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Abstract—Unit Commitment is usually formulated as a Mixed 

Binary Linear Programming (MBLP) problem. When considering 

a large number of units, state-of-the-art methods such as branch-

and-cut may experience difficulties. To address this, an important 

but much overlooked direction is formulation transformation 

since if the problem constraints can be transformed to directly 

delineate the convex hull in the data pre-processing stage, then a 

solution can be obtained by using linear programming methods 

without combinatorial difficulties. In the literature, a few 

tightened formulations for single units with constant ramp rates 

were reported without presenting how they were derived. In this 

paper, a systematic approach is developed to tighten formulations 

in the data pre-processing stage. The idea is to derive vertices of 

the convex hull without binary requirements. From them, vertices 

of the original convex hull can be innovatively obtained. These 

vertices are converted to tightened constraints, which are then 

parameterized based on unit parameters for general use, 

tremendously reducing online computational requirements. By 

analyzing short-time horizons, e.g., two or three hours, tightened 

formulations for single units with constant and generation-

dependent ramp rates are obtained, beyond what is in the 

literature. Results based on the IEEE 118-bus and Polish 2383-bus 

systems demonstrate computational efficiency and solution 

quality benefits of formulation tightening. The approach is general 

and has great potential for tightening complicated MBLP 

problems in power systems and beyond.  

 

Index Terms—Unit commitment, mixed binary linear 

programming, branch-and-cut, formulation tightening.1 

I.  INTRODUCTION 

nit Commitment (UC) is an important problem faced by 

independent system operators.  The problem is to 

minimize the total commitment and dispatch cost by 

committing appropriate units while satisfying demand and 

other constraints [1].  It is usually formulated as a Mixed Binary 

Linear Programming (MBLP, with binary and continuous 

variables and a linear structure) problem, and is believed to be 

NP hard.  To solve such problems, industrial state-of-the-

practice is to use commercial solvers that are mostly based on 

branch-and-cut combined with heuristics.  In the method, all 

integrality requirements on binary variables are first relaxed, 

and the Linear Programming (LP) relaxation problem is solved 

by using LP methods.  If all binary variables have binary values, 

the solution is optimal to the original problem.  If not, valid cuts 
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are added, trying to obtain the convex hull (the smallest convex 

set that contains all feasible solutions [2]) of the original 

problem.  If successful, the problem can be solved by using LP 

without combinatorial difficulties.  If not, the method relies on 

time-consuming branching operations.  In the solvers, cuts are 

performed online by using existing types of cuts, and most of 

them are data dependent.  Since the cuts have coefficients in 

numerical values and cannot be reused, the solvers generate 

cuts again when solving the problem with other data sets.  For 

problems with a large number of units or complicated units such 

as combined cycle units with generation dependent ramp rates, 

the commercial solvers may experience difficulties.  

To obtain UC solutions with quantifiable quality fast, most 

researchers focus on solution methodologies.  An important but 

much overlooked direction is formulation transformation since 

if problem constraints can be transformed to directly delineate 

the convex hull (i.e., the formulation is “tight”) in the data pre-

processing stage, then a solution can be obtained by using LP 

methods without combinatorial difficulties [3].  With resulting 

constraints reused for other data sets, online computational 

requirements are tremendously reduced.  However, this 

formulation tightening process is fundamentally difficult.  

Given a problem formulation, it is difficult to obtain the convex 

hull, and there are no systematic ways to transform constraints.  

In the literature, a few tightened formulations for single units 

with constant ramp rates established in the data pre-processing 

stage were reported without presenting how they were derived 

as reviewed in Section II.  They were shown computationally 

efficient for overall UC problems.  Single-unit formulations 

were also tightened online in the problem solving process with 

expensive computations based on optimal LP solutions.   

In this paper, a systematic approach is developed to tighten 

formulations in the data pre-processing stage.  Our idea is first 

to apply existing cuts that are relevant, data independent and 

easily implementable based on constraint characteristics in 

Section III.  More importantly, tightened constraints are 

established based on novel integration of “constraint-and-

vertex conversion,” “vertex elimination” and 

“parameterization” in four steps in Section IV.  For a unit with 

given parameters (e.g., minimum/maximum generation levels 

and ramp rate) in numerical values, the first step is to relax 

integrality requirements, and generate vertices from 

constraints.  The second step is to eliminate vertices with 
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fractional values for binary variables.  The remaining vertices 

will be proved to be vertices of the convex hull to the original 

MBLP problem.  They are converted back to tight constraints 

in the third step.  To make tight constraints reusable, our idea is 

to covert numerical coefficients to unit parameters in the last 

step.  This parameterization process is done through analyzing 

constraints and relationships between numerical coefficients 

and unit parameters, and then verified by checking constraint 

physical meanings.  For practical applications, our idea is to 

obtain “near-tight” formulations by analyzing short-time 

horizons, e.g., two and three hours.  With units categorized by 

how long it takes to reach from the minimum generation level 

to the maximum, tightened constraints are developed for each 

category and a look-up table is established.  Then for each unit, 

tightened constraints can be identified through table lookup 

based on unit parameters in the data pre-processing stage. 

In Section V, three examples are presented.  The first is to 

obtain tight formulations for a three-hour problem for units with 

constant ramp rates and a one-hour problem for units with 

generation dependent ramp rates, to discuss unit categories, and 

to demonstrate tightness.  Resulting tightened constraints are 

beyond what is in the literature.  The second IEEE 118-bus 

problem is to show impacts of tightening units with generation 

dependent ramp rates.  The last Polish 2383-bus problem is to 

demonstrate performance of tightening units with constant 

ramp rates.  Results demonstrate great potential for tightening 

complicated MBLP problems in power systems and beyond.  

II.  LITERATURE REVIEW 

In the literature, most studies focused on single units 

without system-level constraints in view of complexity.  For 

single units, there are mainly three types of formulations: 1-

binary (1-bin) for unit on/off, 2-binary (2-bin) for on/off and 

start-up, and 3-binary (3-bin) for on/off, start-up and shut-

down.  Based on these formulations, tightening was performed 

in the data pre-processing stage or online as reviewed below.   

Pre-process.  In [4 - 7], new cuts were developed based on 

restrictions on binary variables to tighten formulations on top 

of the original constraints.  As developing new cuts is not the 

focus of this paper, it is not elaborated.  In terms of rewriting 

constraints, a 1-bin formulation with start-up/shut-down and 

minimum (min) up/down time constraints was considered in 

[8].  New start-up/shut-down constraints were presented based 

on a 7-hour problem.  It was proved that constraints directly 

delineate the convex hull.  With commercial solvers, testing 

results of 20-32 unit UC problems showed that computational 

time was significantly reduced as compared to that in [9].  

