power, CHP, PV
and battery of its own DES, and CHPs in other DESs through the local
grid; (2) heat demand can be met by the CHP, heat pump, boiler, and
thermal storage of its own DES, and CHPs in other DESs via the heating
network; and (3) cooling demand by the absorption chiller, heat pump,
and thermal storage of its own DES. The absorption chiller can be
powered by the thermal energy provided by the boiler and CHP in the
corresponding DES, and by CHPs in other DESs via the heating network.
In addition, DESs can sell the excess power from their CHPs back to the
utility grid.

With the consideration of intermittent and uncertain PV generation,
a stochastic mixed integer linear programming model is established in
this section for the operation optimization problem of the multiple DESs
in the LEC. The constraints for energy devices and energy balance are
discussed in Sections 3.1 and 3.2, respectively. The objective is pre-
sented in Section 3.3, whereas the optimization method that is used to
solve the resulting problem is briefly introduced in Section 3.4.

2.1. Constraints of energy devices

For energy devices, their energy efficiencies are assumed constant
for simplicity. For all the devices except for PV, battery and thermal
storage, there are a set of binary variables x (x is equal to 1 when the
device is on) to present the device on/off status, and a set of continuous
decision variables E (H/C for thermal devices) to represent the gen-
eration level. In DES i, if device dev is on (xidev(t) is 1), its generation
level Eidev(t) has to be within the minimum allowed Ei,dev,min and the
maximum Ei,dev,max, and 0 otherwise, i.e.,

≤ ≤x t E E t x t E( )· ( ) ( )· .i
dev

i
dev

i
dev

i
dev

i
dev,min ,max (1)

For each device, the other constraints are presented below.

2.1.1. Constraints of the auxiliary boiler
To quantify natural gas consumption in the boiler, the volumetric

flow rate Gi
AB(t) is modeled as:

=G t H t η LHV( ) ( )/( · ),i
AB

i
AB

i
AB Gas (2)

where ηi
AB is the efficiency of the boiler, and LHVGas is the natural gas

lower heat value. This amount of heat is subdivided into two parts
(continuous decision variables): one is Hi

ABH(t) to directly meet heat
demand; and the other one is Ci

AB(t) to meet cooling demand by the
absorption chiller:

= +H t H t C t( ) ( ) ( ).i
AB

i
ABH

i
AB (3)

The gas combustion in the boiler causes CO2 emissions, which are
evaluated as EnviAB(t):

=Env t G t LHV G( ) ( )· · ,i
AB

i
AB Gas cin (4)

where Gcin is the carbon intensity of natural gas.

2.1.2. Constraints of the reversible heat pump
The heat pump has two modes to work in order to satisfy heat and

cooling demands in different seasons. To produce heat Hi
HP(t) under the

heat mode, the power consumption EiHP(t) is given by:

=E t H t COP( ) ( )/ ,i
HP

i
HP

i
HP (5)

where COPiHP is the coefficient of performance of the heat pump in the
heat mode. Note that in (5), Hi

HP(t) is a continuous decision variable.
Under the cooling mode, the modeling is similar to the above.

2.1.3. Constraints of the CHP
The internal combustion engine in the CHP system generates power

to meet the power demand, whereas the associated exhaust heat can be
recovered to satisfy the thermal demand [21]. The corresponding
constraints are presented below.

To provide power EiICE(t) (a continuous decision variable), the
natural gas volumetric flow rate Gi

ICE(t) is given by:

=G t E t η LHV( ) ( )/( · ),i
ICE

i
ICE

i
ICE Gas (6)

where ηi
ICE is the electrical efficiency of the CHP.

The recovered heat Hi
ICEex,TOT(t) from the CHP is:

=H t E t η η( ) ( )· / ,i
ICEex TOT

i
ICE

i
ICE th

i
ICE, , (7)

where ηi
ICE,th is the thermal efficiency of the CHP.

Similar to the boiler, the amount of recovered heat is subdivided
into four parts (continuous decision variables): (1) Hi

ICEex(t) to directly
meet heat demand; (2) Ci

ICEex(t) to meet cooling demand by the ab-
sorption chiller; (3) Hi,j

ICEex(t) to share with other DESs for heating
purposes through the heating network; (4) and Ci,j

ICEex(t) to share with
other DESs for cooling purposes through the heating network:

∑+ + + =
≠

H t C t H t C t H t( ) ( ) ( ( ) ( )) ( ).i
ICEex

i
ICEex

j j i
i j
ICEex

i j
ICEex

i
ICEex TOT

:
, ,

,

(8)

The gas combustion in the CHP also causes CO2 emissions, which
are evaluated as EnviICE(t)

=Env t G t LHV G( ) ( )· · .i
ICE

i
ICE Gas cin (9)