Based on a 3-bin formulation, a new set of tightened ramp rate  

constraints for the first- and last-operation hour was reported in 

[3].  Results of 5-unit problems showed that computational time 

was significantly reduced as compared to those in [10, 11].   

With more constraints, short periods were considered.  

Based on a 3-bin formulation with capacity, ramp rate , and min 

up/down time constraints, new ramp rate  constraints for a two-

hour problem were presented [12].  The single-unit formulation 

is tight when unit parameters satisfy certain conditions.  Similar 

ramp rate  and min up/down time constraints were reported for 

a three-hour problem in [13].  Based on a 2-bin formulation, 

combined ramp rate and min up/down time constraints were 

presented for two/three-hour problems under various parameter 

conditions in [14].  In [12 - 14], under specific assumptions on 

unit parameters, formulations were proved tight for problems 

with short-periods, and were shown computationally efficient 

by using branch-and-cut for overall UC problems.   

The above tightened formulations were presented without 

explaining how they were obtained.  Built on [14], assuming a 

unit is off for certain time, a tight single-unit formulation was 

derived by dynamic programming to max profits [15], without 

numerical results.  When using branch-and-cut, however, there 

are no prices and assumptions on units may not be easy to drop.   

Ramp rates were constants in the above.  For generation-

dependent ramp rates, they were modeled as converted ramp 

time curves in [16], while performance decreases drastically as 

problem sizes increase.  In our previous work, ramp and reserve 

capability functions were established, and the formulation was 

improved by convex hull analysis [17].  Results by branch-and-

cut show improved performance as compared to [16].  Results 

by a decomposition and coordination approach show much 

reduced branching time as compared with branch-and-cut.  A 

few preliminary tightened constraints for units with constant 

ramp rates were presented in [18], without numerical results.   

Tightening of reserve and generation dependent ramp rates 

was rarely discussed in the literature.  To the best of our 

knowledge, there is no systematic approach in data pre-process.   

Online.  In [19], with a 3-bin formulation, a LP relaxation 

problem was solved first.  Then cuts were generated as a 

callback for individual units based on the LP solution if it is 

infeasible to the unit.  These cuts were given to the solver, and 

the original problem was solved with cuts.  Results on 900-unit 

UC problems showed that computational time was reduced by 

19% on average.  For online tightening, cuts obtained for one 

unit cannot be reused for other units, and online computations 

are expensive as compared to tightening in data pre-process. 

III.  SINGLE-UNIT FORMULATION AND EXISTING CUTS  

Assuming system-level constraints are relaxed, a single-unit 

UC problem is formulated in Subsection A.  Then existing cuts 

are applied in Subsection B.   

A.  Formulate single-unit UC problems [1] 

For a unit, the main decision variables at each time t include 

binary commitment decisions on/off x and startup u, and 

continuous dispatch decision p.  For illustration purposes, a 2-

bin formulation is adopted in this paper (performance of this 2-

bin and a 3-bin formulation in the literature will be compared 

later in Section V).  With different values of x and u, the unit 

has four statuses at each t, i.e., on, off, start-up and shut-down.  

Corresponding initial conditions include x(0), u(0) and p(0).  

Constraints are generation capacity, offer price block, ramp rate, 

start-up, minimum up/down time, and reserve.   

1) Generation capacity  

When a unit is online, generation level p should be within 

its minimum Pmin (MW) and maximum Pmax (MW); otherwise, 

p is zero, i.e.,  
min max( ) ( ) ( ) , .x t P p t x t P t               (1) 

2) Offer price block  

Generation cost is usually a piecewise function of p.  To 

maintain linearity, a few offer blocks are considered with 

constant prices in each block (assume prices are monotonically 
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non-decreasing).  For individual blocks, a new continuous 

decision variable pb(t) is needed, and their sum equals p(t), i.e.,  
max( ) , , ; ( ) ( ), ,

b b b
b

p t P b t p t p t t            (2-3) 

where Pmax
b (MW) is the maximum generation of block b. 

3) Ramp rate  

Ramp rate constraints require that the change of generation 

levels between two consecutive time periods cannot exceed 

ramp rate R (MW/hour).  If the unit cannot reach Pmax in one 

hour, it is assumed that p cannot exceed Pmin plus 30-minute 

ramp upon starting up or at shutting down following the 

standard industrial practice, i.e., Pmin + R/2 ≤ Pmax.  Ramp rate 

constraints are formulated in a linear way below, 
min( ) ( 1) ( 1) ( / 2)( ( ) ( 1)), ,p t p t Rx t P R x t x t t          (4) 

min( 1) ( ) ( ) ( / 2)( ( 1) ( )), .p t p t Rx t P R x t x t t               (5) 

When Pmin + R/2 > Pmax, the above constraints are not needed.  

For units with generation dependent ramp rates, ramp 

capability functions in [17] are used here.  Consider a unit: 

when 0  p  P1, ramp is R1 (P1 > R1); and when P1 < p  P2, 

ramp is R2 (P2 > R2).  When p approaching P1 from the left, 

ramp capability reduces and reaches R2 when p = P1.  The break 

point is P3 = P1 - R1, before which point the ramp capability is 

R1.  Similarly, the other break point is P4 = P2 - R2.  The ramp-

up capability curve is shown in Fig. 1, specifying ramp R that a 

unit can provide in one hour given p.  If a ramp rate block is 

large, it corresponds two capability blocks as shown in Fig. 1.   
 

 
Figure. 1. Ramp-up capability curve  

 

The above curve is a piecewise linear function, and can be 

represented by SOS2 [17].  With a set of binary SOS2 variables 

Up(t) and a set of continuous nonnegative weight variables 

Up(t), ramp-up capability function RUp(t) is represented below,  

1 1 1 2 2 3 2 4 5
( ) ( ) ( ) ( ) ( ) 0 ( ),Up Up Up Up Up UpR t R t R t R t R t t          

1 3 2 1 3 4 4 2 5
( ) 0 ( ) ( ) ( ) ( ) ( ),Up Up Up Up Upp t t P t P t P t P t          

( ) ( ),0 ( ) 1, ( ) {0,1},1 5,Up Up Up Up

m m m m
t t t t m          

( ) 1, ( ) 2.Up Up

m m
m m

t t               (6) 

Non-zero m
Up(t) must be consecutive in the ordering, and these 

standard constraints are omitted.  Ramp-down RDown(t) is 

modeled in a similar way.  Then replace the first R in Eq. (4) 

and (5) is replaced by RUp(p) and RDown(p), respectively, and 

replace the second R by R1.  Products of binary and continuous 

variables are linearized by the standard big M method.  

As ramp up/down functions are derived from ramp rates 

(large blocks), they are related: if R is at the 1st (2nd) block, ramp 

up/down must be at their 1st or 2nd (3rd or 4th) block [17], i.e., 

2 2 4 4
( ) ( ), ( ) ( ).Up Down Up Downt t t t             (7-8) 

Further relations among Up can be derived as follows [17],  

2 4 1 3 5
( ) ( ) 1, ( ) ( ) ( ) 1.Up Up Up Up Upt t t t t              (9-10) 

The model can be extended to ramp functions with more blocks.  

4) Start-up  

The binary startup variable u(t) equals 1 if and only if the 

unit is turned on from offline at hour t, i.e., 

( ) ( ) ( 1), ;u t x t x t t    ( ) ( ), .u t x t t      (11-12) 

Also if the unit is on at t-1, it cannot start up at t, i.e.,  

( 1) ( ) 1, .x t u t t               (13) 

5) Minimum up/down time 

The unit must remain online or offline for its minimum up 

or down time.  Formulas in [20] for minimum up are used here, 

1

( ) ,
MOnT

MOnx T





  

 
1

( ) ( ) ( 1) ,1 1,
MUt T

MU MOn MU

t

x T x t x t T t T T



 



         

  ( ) ( ) ( 1) 0, 2 ,
T

MU

t

x x t x t T T t T





                 (14) 

In the above, TMU denotes the minimum up time, and TMOn is 

the number of must on hours at the beginning (initial conditions, 

assumed given).  Minimum down is modeled in a similar way.  

6) Reserve capability 

To ensure system reliability under contingencies, reserve 

including ten-minute spinning reserve (TMSR) and thirty-

minute operating reserve (TMOR) are considered [21].  For 

TMSR, designation pTMSR(t) cannot exceed capability PTMSR 

(calculated based on R) and is zero when the unit is off, i.e., 

( ) , ;TMSR TMSRp t P t  max( ) ( ) ( ), .TMSRp t p t P x t t      (15-16) 

For TMOR, pTMOR(t) cannot exceed capability PTMOR, i.e., 

( ) , ;TMOR TMORp t P t  max( ) ( ) , .TMORp t p t P t           (17-18) 

For units with generation-dependent ramp rates, similar to 

the ramp capability, TMSR and TMOR capability functions 

PTMSR(t) and PTMOR(t) are established based on the ramp rate 

function and modeled by SOS2.   

For the UC problem consideration, system level constraints 

include system demand, reserve requirements, and transmission 

capacity constraints, and they are all linear.  The objective 

function is linear but irrelevant for tightening.  The above 

problem (1) - (18) is an MBLP problem.  Eq. (4), (5), (11), (13) 

and (14) involve initial conditions.   

B.  Apply existing cuts 

Most types of existing cuts are data dependent, e.g., Gomory 

fractional cuts based on simplex tableau [22].  In commercial 

solvers, a lot of valid cuts are applied to constraints, and most 

are inefficient and time-consuming.  Also cuts are generated 

online with coefficients in numerical values, and cannot be 

reused when solving the same problem with other data sets.   

To address the above issues, our idea is to apply existing 

cuts that are relevant, data independent and easily 

implementable based on characteristics of appropriate 

constraints, then replace the original constraints by cuts or add 

cuts as new constraints up front.  In this way, the cuts are 

reusable.  In the following, implied bound and mixed integer 

rounding cuts that can be applied to UC problems are discussed.  

1) Implied bound cuts [23] 

Implied bound cuts reflect the relationship between binary 

and continuous variables when the binary ones imply bounds 

on the continuous ones.  Consider a continuous variable y with 

an upper bound ymax, i.e., y  ymax, and a binary variable z that 
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implies a new upper bound on y, e.g., z = 0  y  ymax’ (ymax’ < 

ymax).  The idea is to merge z into y  ymax as follows,  

  max max' max1 .y y y z y              (19) 

According to (19), if z = 1, y  ymax; and if z = 0, y  ymax’.  

For UC problems, implied bound cuts can be applied to the 

offer price block constraints as follows, 

  max max( ) 1 ( ) , , .
b b b

p t x t P P b t              (20) 

Eq. (20) guarantees that when x(t) = 1, pb(t)  Pmax
b; and when 

x(t) = 0, pb(t) = 0.  Then Eq. (2) is replaced by Eq. (20).   

Implied bound cuts can also be applied to the reserve 

constraints as Eq. (A1) and (A2) in Section A of Appendix, and 

Eq. (15) and (18) are replaced by (A1) and (A2), respectively.  

Note that the original constraints are replaced by cuts. 

2) Mixed-integer rounding cuts [24] 

Mixed-integer rounding cuts apply rounding on coefficients 

of integer variables and the constant of a constraint.  Consider 

a constraint z - y ≤ b with integer variable z and continuous 

variable y (z ≥ 0, y ≥ 0).  If constant b is not an integer, then the 

convex hull of the LP-relaxed problem (LP-relaxed convex 

hull) has a non-integer vertex (b, 0).  To avoid this, a mixed-

integer rounding cut that goes through the two points (b, 0) 

and (b + 1, b + 1 - b) (floor function  gives the greatest 

integer ≤ b) of the LP-relaxed convex hull is applied below,  

  1/ 1 .z b b y b                    (21) 

A general version is expressed as Eq. (A3) in Section A of 

Appendix.  For UC problems, mixed integer rounding cuts can 

be applied to the offer price block constraints as follows, 
min ( ) ( ) 0, .

b
b

P x t p t t                (22)  

IV.  ESTABLISH TIGHT CONSTRAINTS  

The above single-unit UC formulation is further tightened 

in this section.  Tightened constraints are established based on 

novel integration of “constraint-and-vertex conversion,” 

“vertex elimination” and “parameterization” in Subsection A, 

and a numerical example is presented in Subsection B.  

Tightness is proved in Subsection C.    

A.  Establishment of tight constraints  

As mentioned earlier, a few constraints involve initial 

conditions, and this is problematic since there are many sets of 

possible initial conditions.  This issue is first addressed in 

IV.A.1.  Tightened constraint are established through four steps 

in IV.A.2.  Unit categorization is then discussed in IV.A.3.  The 

overall tightening process is summarized in IV.A.4.   

1) Initial conditions   

To overcome the difficulties caused by initial conditions, 

our idea is to treat them as decision variables without specifying 

their values, and can take any reasonable values.  For a one-

hour problem with capacity and start up constraints, and given 

initial conditions, it becomes a two-hour problem with 

additional ramp rate constraints.  Although the convex hull with 

initial conditions treated as decision variables is generally 

larger than the one with specific initial values, the tightening 

process is significantly simplified.   