2.1.4. Constraints of the absorption chiller
With heat source coming from the boiler, the CHP and the other

DESs, the cooling rate Ci
AChil(t) provided by the absorption chiller is

formulated as:

∑= ⎛

⎝
⎜ + + ⎞

⎠
⎟

≠
C t C t C t C t η COP( ) ( ) ( ) ( )· .i
AChil

i
ICEex

i
AB

j j i
i j
ICEex

i j
HN

i
AChil

:
, ,

(10)

In the above, COPiAChil is the chiller's coefficient of performance, and
ηi,j

HN is the heating network efficiency from DES i to user j. Heat losses
in the heating network are considered to be a function of the distance
among DESs and users. The related efficiency ηi,j

HN is evaluated as
follows:

= −η β l1 · ,i j
HN

i j i j, , , (11)

where βi,j is the heat loss factor when transferring heat from DES i to
user j, and li,j represents the distance from DES i to user j. Note that if
i=j, then lj,i=0, and no heat losses occur.

2.1.5. Constraints of the PV power generation
The ideal PV power generation behaves like a sinusoidal wave

during day time and has zero values for night hours [37, 38]. Amplitude
and frequency of the wave are functions of the size and location of the
PV plant, and seasons. However, PV generation can strongly vary with
weather conditions, e.g., clouds. To overcome the computational efforts
caused by the usage of scenario-based methods, a Markov-based model
is established based on our previous work [30]. Following the real case
studies in [39, 40], it is assumed that weather uncertainties are a
Markovian process with N states (proportional to ideal weather con-
ditions), and state m is denoted as Wm. To balance modeling accuracy
and computation efficiency, the total state number is determined based
on historical data.

By considering historical data, if n was the previous state, then the
probability that m is the current state can be obtained as [41],

=P n m
n

observed transitions from state to
occurrences of state

.nm (12)

By following this approach, the state transition matrix Pnm is ob-
tained. It should be updated by integrating latest weather forecasting.
Also a transition matrix is needed for each season due to the different
seasonal behaviors.

According to the weather conditions modeled above, PV power
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generation Ei,mPV (t) is modeled as follows:

=E t E W( ) .i m
PV

i
PV

m, (13)

In the above, ideal PV generation EiPV is evaluated as [42, 43]:

=E A η I t· ·max( ( )),i
PV

i
PV

i
PV

t (14)

where Ai
PV is the total area of the PV plant; ηiPV is the electrical effi-

ciency; and I(t) is the solar irradiance.
The probability φm(t) that PV generation is Ei,mPV(t) at time t is

derived as the weighted sum of the probabilities of all the states at time
(t - 1), where the weights are different transitions:

∑= −
=

φ t P φ t( ) ( 1).m
n

N

nm n
1 (15)

The probabilities of future time intervals can be derived based on
the initial state and the transition matrix.

2.1.6. Modeling of boilers, heat pumps, CHPs, and chillers based on PV
states

By modeling PV generation as a Markov process, the other devices
in each DES are also modeled as Markov processes correspondingly,
where their states depend on PV states. Therefore, the generation levels
of boilers, heat pumps, CHPs and chillers, and the amount of buying
and selling grid power are all functions of PV states. Take the com-
bustion engine of CHP in DES i as an example. For each PV state m, the
engine has a corresponding generation level Ei,mICE(t). The generation
capacity constraint for the engine is revised as follows:

≤ ≤E E t x t E( ) ( )· .i
ICE

i m
ICE

i
dev

i
ICE,min

,
,max (16)

As compared with Eq. (1), the constraint is applied to every DES
index i, time index t, and PV state index m.

The same is valid for the other devices.

2.1.7. Constraints of the battery
For the battery, the amount of power charging and discharging

depends on PV states. At time t, the state of charge under PV state m is
denoted as Ei,mBat(t). The standard one dimensional system dynamics on
state of charge in the literature is extended to a two dimensional one on
the state of charge and PV states as follows:

= − + −
≤ ∀ ∀ ∈ ≠ ≠

E t E t E t η E t η

E t E t n m m φ t P

( ) ( 1) ( ) ( )/ ,
( ) ( ), , { | ( ) 0, 0},

i m
Bat

i m
Bat

i m
BatC

i
BatC

i m
BatD

i
BatD

i m
BatC

i m
PV

m nm

, , , ,

, , (17)

where ηi
BatC and ηi

BatD are the charging and discharging efficiencies,
respectively. Note that in (17), the amounts of power charging and
discharging the battery are continuous decision variables of the battery.
Also, it is assumed that charging and discharging the battery simulta-
neously is not possible, and the modeling of this constraint is omitted
for brevity.