2) Four-step tightening   

For a unit with (1) given parameters (Pmin, Pmax, R, TMU and 

TMD) in numerical values and (2) initial conditions (x(0), u(0), 

p(0), TMOn and TMOff) as decision variables, tightened constraints 

are established through four steps as follows.  

Step 1. Constraint-to-vertex conversion.  The first step is to 

relax integrality requirements on binary variables.  For the LP 

relaxed problem, generate vertices of the convex hull from 

constraints by using algebraic manipulation of unit parameters 

with algorithms well established based on Gaussian elimination 

[25].  For example, for a problem with two continuous decision 

variables and three inequality constraints, the vertices of the 

convex hull are generally the intersections of every two 

constraints.  This conversion is performed by using existing 

software Porta [26].  Given constraints with coefficients in 

numerical values, Porta outputs vertices in numerical values.   

Step 2. Vertex elimination.  For clarity of discussion, a vertex 

with binary values for all binary variables is named a “binary 

vertex,” and a “fractional vertex” otherwise.  All binary vertices 

are feasible to the original problem, while all fractional ones are 

infeasible.  If all vertices obtained in Step 1 are binary vertices, 

the formulation is tight.  If not, the second step is to eliminate 

the factional vertices.  The remaining vertices are the vertices 

of the convex hull to the original MBLP problem as will be 

proved later in Subsection IV.C.   

To illustrate the idea, consider a simple Binary Linear 

Programming (BLP) problem with two binary variables x1 and 

x2, and x1 + x2 ≥ 0.5.  In Fig. 2(a), constraints are color-coded 

by blue lines, and the convex hull Conv(PBLP) by red lines.  

Vertices VBLP of Conv(PBLP) are represented by solid red dots.  

For the LP-relaxed problem in Fig. 2(b), constraints are color-

coded by blue lines, and they delineate convex hull Conv(PRBLP) 

with vertices VRBLP represented by blue dots.  There are two sets 

of vertices in VRBLP.  One set VRBLP
B consisting of binary vertices 

is represented by solid blue dots, and the other set VRBLP
F 

consisting of fractional vertices is represented by open blue 

dots.  Given VRBLP, how to get back to VBLP?  The idea is to drop 

fractional vertices VRBLP
F.  The remaining binary vertices VRBLP

B 

in Fig. 2(b) are the same as vertices VBLP in Fig. 2(a).   
 

 
Figure 2(a): Convex hull of a BLP 

problem with binary variables x1, x2 
Figure 2(b): Convex hull of its LP-

relaxed problem 

 

Now consider an MBLP problem with binary variables x1 

and x2, and continuous variable x3.  In Fig. 3(a), constraints and 

convex hull Conv(PMBLP) are color-coded by blue and red lines, 

respectively, and vertices VBLP of Conv(PMBLP) are represented 

by solid red dots.  For the LP-relaxed problem in Fig. 3(b), 

constraints are color-coded by blue lines, and they delineate 

convex hull Conv(PRLP) with vertices VRMBLP presented by blue 

dots.  By dropping fractional vertex VRMBLP
F (open blue dots), 

remaining binary vertices VRMBLP
B (solid blue dots) in Fig. 3(b) 

are the same as vertices VMBLP (solid red dots) in Fig. 3(a).  

Step 3. Vertex-to-constraint conversion.  In this step, vertices 

obtained in Step 2 are converted back to tight constraints by 

using software Porta as a reverse process of that in Step 1.  The 

resulting formulation should be tight as to be proved in IV.C.   

Step 4. Parameterization.  The constraints obtained above 

have coefficients in numerical values.  To make them reusable 
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Figure 3(a): Convex hull of an MBLP 

problem with binary x1, x2 and continuous x3 
Figure 3(b): Convex hull of 

its LP-relaxed problem 

 

to other units, our idea is to covert numerical coefficients to unit 

parameters.  This parameterization process is done by analyzing 

these constraints and the relationships between numerical 

coefficients and unit parameters.  It is then verified by checking 

physical meanings of the resulting constraints with coefficients 

in unit parameters under all possible combinations of binary 

variables as to be shown in IV.B.  

3) Categorization 

For different types of units, a few sets of tight formulations 

are developed through the above four steps.  For units, ramp 

rate is an important physical characteristic, restricting the unit’s 

up/down movement from one hour to another and determining 

reserve capability.  Thus one way to categorize units is through 

how long it takes to reach from Pmin to Pmax.  The simplest 

category is Pmax < Pmin + R/2 since in this case, the unit can reach 

Pmax upon starting up without requiring ramp rate requirements.  

The second is Pmin + R/2 ≤  Pmax < Pmin + 3R/2 since the 

maximum generation that the unit can reach in two hours is Pmin 

+ 3R/2 as shown in Fig. 4.  Minimum up/down time 

requirements are not considered in unit categorization.  
 

 

 

 
 

Figure 4: Unit categories based on ramp rates and generation limits 

 

Tight constraints for the first category are still valid for units 

in the second category as they work for every hour.  The above 

analysis can be extended to the third category Pmin + 3R/2 ≤ 

Pmax < Pmin + 5R/2 and beyond, and a lookup table can be 

established based on Pmin, Pmax and R.   

Some solution methodologies such as Lagrangian relaxation 

have difficulty with identical or almost-identical units.  For 

formulation tightening, identical units will have identical 

tightened formulations, and there is no difficulty in tightening.  

By the same token, there are no difficulties in tightening almost 

identical units.  However, Lagrangian relaxation will still 

encounter similar difficulties with tightened formulations.   

As the number of vertices increases exponentially in 

constraint-and-vertex conversion [27] and so does the number 

of constraints in parameterization, it is difficult to obtain a tight 

formulation.  For practical applications, our goal is to obtain 

“near-tight” formulations by analyzing problems of short-time 

horizons, starting with two hours and extending to three hours.  

Although only three hours are considered, good results have 

been obtained as to be shown later in Section V.   

4) Overall tighening process   

The process of generating tight constraints is summarized in 

Fig. 5.  Given a UC problem, a set of tightened constraints for 

different unit types will be established by using the systematic 

approach before solving the problem.  A look-up table that 

covers most unit types in the market is established based on unit 

categories.  When solving the UC problem, tightened 

constraints will be identified based on unit parameters in the 

data pre-processing stage.   
 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 5: Flow chart of generating tight constraints 

 

B.  Numerical example 

To illustrate the idea, consider a two-hour (t - 1, t) problem 

for a unit with Pmin = 59 MW, Pmax = 111 MW, and R = 19 

MW/hour.  Since one coefficient value can be the result of 

multiple manipulations of unit parameter values, prime values 

are used for unit parameters.  Capacity (Eq. 1), ramp rate (Eq. 