2.1.8. Constraints of the thermal storage systems
The amount of energy Hi,m

Sto(t) stored in the thermal storage at time
t can be modeled as:

= −
+ − ∀ ∀
∈ ≠ ≠

H t H t η

t H t H t m

n m φ t P

( ) ( 1)·

Δ ( ( ) ( )), ,

{ | ( ) 0, 0},

i m
Sto

i m
Sto

i
TES

i m
TESIn

i m
TESOut

m nm

, ,

, ,

(18)

where ηi
TES is the thermal storage efficiency, and Δt is the length of a

time interval. In (17), the amounts of heat charging Hi,m
TESIn(t) and

discharging Hi,m
TESOut(t) are continuous decision variables of the

thermal storage.
The thermal storage for cooling is modeled in a similar way.

2.2. Energy balance constraints

In order to satisfy the given time-varying user demands, power, heat
and cooling energy balances are established by matching supply and
demand.

2.2.1. Power balance
At each time interval and for each PV state with a nonzero prob-

ability, the summation of power demand Eidem(t), power required by the
heat pump Ei,mHP(t), charging the battery Ei,mBatC(t), sent to the other
DESs Ei,j,m(t), and sold back to the utility grid Ei,msell(t), must be satisfied
by the summation of power from CHP Ei,mICE(t), PV Ei,mPV(t) and battery
Ei,mBatD(t), collected from the other DESs Ej,i,m(t), and bought from the
utility grid Ei,mbuy(t), i.e.,

+ + + + ∑

= + + + + ∑
∑ ≤ ∀ ∈ ≠

≠

≠

≠

E t E t E t E t E t

E t E t E t E t E t

E t E t m m φ t

( ) ( ) ( ) ( ) ( ( ))

( ) ( ) ( ) ( ) ( ( )),

( ( )) ( ), { | ( ) 0}.

i
dem

i m
HP

i m
BatD

i m
sell

j j i i j m

i m
ICE

i m
PV

i m
BatD

i m
buy

j j i j i m

j j i i j m i m
ICE

m

, , , : , ,

, , , , : , ,

: , , , (19)

In the above, Ei,j,m(t), Ei,msell(t), Ej,i,m(t) and Ei,mbuy(t) are continuous
decision variables. Power demand is assumed given.

2.2.2. Heat energy balance
At each time interval and for each PV state with a nonzero prob-

ability, the heat demand Hi
dem(t) must be satisfied by the summation of

the heat from CHP Hi,m
ICEex(t), the boiler Hi,m

AB(t), the thermal storage
Hi,m

TESOut(t) - Hi,m
TESIn(t), and from other DESs, i.e.,

∑
= + + −
+

≠

H t H t H t H t H t

η H t

( ) ( ) ( ) ( ) ( )

· ( ),
i
dem

i m
ICEex

i m
AB

i m
TESOut

i m
TESIn

j j i
HN j i j i m

ICEex

, , , ,

:
, , , ,

∀ ∈ ≠m m φ t{ | ( ) 0}m (20)

The cooling energy balance can be modeled in a similar way.
The entire problem is therefore Markovian.

2.3. Objective

The objective is to minimize the total expected daily cost, con-
sidered as the sum of the expected net energy cost and the expected
emission cost. The expected net energy cost Cost consists of three terms,
i.e., expected costs of buying gas and grid power, and the expected
profit of selling power back to the utility grid, i.e.,
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where PGas is the unit price of gas, and PPG, buy (t) and PPG,sell (t) are the
time-of-day unit prices of buying power from and selling power back to
the utility grid at time t, respectively.

The expected cost of CO2 emissions due to gas combustion in the
boilers and combustion engine of CHPs is quantified through the carbon
tax [44], i.e.,

∑∑∑= +CarbonTax P φ t Env t Env t· ( )( ( ) ( )),CTax

i t m
m i m

AB
i m
ICE

, ,
(22)

where PCTax is the carbon tax on CO2 emissions. Since the carbon tax
related to the grid power is reflected in the price, there is no need to add
it again.

The overall objective to be minimized is thus given by
Cost + CarbonTax.
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2.4. Decision variables

The problem (1-22) established above has linear constraints and
objective function. As for decision variables, it includes: (1) on/off
status and generation levels of every energy device (except for PV,
battery and thermal storage); (2) the amount of thermal energy pro-
vided by the auxiliary boiler to directly meet heat demand and to meet
cooling demand by the absorption chiller; (3) the amount of thermal
energy recovered by CHP to directly meet heat demand, to meet cooling
demand by the absorption chiller, to share with other DESs for heating
purposes through the heating network, and to share with other DESs for
cooling purposes through the heating network; (4) the amount of en-
ergy charged to and discharged from the battery and thermal storage;
(5) the power bought from and sold back to the utility grid; and (6) the
amount of electrical energy provided by CHPs to share with other DESs.