(4) and (5)) and start up constraints (Eq. (11 - 13)) are denoted 

as C1 as shown in Fig. 6.  Other constraints are not considered 

for simplicity, and ranges for binary variables ([0, 1]) are not 

presented for brevity.  By constraint-to-vertex conversion, 

obtain vertices V1, and the last 10 vertices are shown in Fig. 7 

(variable sequence: x(t-1), u(t-1), p(t-1), x(t), u(t), p(t)).  This 

conversion takes about 1 second by Porta.  
 

59x(t-1) - p(t-1) ≤ 0 

111x(t-1) - p(t-1) ≥ 0 

x(t-1) - u(t-1) ≥ 0 
59x(t) - p(t) ≤ 0 

111x(t) - p(t) ≥ 0 

x(t) - u(t) ≥ 0 

x(t) - u(t) ≤ x(t-1) 

u(t) + x(t-1) ≤ 1 

137/2x(t) - 99/2x(t-1) - p(t) + p(t-1) ≥ 0 

99/2x(t-1) - 137/2x(t) - p(t) + p(t-1) ≤ 0 
1 

Figure 6: Constraints C1 of a two-hour problem 

 
 

(26)    1    1         59            0      0               0 
(27)    1    1         59     19/85      0    2109/85 

(28)    1    1    137/2            0      0               0 

(29)    1    1        111   85/123     0    3145/41 
(30)    1    1         59            1      0             59 

(31)    1    1         59            1      0             78 

(32)    1    1         78            1      0             59 
(33)    1    1         92            1      0            111 

(34)    1    1        111           1      0              92 

(25)    1    1        111           1      0             111 
 

Figure 7: Vertices V1 of a two-hour problem 
 

In V1, there are 35 vertices, and 19 are binary vertices.  For 

vertices (32-35), u(t-1) should be 0 as generation levels exceed 

maximum limit for the first on hour (i.e., Pmin + R/2), and this 

issue will be addressed later.  Keep binary vertices as V2 and 

convert to constraints C2 (about 1 second by Porta).  Compared 

to C1, there are 4 new constraints as shown in Fig. 8 below. 

min / 2P R
minP maxPmin 3 / 2P R min 5 / 2P R … 

… Category 1 Category 2 Category 3 

Step0. Initial condition treatment: Treat initial conditions as 
decision variables 

Step 1. Constraint-to-vertex conversion: Relax integrality requirements 

on binary variables, and convert constraints to vertices 

Step 2. Vertex elimination: Eliminate fractional vertices 

Step 3. Vertex-to-constraint conversion: Convert the new vertices to 

tight constraints 

Step 4. Parameterization: Represent numerical coefficients of tight 

constraints in terms of unit parameters 

Categorization: Develop a few sets of tight formulations based on 

different unit parameters 
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 (1)   -137/2x(t-1)           + 2p(t-1)    -85x(t) + 85u(t)             ≤ 0 

(2)                                                 - 222x(t) + 85u(t) + 2p(t) ≤ 0 
(10) -137/2x(t-1)           + 2p(t-1)   +99x(t) + 19u(t)  - 2p(t) ≤ 0 

(11)   +118x(t-1)            - 2p(t-1)  -156x(t) + 19u(t) + 2p(t) ≤ 0 
 

Figure 8: New constraints in C2 of a two-hour problem 

 

To describe the parameterization process, take Constraint 

(2) with three variables in Fig. 8 as an example.  In the original 

formulation in Fig. 6, coefficients before decision variables are 

linear functions of unit parameters, i.e., Pmin = 59, Pmax = 111, 

and R = 19.  Since constraint-and-vertex conversion is based on 

Gaussian elimination, coefficients of tight constraints are also 

linear functions of unit parameters.  For the value of 222 before 

x(t) in Constraint (2), it is twice of Pmax.  For the value of 85 

before u(t), with prime unit parameters, it can be obtained that 

85 = 2(111- 59) - 19, and the function is 2(Pmax - Pmin) - R.  For 

the value of 2 before p(t), it is just 2, and there is no need of 

parameterization.  The entire constraint is parameterized below, 
max max min( ) ( ) ( / 2) ( ).p t P x t P P R u t             (23) 

In the above, when x(t) = u(t) = 0, p(t) ≤ 0; when x(t) = 1 

and u(t) = 0, it represents the maximum generation level; and 

when x(t) = u(t) = 1, it represents the maximum generation limit 

on the first operation hour.  With (23), the right-hand side of 

capacity constraint Eq. (1) can be deleted.   

Constraints (10) and (11) in Fig. 8 can be treated as revised 

ramp rate constraints as compared to Eq. (4) and (5).  With 

prime values for Pmin, Pmax, and R, numerical coefficients of 

constraints (10) and (11) in Fig. 8 are parameterized as follows, 
min min( ) ( 1) ( ) ( ) ( 1) ( / 2) ( ),p t p t P R x t P x t R u t        

min min( 1) ( ) ( / 2) ( 1) ( / 2) ( )p t p t P R x t P R x t      

( / 2) ( ).R u t        (24-25) 

The above constraints are the same as the ramp rate constraints 

developed in [14].    

Physical meanings of Eq. (24) and (25) under all possible 

combinations of binary variables are as shown in Table I.  It can 

be seen that these two tight constraints are meaningful under all 

situations, and no feasible solutions will be cut by adding them.  
 

TABLE I CONSTRAINT ANALYSIS FOR (24) AND (25) 

x(t-1) x(t) u(t) Eq. (24) Eq. (25) 

0 0 0 ( ) ( 1) 0p t p t    ( 1) ( ) 0p t p t    

0 1 1 min( ) / 2p t P R   
min( 1)p t P   

1 0 0 min( 1)p t P   
min( 1) / 2p t P R    

1 1 0 ( ) ( 1)p t p t R    ( 1) ( )p t p t R    

 

Constraint (1) in Fig. 8 is parameterized as follows, 
min( 1) ( / 2) ( 1)p t P R x t     

max min( / 2)( ( ) ( )), .P P R x t u t t              (26) 

It can be verified that Eq. (26) is valid for all the possible 

combinations of the three binary variables.  

Add Eq. (23) and (26) in C2, apply Eq. (23) to t-1, and 

replace ramp rate constraints Eq. (4) and (5) by Eq. (24) and 

(25).  Denote the new constraint set as C3, and obtain vertices 

V3.  There are 20 vertices in V3, and 17 binary ones.  The issue 

in V1 with u(t-1) is addressed by applying Eq. (23) to t-1.  Keep 

binary vertices as V4 and convert them to constraints C4.  Two 

new tight constraints are obtained and parameterized below,   

min min( 1) ( ) ( ) ( ) ( 1) / 2 ( 1),p t p t P x t P R x t R u t          

min( ) ( 3 / 2) ( ) ( )p t P R x t Ru t    

max min( 3 / 2)( ( 1) ( 1)).P P R x t u t          (27-28) 

When x(t-1) = 1 and u(t-1) = x(t) = u(t) = 0, Eq. (28) is p(t) 

≤ Pmax - Pmin - 3R/2.  Here Pmax - Pmin - 3R/2 cannot be negative, 

and Eq. (27) and (28) are valid under all possible combinations 

of x and u, otherwise feasible solutions would be cut off.  Eq. 