2.5. Solution methodology

The problem (1-22) established above is stochastic and linear, and
involves both integer and continuous variables. Branch-and-cut, a
powerful method for mixed integer linear programming problems, is
thus used to solve the problem. In the method, all integrality require-
ments on integer variables are first relaxed, and the relaxed problem is
solved by using linear programming methods. If all integer decision
variables have integer values, the solution is also optimal to the original
problem. If not, valid cuts that do not cut off feasible integer solutions
are added, trying to obtain the convex hull. If the convex hull is ob-
tained, the problem can be solved by linear programming methods

without combinatorial difficulties. If the convex hull cannot be ob-
tained, the method relies on time-consuming branching operations. The
solution of the relaxed problem provides a lower bound. The method
stops when computational time reaches the pre-set stop time or the
relative mixed-integer programming gap (relative difference between
the objectives of the optimal relaxed solution and current integer so-
lution) falls below the pre-set gap [45].

A detailed flowchart of the optimization problem formulated above
is shown in Fig. 3. In detail, given the input data of the model, such as
structure of the heating network, user multi-energy demand, energy
prices, solar irradiance profiles, carbon intensity and carbon tax, and
technical data of energy devices in the multiple DESs, assigned decision
variables and established problem constraints, the proposed model,
which is stochastic and linear, and involves both integer and continuous
variables, allows to obtain the daily operation strategies of the energy
devices in each DES and the amount of electrical and thermal energy
shared across DESs with the aim to minimize the expected total daily
cost of the LEC.

3. Case study

In this case study, an LEC located in U.S. is considered. In this LEC,
there are multiple DESs associated to a set of users belonging to re-
sidential and commercial sectors, namely midrise apartment, strip mall,
supermarket and a cluster of office buildings. A typical winter day in
January and a typical summer day in July are considered with hourly
time intervals. Input data such as load profiles and energy prices are
described in Section 4.1. The corresponding operation optimization

Fig. 3. Flowchart of the stochastic optimization problem.
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problems are solved by using IBM ILOG CPLEX Optimization Studio V
12.8.0.0 [45] on a PC with 2.90GHz Intel Core(TM) i7 CPU and 16G
RAM. CPLEX is a powerful commercial solver for mixed integer linear
programming problems, and is widely used in power industries. For
both winter and summer days, DES operation strategies are discussed in
Section 4.2, by considering different operation modes. Results and in-
sights for one DES are presented in Section 4.3. In Section 4.4, results
obtained by the deterministic approach in both winter and summer
days are compared with those obtained with the stochastic approach.

3.1. Model input data

To run the optimization model, the needed input data consists of the
structure of the heating network, the hourly energy demand, the energy
prices, the hourly values for solar irradiance, the carbon intensity and
tax, and the technical data of the energy devices in the DESs.

3.1.1. Structure of heating network
For easy presentation, denote the DESs for super market, strip mall,

small office, and midrise apartment as DES1, DES2, DES3 and DES 4,
respectively. The heating network is assumed to be a one directional
rectangle (i.e., lj,i ≠ li,j). The distances from DES1 to DES2, from DES2
to DES3, and from DES3 to DES4 are assumed as 50, 100, 50, and 100
(meters), respectively. Moreover, according to [46], the heat loss factor
is assumed equal to 4 × 10−5.

3.1.2. Energy demand profiles
The profiles of hourly energy demand for the typical winter and

summer days in January and July are defined based on [47]. For il-
lustration purposes, the hourly demand profiles of the four end-users in
the winter day are shown in Fig. 4a and b for electricity and heat, re-
spectively.

3.1.3. Energy prices
The time-of-day electricity price from the utility grid and the natural

gas price are chosen based on the current U.S. market. For grid power,
the unit price ($/kWh) is obtained based on EverSource tariff Rate 7
(residential) and 27 (commercial) [48] with simplifications. This unit
price does not take into account the demand charge, and the price is
assumed to be 2.5 times of the summation of the remaining charges.
Also, the monthly customer charge on distribution service is evenly
distributed to each day in the month. The price for selling the excess
power back to the utility grid is assumed to be equal to 48% of the
corresponding buying price of grid power. For natural gas unit price
($/Nm3), reference is made to the data published by Energy Informa-
tion Administration [49]. For simplicity, the above prices are assumed

the same for the winter and summer cases.

3.1.4. Data on solar irradiance
The solar irradiance hourly profiles are built up based on meteor-

ological data [50]. To define a representative winter day in January, the
hourly solar irradiance profile is calculated by averaging the hourly
solar irradiance of all days in the month. The hourly solar irradiance
profile for the summer day in July is built up in the same way. To
evaluate power generation from PV, for each season, a 10-state tran-
sition matrix is considered as shown below [37].
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3.1.5. Carbon intensity and carbon tax
For natural gas, its carbon intensity is assumed as 0.202 kg/kWh.

The carbon tax in 2015 [44] is considered.

3.1.6. Technical data of energy devices in the DESs
The technical data of energy devices in the four DESs are presented

in Table 1.

Fig. 4. (a) Hourly profiles for electricity demand in the winter day. (b) Hourly profiles for heat demand in the winter day.
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3.2. Comparison of different operation modes of the DESs in the LEC
through stochastic approach

Four operation modes for the multiple DESs in the LEC are analyzed
as described below:

• Case a: The base case where the multiple DESs can share electricity
and thermal energy. They operate in the grid-connected mode and
can sell excess electricity back to the utility grid.

• Case b: The multiple DESs are independent energy systems, and do
not share electricity and thermal energy. They operate in the grid-
connected mode and can sell excess electricity back to the utility
grid individually.

• Case c: The multiple DESs can share electricity and thermal energy.
They operate in the islanded mode and cannot sell excess electricity
back to the utility grid.

• Case d: The multiple DESs are independent energy systems (do not
share energy) and operate in the islanded mode.

The results obtained with the stochastic approach are presented
below for the winter and summer days.

3.2.1. Optimization results for the LEC in the winter day
The operation optimization problems are solved by using CPLEX,

and it takes 5 to 8 seconds. In the winter case, there are 672 binary
decision variables and 28,800 continuous decision variables. In total
there are 92,404 constraints. The summer case has similar numbers of
decision variables and constraints.

The expected values of the total net energy costs with the various
terms of the objective function are shown in Table 2 for the four cases in
the winter day.

It can be seen that the operation mode in the base case (case a)
allows to achieve the lower total expected energy cost as compared
with other cases. For case b, when the DESs are independent energy
systems, the total expected net energy cost increases by 2.0% and the
expected revenue of selling electricity back to the grid significantly
decreases by 97.9%. By exploiting synergies among the DESs in the LEC
through sharing electrical and thermal energy, much more electricity
can be sold back to the utility grid, resulting in much reduced total
expected net cost through increasing the revenue term. This result is
consistent with those presented in [35], where in the operation opti-
mization of the multiple microgrids with the aim to minimize the
overall energy costs, it was found that the energy cooperation among
microgrids has significant economic benefits with respect to the non-
cooperative operation strategy. This is due to the fact that fully inter-
connected microgrids allow that energy surplus in one microgrid can be
utilized to compensate for energy deficit in another microgrid, thereby
optimizing the use of available local energy resources. Under the is-
landed mode, the performances of the LEC under case c get further
worse, and the expected net energy cost increases by 12.2%. Case d

shows the poorest performances with a cost increase of 14.6% as
compared to base case a, because there is no possibility to share energy
among DESs and to sell excess electricity to the utility grid.

To compare the four operation modes in the winter day, Fig. 5
shows the expected values of: 1) the total electrical load; (2) the total
grid power bought from the utility grid; (3) the total electricity sold
back to the utility grid, kept for DES for self-use and shared across DESs
(from all CHPs); (4) the total electricity generated by all PV systems;
and (5) the total electricity discharged by all batteries. Note that for
each DES, the total electricity load is equal to the summation of the
demand and the electricity consumed by the heat pumps in the multiple
DES. For base case a, it can be seen that the amount of electricity sold
back to the utility grid is larger than case b, and this allows to increase
the revenue. In these two cases, the total electrical load is almost the
same, and electricity from PVs and batteries is also the same. Also, the
increase of usage of electricity bought from the utility grid is lower than
the increase of the electricity generated by CHPs in case a comparing
with case b. The reason is that DESs can share electricity, thereby al-
lowing to reduce the total expected net energy cost of the LEC. For cases
c and d with DESs operating in the islanded mode, it can be seen that
the total electrical load reduces as compared with that found in cases a
and b with DESs operating in the grid-connected mode. This is due to
the lower usage of heat pumps to meet the heat demand. This result
highlights that the total electrical load varies as a function of the
available sources at supply side, since in both cases c and d, the power
supply is limited in the absence of connection to the grid. In fact, in
these cases, only CHPs are used to satisfy the electrical demand of the
LEC beyond PV systems and batteries. Under the islanded mode, DESs
cannot take advantage of low prices grid power in certain hours. This
explains the worsening of performances of the LEC in cases c and d as
compared to those found in cases a and b. Another interesting result is
that in case c, the electricity shared across DESs from all CHPs is
maximum in order to satisfy the community's user demand in the ab-
sence of grid power. Conversely, in case d, the electricity for self-use in
each DES is maximum in order to satisfy the electricity demand of the
corresponding user in the absence of grid power and energy shared
from other DESs.