(23-28) directly constrain variables at t-1 and t, tighten the 

formulation, but can hardly be obtained manually.  Among 

them, Eq. (23) and Eq. (26-28) are new tightened constraints, 

beyond what is in the literature.  With Eq. (23-28), the above 

two-hour formulation is tight.   

C.  Tightness proof 

The proof will be conducted in two steps for BLP and 

MBLP problems, respectively.  

Step 1. Tightness of BLP problems 

Tightness proof for BLP problems is established based on 

Theorem 1 introduced below.   

Theorem 1. For a BLP problem, the set of binary vertices 

VRBLP
B of its LP-relaxed convex hull Conv(PRBLP) is the set of 

vertices VBLP of original BLP convex hull Conv(PBLP).   

Proof.  This proof follows by contradiction to prove that the 

binary vertices in VBLP remain in VRBLP
B and integrality 

relaxation does not bring new binary vertices to VRBLP
B.  For a 

binary vertex v1
 in VBLP, assume there exists a nonzero vector d 

(one element is ,  > 0, and others are 0) such that v1  d  

Conv(PRBLP).  If the corresponding element of  in v1 is 1, then 

1 +  > 1, and v1 + d  Conv(PRBLP).  If it is 0, then 0 -  < 0, 

and v1 - d  Conv(PRBLP).  Similar for d with multiple non-zero 

elements.  By contradictory, d does not exist, thus the binary 

vertices in VBLP are still vertices of Conv(PRBLP) [28].  Assume 

that integrality relaxation brings a new binary vertex v2 to 

VRBLP
B, i.e., v2  VRBLP

B but v2  VBLP.  However, v2 is binary 

and satisfies all constraints, it must be feasible to the original 

BLP problem.  For a n-dimensional unit hypercube, its vertex 

set is {0, 1}n.  With constraints, binary points still remain as 

vertices of the truncated hypercube [29], thus v2  VBLP
B.  By 

contradiction, v2 does not exist, thus integrality relaxation does 

not bring new binary vertices to VRBLP
B.  Therefore Theorem 1 

holds.  End.  

Based on Theorem 1, constraints converted from VRBLP
B 

directly delineate Conv(PBLP), i.e., the formulation is tight.   

Step 2. Tightness of MBLP problems 

Tightness proof for MBLP problems is established based on 

Theorem 2 introduced below.   

Theorem 2. For an MBLP problem, the set of binary vertices 

VRMBLP
B of its LP-relaxed convex hull Conv(PRMBLP) is the set 

of vertices VMBLP of original MBLP convex hull Conv(PMBLP).   

Proof.  This proof is based on Theorem 1.  For a binary vertex 

v3
 in VMBLP, assume there exists a nonzero vector d’ such that v3 

 d’  Conv(PRMBLP).  Similar to Theorem 1, d’ does not exist, 

thus the binary vertices in VMBLP are still vertices of 

Conv(PRMBLP).  Since integrality relaxation has effects on 

ranges of binary variables only and not on continuous variables, 

it will not bring new binary vertices in VRMBLP
B following 

Theorem 1.  Therefore Theorem 2 holds.  End. 
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Based on Theorem 2, constraints converted from VRMBLP
B 

directly delineate Conv(PMBLP), i.e., the formulation is tight.   

V.  TESTING RESULTS 

The above tightening approach has been implemented by 

using Porta [26], and the UC problems are solved by using 

commercial solver IBM ILOG CPLEX Optimization Studio V 

12.8.0.0 [30], both on a PC with 2.90GHz Intel Core(TM) i7 

CPU and 16G RAM.  Porta is not embedded in CPLEX.  Three 

examples are presented.  The first is to obtain tight formulations 

for a three-hour problem for units with constant ramp rates and 

a one-hour problem for units with generation dependent ramp 

rates, to discuss unit categories, and to demonstrate tightness.  

The second IEEE 118-bus problem is to show impacts of 

tightening units with generation dependent ramp rates.  The last 

Polish 2383-bus problem is to demonstrate performance of 

tightening units with constant ramp rates.   

Example 1.  Single-unit  

a) Constant ramp rates: Three-hour  

Add one hour (t + 1) to the example in Subsection IV.B.  For 

the unit, Pmax - Pmin ≥ 5R/2, it cannot reach Pmax in three hours.  

Minimum up/down time constraints are also added, and TMU = 

TMD = 2.  To consider all possible initial conditions, the 

following Eq. (29 - 31) are used for minimum up/down time 

instead of general formulas for this specific example, 

( 1) ( ) ( 1) 0,x t x t x t               (29) 

2 ( 1) ( ) ( 1) 2.x t x t x t     ( 1) ( ) 0.u t x t      (30-31) 

With the standard formulation as C1, after constraint-to-

vertex conversion (2 - 3 seconds by Porta), there are 654 

vertices in V1, and 45 are binary.  Add the tight constraints 

obtained in the two-hour problem in Subsection IV.B to C1, 

denote the new constraint set as C2, and obtain vertices V2.  

There are 314 vertices in V2, with 40 binary ones.  Keep binary 

vertices as V3 and convert them to constraint C3 via vertex-to-

constraint conversion (2 - 3 seconds by Porta).  There are 17 

new constraints.  After parameterization, there are 14 tight 

constraints as three pairs have the same forms applying to 

different hours.  Two of the 14 constraints only contain binary 

variables and can be generalized as revised minimum up/down 

time constraints as compared to Eq. (14),  

1

( ) ,
MOnT

MOnx T






1

( ) ( ), ,
MU

t
MU

t T

u x t T t T



  

           (32) 

 
1 1

1 ( ) , ( ) 1 ( ), 1 .
MOff

MD

T t
MOff MD MD

t T

x T u x t T T t T
 

 
   

          

             (33) 

The above constraints are the same as the minimum up/down 

time constraints developed in [13].    

It can be verified that the remaining 12 constraints are valid 

under all possible unit statuses.  They further tighten the 

formulation on top of the tight constraints obtained in the two-

hour problem.  Take one of 12 as an example as follows,  
max min

max min max min

( 1) ( 5 / 2) ( 1)

( 5 / 2) ( ) ( 3 / 2) ( )

p t P P R u t

P P R x t P P R u t

     

     
 

min( 5 / 2) ( 1) 2 ( 1), [1, 1].P R x t Ru t t T               (34) 

Here, Pmax - Pmin - 5R/2 has to be non-negative to guarantee that 

the constraint is valid under all possible unit statuses.   

Based on the analysis in IV.A.3, there are 4 unit categories 

for this three-hour problem.  Tightened constraints for the other 

categories are obtained by repeating the tightening process 

through three more examples.  For all of them, Pmin = 59 MW 

and R = 19 MW/hour, while Pmax are 101 MW, 83 MW, and 67 

MW, respectively.  The results are summarized in Fig. 9 below. 
 

 
Figure 9: Tight constraints for four unit categories 

 

For Category 4 (Pmax ≥ Pmin + 5R/2), there are 14 new tight 

constraints beyond Eq. (23 - 28), including Eq. (32) - (34), and 

Eq. (B1) - (B11) in Section B of Appendix.  Among them, Eq. 

(34) and Eq. (B1-B11) are new tightened constraints, beyond 

what is in the literature.  Category 3 (Pmin + 3R/2 ≤ Pmax < Pmin 

+ 5R/2), there are 13 tight constraints, excluding Eq. (34) from 

category 4; Category 2 (Pmin + R/2 ≤ Pmax < Pmin + 3R/2), there 

are 7 tight constraints, excluding Eq. (B6)-(B11) from category 

3; and Category 1 (Pmax - Pmin < R/2), there are 2 tight 

constraints, excluding Eq. (B1)-(B5) from Category 2.  All the 

tightened constraints are still valid for units with minimum 

up/down times larger than 2.  For units with minimum up/down 

times as 1, tight constraints can be obtained similarly.   

To demonstrate tightness, 100 Monte Carlo simulation runs 

are performed.  For each unit, a pair of two random variables 

following U(0,1000) are considered: the smaller one is Pmin, and 

the larger one is Pmax.  A third random variable following U(0,4) 

represents (Pmax - Pmin)/R, and R is calculated correspondingly.  

The 100 units are categorized into the four types in Fig. 9, with 

26, 27, 18, and 29 for each type.  With those unit parameters, 

the corresponding constraints are converted to vertices.  Results 

show that all vertices are binary for all units, demonstrating that 

the above simplified three-hour single-unit formulation is tight.   

b) Generation depedent ramp rates: One-hour  

Consider generation dependent ramp rates for the unit in a) 

with two ramp blocks.  For Fig. 1, P1 is 89 MW, R1 and R2 are 

19 and 17 MW/hour (P3 = 70 MW, P4 = 103 MW).  Capacity, 

start up, ramp-up capability, and Eq. (23) are denoted as C1.  

By constraint-to-vertex conversion, obtain vertices V1.  In V1, 

there are 315 vertices, and 11 are binary.  Keep binary vertices 

as V2 and convert them to the constraint set C2.  As compared 

to C1, there are 7 new constraints as shown in Fig. 10.  
 

(6)    +59x            - 70w2    - 70w3    - 70w4    - 70w5 + 11α3         + 11α5 ≤ 0 

(7)   -140x + 3u + 140w2 + 140w3 + 140w4 + 140w5                                 ≤ 0 

(11)                                                        + w4      + w5              - α4             ≤ 0 
(12)      -x     +u                                                                 + α3            + α5 ≤ 0 

(13)                                                         - w4       - w5                         + α5 ≤ 0 

(14)                                        + w3        + w4      + w5      - α3              - α5 ≤ 0 
(15)                                         - w3         - w4       - w5              +α4             ≤ 0 

1 

 

Figure 10: New constraints in C2 of a one-hour problem 

 

Constraints (11), and (13) - (15) in Fig. 10 shows relations 

between  and , and (12) shows relations of x, u and .  

Constraints (6) and (7) in Fig. 10 are parameterized below, 
min min

2 3 4 5 3 3 3 5
( ) ( )( ),P x P P P             

 min

2 3 4 5 3 3 3 1
( ) ( / 2) .P P x P P R u           (35-36) 
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For Eq. (35), when 3 = 5 = 0, Pminx ≤ (2 + 3 + 4 + 5)P3 

= p; and when 3 = 1 or 5 = 1, 2 + 3 + 4 + 5 ≥ 1.  It can 

be verified that when P3 ≥ Pmin + R1/2, Eq. (36) is valid under 

all possible combinations of x and u.   

Tightening of generation dependent ramp rates was rarely 

discussed in the literature, the above tightened constraints are 

new.  They can be extended to other ramp and reserve capability 

functions, and problems with more blocks.   

Example 2.  IEEE 118-bus system 
This example is based on the IEEE 118-bus system with 54 

units [31].  A day-ahead hourly UC problem is considered, and 
all units have generation-dependent ramp rates with four blocks.  
The problems are solved by using branch-and-cut with different 
formulations: (1) standard; (2) adding tightened constraints Eq. 
(7-10) as T1; and (3) adding T1 and tightened constraints Eq. (23-
25), (32), (33), (35) and (36) as T2.  In Cplex, optimization stops 
when computational time reaches the pre-set stop time or the 
relative mixed-integer programming gap (relative difference 
between the objectives of the optimal relaxed solution and 
current integer solution) falls below the pre-set gap.  Here the 
stop time and gap is set as 1800 s and 0.01%, respectively.  
Results are compared in Table II below.  CPU time is the total 
time on data and model loading, problem solving and solution 
outputting; and solving time includes root node solving, cutting, 
and branching.  As tightened constraints can be identified based 
on unit parameters through table lookup quickly in the data-
preprocess stage, pre-process time is not included in CPU time.   

 

TABLE II RESULTS OF IEEE 118-BUS SYSTEM  

 
CPU 
(s)  

Gap 
(%) 

Cost  
($) 

Solve 
(s) 

Cut 
(s) 

Branch 
(s) 

# of 
IBC  

# of 
MIRC 

# of 
Other 

(1) Std 1804 / / 1802 100 1632 2380 2844 15244 

(2) Std+T1  1430 0.01 948,831 1424 123 1233 2878 2720 5776 

(3) Std+T1+T2 467 0.01 948,750 461 99 307 1837 2362 3805 

 

With the standard formulation, there is no solution after 30 

minutes.  After adding tightened constraints T1, both CPU and 

solving time is reduced.  With T2, branching time is further 

reduced by 75%.  To model generation-dependent ramp rates 

and the corresponding reserve capabilities, many more binary 

variables and constraints are needed as introduced in Eq. (6), 

making the problem more complicated as compared with the 

problem with constant ramp rates.  The solving time is much 

higher than that of the same problem with constant ramp rates, 

even higher than that of a larger system as to be shown later.   