Fig. 6 shows the expected optimized operation strategies of the
various DESs in the LEC for heat under the four operation modes. In
case a, because of sharing of electricity and thermal energy across DESs
and using of the grid power for heat pumps, the amount of self-used
thermal energy in the LEC is lower than that found in the other three
cases. In case b, when DESs do not share energy, the self-used thermal
energy increases, resulting in a larger usage of thermal storage. When
DESs operate in the islanded mode, heat pumps generate much less
thermal energy for case d comparing with cases a and b, and case c has
null thermal energy from heat pumps. This also explains the increase in
the total expected daily energy cost. In fact, the heat pumps represent a
convenient technology for economic purposes thanks to their high en-
ergy conversion efficiency. In case d, without energy sharing among
DESs, the self-used thermal energy of the LEC is the largest among the
four cases, since there is no possibility to use thermal energy from other
DESs to satisfy the heat demand.

To analyze the amount of self-used and shared thermal energy, the
total daily amount of thermal energy among the DESs and the end users
under case a are reported in Table 3 below.

Table 1
Technical data of energy devices in the four DESs.

Size (kW) – (kWh) Efficiency
DES1 DES2 DES3 DES4 DES1 DES2 DES3 DES4

Auxiliary boiler 160 65 60 40 0.90 0.9 0.9 0.9
PV panels: m2 1600 590 1370 430 0.14 0.1 0.1 0.1
Heat pump 430 175 170 60 3.5 3.5 3.5 3.5
CHP (Power)

(Heat)
425 155 355 115 0.34 0.3 0.3 0.3

0.48 0.5 0.5 0.5
Battery (Charge)

(Discharge)
200 50 180 30 0.9 0.9 0.9 0.9

0.9 0.9 0.9 0.9
Thermal storage

systems
400 200 300 100 0.9 0.9 0.9 0.9

Table 2
Expected costs for the different DES operation modes in the winter day.

Case Total expected net
energy cost ($)

Expected
energy cost ($)

Expected
carbon Tax ($)

Expected
revenue ($)

Case a 2037.26 2145.98 74.96 183.69
Case b 2078.14 2011.31 70.67 3.84
Case c 2285.42 2216.02 69.40 0.00
Case d 2333.91 2263.06 70.85 0.00
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For case a, the supermarket receives the largest share of thermal
energy from all DESs in the LEC, as it has the largest thermal demand.
Most of this thermal energy is made available by DES4 associated to the
mid-rise apartment. This is due to the large usage of CHP for selling
electricity back to the utility grid for increasing the associated revenues,
with consequent large amount of thermal energy recovered to be
shared. This allows to reduce the total expected net cost.

3.2.2. Optimization results for the LEC in the summer day
The expected values of the total net energy costs, with the various

terms of the objective function are shown in Table 4 for the four cases in
in the summer day.

Similar to what is found in the winter case, the lowest total expected
energy cost is achieved in case a. In case b, the total expected net energy
cost increases by 1.6% as compared to case a, and the revenue of selling
electricity back to the grid decreases by 37.8%. For case c, the expected
net energy cost increases by 14.0% as compared to case a. Similar to the
winter day, case d presents the poorest performances among the four

cases also in the summer day, with the total expected net cost increased
by 15.3% as compared to case a.

To compare the four operation modes in the summer day, Fig. 7
shows the expected values of: (1) the total electrical load; (2) the total
grid power bought from the utility grid; (3) the total electricity sold to
the utility grid, kept for DES self-use and shared across DESs (from all
CHPs); (4) the total electricity generated by all PV systems; and (5) the
total electricity discharged by all batteries.

The operation strategies are similar to those presented for the winter
case. For base case a, the electricity sold back to the utility grid is larger
than that in case b. In these two cases, the total electrical load is almost
the same, and the electricity provided from PVs and batteries is also the
same. Also, the increase of usage of electricity bought from the utility
grid is lower than the increase of the electricity generated by CHPs in
case a comparing with case b. For cases c and d with DESs operating in
the islanded mode, the total electrical load is lower than that found in
cases a and b with DESs operating in the grid-connected mode, due to
the lower usage of heat pumps for cooling purposes. In addition, case d
has the largest self-used electricity. In fact, in this case, only CHPs are
used to satisfy the electrical load beyond PV systems and batteries.

Fig. 8 shows the expected optimized operation strategies of the
various DESs for cooling under the four cases in the summer day. It can
be noted that, for case b, without sharing energy among DESs, the usage
of heat pump for cooling purposes is the largest among the four cases.
Instead, for cases c and d with DESs operating in the islanded mode,
heat pumps generate much less thermal energy for cooling comparing
to cases a and b. In addition, for case d, without energy shared across
DESs, much more thermal energy from CHP is used to run the ab-
sorption chiller for cooling.

3.3. Expected optimized operation strategies of one DES

For the illustration purposes, the expected optimized operation
strategies of the CHP in DES2 associated with the strip mall are dis-
cussed in the following in the winter and summer days considering the
base case (case a), which shows the best economic and environmental
performances.

3.3.1. Expected DES2 optimized operation strategies in the winter day
In the winter day, electricity balance, and the expected CHP opti-

mized operation strategies of DES2 under case a are shown in Fig. 9a
and b, respectively. Results for the other DESs in the LEC are similar.

As shown in Fig. 9a, the grid power is mainly used in hours char-
acterized by low grid prices, e.g., from hours 1 to 12, and from hours 22
to 24. This operation strategy actually allows to reduce the energy cost
in DES2. Instead, when the grid price is high as occurs from hours 13 to
21, the battery and the electricity collected from the other DESs in the
LEC are used to satisfy the demand. In Fig. 9b, it can be seen that the
power from the CHP is all self-used within the LEC, and there is no extra
power sold back to the utility grid.

The heat energy balance is shown in Fig. 10. At hour 7, the thermal
storage is charged by the CHP, and then the energy in the storage is
used to meet the heat demand at peak hours. The heat pump powered
by grid power is used from hours 7 to 12, in correspondence of low grid
prices. Instead, for the rest of the day, the heat demand is completely
met by the thermal energy collected from the other DESs in the LEC.

Fig. 5. Expected optimized operation strategies of the various DESs in the LEC
for electricity under the four cases in the winter day.

Fig. 6. Expected optimized operation strategies of the various DESs in the LEC
for heat under the four cases in the winter day.

Table 3
Daily thermal energy shared among DESs and users for case a in the winter day
(kWh).

From DES To User DES1 DES2 DES3 DES4

Case a
1. Supermarket Self-use 2.8 139.87 1061.79
2. Strip mall 24.52 Self-use 828.16 2.69
3. Office building 75.56 33.64 Self-use 1.57
4. Mid-rise apartment 263.36 85.15 88.56 Self-use

Table 4
Expected costs for the different DES operation modes in the summer day.

Case Total expected net
energy cost ($)

Expected
energy cost ($)

Expected
carbon Tax ($)

Expected
revenue ($)

Case a 1047.58 1096.58 38.90 87.90
Case b 1064.10 1080.99 37.82 54.71
Case c 1194.01 1157.75 36.26 0
Case d 1207.93 1171.25 36.68 0
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This result is consistent with those reported in Table 3.

3.3.2. Expected DES2 optimized operation strategies in the summer day
For the summer day, electricity balance, and the expected CHP

optimized operation strategies of DES2 under case a are shown in
Fig. 11a and b, respectively. Results for other DESs in the LEC are si-
milar.

As shown in Fig. 11a, similar to what occurs in the winter day, also

in the summer day, the grid power is mainly used when the grid price is
low, namely from hours 1 to 12, and from hours 23 to 24. From hours
13 to 22 when the grid price is high, the demand is mostly satisfied by
the PV, battery and electricity from other DESs in the LEC. In Fig. 11b, it
can be seen that the power from the CHP is all self-used within the LEC,
and there is no extra power sold back to the grid.

Finally, Fig. 12 shows the cooling energy balance in DES2. It can be
seen that most of the demand is covered by the absorption chiller and
heat pump. Only at hours 6 and 8, the demand is also covered by the
thermal storage.

3.4. Comparison of deterministic and stochastic results

To demonstrate the benefits of considering uncertainties through
the Markovian-based stochastic approach, the problem is also solved by
using the deterministic approach for the winter and summer days,
where the expected PV generation is considered. The total expected net
energy costs, and the various terms of the objective function for the
base case a obtained by using the stochastic and deterministic ap-
proaches in the winter and summer days are shown in Table 5 below.

For the winter day, the total expected net energy cost obtained by
using the stochastic approach is reduced by 43.7% as compared with
that found by using the deterministic approach as the uncertainties of
PV power generation are better explored, and the expected energy cost
and carbon tax are also reduced. For the summer day, the cost reduction
on the total expected net energy cost is as much as 71.1%, as the PV
power generation is higher in summer. These results highlight the
benefits of the stochastic approach as compared with the deterministic

Fig. 7. Expected optimized operation strategies of the various DESs in the LEC
for electricity under the four cases in the summer day.

Fig. 8. Expected optimized operation strategies of the various DESs in the LEC
for cooling under the four cases in the summer day.

Fig. 9. (a) Expected electricity balance in DES2 in the winter day. (b) Expected CHP optimized operation strategies of DES2 for electricity in the winter day.

Fig. 10. Expected heat energy balance in DES2 in the winter day.
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one, and are consistent with those presented in [51], where comparison
was made between the deterministic and stochastic approaches applied
to a multi-objective optimization problem for the operation of a DES by
considering economic and environmental objectives. It was found that
the daily energy cost and CO2 emissions obtained under the stochastic
approach were lower than those obtained under the deterministic one
at all points of the Pareto frontier.

To demonstrate the effectiveness of the Markovian-based stochastic
approach, four more winter cases are considered by varying the load,
with a load scale factor that is randomly generated for each hour, each
load type, and each end-user. Four instances are created with load scale
factors falling in: (a) [1, 1.1]; (b) [1, 1.2]; (c) [0.9, 1]; and (d) [0.8, 1].
The total expected net energy costs, and the various terms of the ob-
jective function for the base case a obtained by using the stochastic and
deterministic approaches in the winter day are shown in Fig. 13 below.

With the same load scale factors, another four instances are created
for the summer day. The results are presented in Fig. 14 below.

For the winter day, the total expected net energy costs obtained by
using the stochastic approach are reduced by 44.7% - 45.3% as com-
pared with those found by using the deterministic approach, and the
expected energy cost and carbon tax are also reduced. For the summer

day, the cost reduction on the total expected net energy cost is much
higher in the range 70.0% - 70.6%. These results highlight the effec-
tiveness of performance of the Markovian-based stochastic approach.

In terms of computational efficiency, it takes 5 to 8 seconds to solve
the problem by using the stochastic approach, while it takes about 1
second by using the deterministic one. When the number of PV states
increases, the computational time may increase correspondingly.

4. Conclusions

An LEC refers to a set of energy users deciding to make common
choices in terms of satisfying their energy needs, in order to maximize
the benefits deriving from this collegial approach, thanks to the im-
plementation of a variety of electricity and heat technologies and en-
ergy storage and the optimized management of energy flows. An LEC
may consist of multiple DESs interconnected through local grid and
heating network to satisfy multi-energy demand of the community's
users. The contribution of this paper is to present a mathematical model
for day-ahead operation optimization of multiple DESs with renewables
in an LEC and a Markovian-based stochastic approach is proposed to
take into account renewables uncertainties. The problem is to decide
the operation strategies of energy devices in each DES, as well as the
amount of electrical and thermal energy shared across DESs with the
aim to minimize the expected net daily energy cost and CO2 emission
cost, while also satisfying the community multi-energy demand. A
stochastic mixed-integer linear programming model is established with
uncertain PV generation modeled by a Markovian process to avoid the
difficulties and drawbacks associated with scenario-based methods. The
problem is solved by using branch-and-cut. One of the strength points of
the proposed optimization framework is scalability and flexibility for
coordination of an arbitrary number of DESs and adaptation to a
number of real contexts thanks to the wide variety of generation,
conversion and storage technologies considered and the general
mathematical formulation established. To show the effectiveness of the
optimization model and the solution methodology, an LEC located in
U.S. consisting of four DESs associated to buildings belonging to

Fig. 11. (a) Expected electricity balance in DES2 in the summer day. (b) Expected CHP optimized operation strategies of DES2 for electricity in the summer day.

Fig. 12. Expected cooling energy balance in DES2 in the summer day.

Table 5
Daily costs obtained with the deterministic and stochastic (expected cost) approaches for the winter and summer cases.

Day Approach Total (expected) net energy cost ($) (Expected) Energy cost ($) (Expected) Carbon tax ($) (Expected) Revenue ($)

Winter Stochastic 2053.98 2053.15 72.17 71.34
Deterministic 3623.37 3816.93 131.76 325.32

Summer Stochastic 1056.73 1054.41 37.51 35.19
Deterministic 3627.13 3908.23 136.22 417.32
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commercial and residential sectors is considered in the case study.
Numerical results demonstrate that the method proposed is efficient to
guarantee the economic and environmental sustainability of the LEC.
Indeed, both in the winter and summer cases analyzed, the total ex-
pected net energy cost of the LEC is reduced through the integrated
management of the interconnected DESs. In detail, by comparing dif-
ferent DES operation modes in the LEC, it is found that the inter-
connected DESs operating in grid-connected mode have the best eco-
nomic and environmental performances among the four operation
modes, showing the lowest expected net energy cost as compared with
the other cases. Conversely, the DESs operated without sharing energy
and in islanded mode show the poorest performances with cost increase
of 14.6%-15.3% as compared with the best case. What is more, the
results highlight that, through exploring uncertainties of PV generation,
the stochastic approach is more efficient than the deterministic one to
optimize economic and environmental performances of the LEC. In the
winter and summer cases analyzed, the total expected net energy cost
obtained by using the stochastic approach is reduced by 43.7-71.1% as
compared with those found through the deterministic approach, since

the energy cost and carbon tax reduce. The results demonstrate the
potential benefits that can be achieved in LEC through the optimized
and integrated management of local energy resources aiming to foster
efficient use of the available energy. The eight testing instances with
randomly generated load scale factors also demonstrate the effective-
ness and computational efficiency of the approach. In future work, the
peer-to-peer energy trading, as a key aspect in the energy sharing of
LECs, will be investigated through the modeling of the features of local
trading in a local electricity market.
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