To demonstrate the performance of our tightening approach, 

another day-ahead hourly UC problem is considered based on 

the IEEE 118-bus system, where all units have constant ramp 

rates.  Following the testing in [14], a scale factor is randomly 

generated for each hourly nodal load.  Seven instances are 

created with load scale factors falling in: (a) [0.5, 0.7]; (b) [0.7, 

0.9]; (c) [0.9, 1.1]; (d) [1.1, 1.3]; (e) [1.3, 1.5]; (f) [1.5, 1.7]; and 

(g) [1.7, 1.9].  Time-varying ten-minute spinning reserve 

requirement is considered, and it is set as 3% of the total load 

at each hour following [14].  The problems are solved with: (1) 

the standard UC formulation; and (2) applied cuts and tightened 

constraints obtained in the two/three-hour problems.  The stop 

time is set as 1800 s, and the stop gap is set as 0.01% following 

[14].  Cutting and branching time is compared in Fig. 11.   

The results show that the cutting time is much reduced after 

adding cuts and tightened constraints.  To compare the results  

Figure 11: 118-bus: Cutting and branching time with (1) standard and (2) 

tightened formulations under different load scale factors falling in (a) [0.5, 

0.7]; (b) [0.7, 0.9]; (c) [0.9, 1.1]; (d) [1.1, 1.3]; (e) [1.3, 1.5]; (f) [1.5, 1.7]; and 
(g) [1.7, 1.9]. 

 

with those in Table 6 of [14], the CPU time and the total number 

of cuts are shown in Table III below.  Since the processer and 

the version of commercial solver used in the testing could be 

different as compared with those in [14], the numbers of nodes 

processed are also provided. 
 
TABLE III 118-BUS: CPU TIME, NUMBER OF CUTS, AND NUMBER OF NODES 

UNDER DIFFERENT LOAD  

 Instance (a) Instance (b) Instance (c) Instance (d) 

 (1) (2) (1) (2) (1) (2) (1) (2) 

CPU 3.9 3.68 2.41 2.27 2.52 2.05 2.41 2.01 

Cuts 751 23 993 59 739 0 929 0 

Node 27 96 0 0 0 0 0 0 

 Instance (e) Instance (f) Instance (g) 

 (1) (2) (1) (2) (1) (2) 

CPU 3.38 2.25 2.66 2.18 3.34 2.39 

Cuts 1,316 6 935 20 1,680 131 

Node 0 0 0 0 0 0 

 

It is shown that the CPU time is reduced by 6% - 33% after 

adding cuts and tightened constraints, and the total number of 

cuts is reduced by 92% - 100%.  For instants 3 and 4, there are 

no cuts at all, demonstrating good performance of our approach.  

As compared with the results in [14], it is shown that the CPU 

time, and the numbers of cuts and nodes with our tightened 

formulations are much less.   

The above results on units with generation dependent and 

constant ramp rates demonstrate that our tightening approach is 

general, and can be used for other problems in power systems. 

Example 3.  Polish system 

This example is based on the Polish 2383-bus system with 

327 units [32].  A day-ahead hourly UC problem is considered, 

and all units have constant ramp rates.  To test performance of 

our tightened formulations for large-scale UC problems, all 

units are treated dispatchable.  Ramp rates of 227 units are 

reduced by 75% to satisfy Pmax ≥ Pmin + 5R/2, and ramp rates of 

the other 100 units are reduced by 50% to satisfy Pmin + 3R/2 

≤ Pmax < Pmin + 5R/2.  Minimum up/down times are assumed 

as 2 or 3 hours.  TMSR and TMOR are assumed as150 MW and 

300 MW (as unit ramp rates are reduced), respectively.   

Results with different formulations are presented in Table 

IV bellow: (1) the standard UC formulation (Std); (2) adding 

cuts (Cuts); (3) and adding tightened constraints obtained in the 

two/three-hour problems (Tightened).  From (1) to (3), the 
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process is accumulative.  To demonstrate the performance of 

our tightening approach, the problem with the standard 

formulation is also solved with aggressive cuts and heuristics 

provided by Cplex as (4) (Cplex Cuts) and (5) (Cplex 

heuristics).  The heuristics are called every 500 nodes.  From 

(4) to (5), the process is accumulative.  The standard UC 

formulation considered here has 2 binary (2-bin) decision 

variables for unit on/off and start-up, and formulations with 3 

binary (3-bin) decision variables for unit on/off, start-up and 

shut-down is also discussed in the literature [3, 12, 13, and 19].  

For comparison purposes, the above problem is also solved 

with the 3-bin formulation in [19] (without cuts) as (6) (3-bin).   
 

TABLE IV POLISH 2383-BUS SYSTEM 

Formulation 

CPU 

(s)  

Gap 

(%) 

Cost  

($) 

Solve 

(s) 

Cut 

(s) 

B 

(s) 

# of 

IBC  

# of 

MIRC 

# of 

Other 

(1) Std 1174 0.01 31,941,900 1071 665 310 3181 836 345 

(2) Cuts 347 0.01 31,942,300 335 220 51 3001 2939 1304 

(3) Tightened 127 0.01 31,942,135 117 22 40 2779 1729 757 

(4) Cplex cuts 588 0.01 31,942,300 492 223 211 3166 2959 2883 

(5) Cplex heuristics 428 0.01 31,942,200 334 236 37 3330 2728 2939 

(6) 3-bin 1891 0.05 31,943,000 1800 969 666 6898 4537 2959 

 

Comparing (1) to (3), it can be seen that CPU, solving, 

cutting and branching time is significantly reduced by adding 

cuts and tightened constraints, while the solution quality is still 

high.  With the standard formulation, a feasible solution with a 

gap of 0.01% is obtained in 1174 s, while the time on cutting 

and branching is 665s and 310s.  By adding cuts and tightened 

constraints, a feasible solution which is 0.0007% higher than 

the above is obtained in 127s, while the cutting and branching 

time is only 22s and 40s.  It demonstrates that tightening single 

unit formulations also improves the computational efficiency 

and solution quality when solving the overall UC problems.   

Comparing (1), (4) and (5), the results show that CPU time 

is reduced by adding aggressive cuts and heuristics in Cplex, 

but still higher than that obtained with our cuts and tightened 

constraints without adding those aggressive cuts and heuristics.  

Comparing (1) and (6), the 2-bin formulation has lower CPU 

time and less numbers of cuts as compared with the 3-bin.   

The problem is also solved with different reserve 

requirements.  For the above 6 formulation configurations, 

cutting and branching time is compared in Fig. 12, and the 

numbers of cuts are shown in Table VI.  
 

Figure 12: Polish: Cutting and branching time with different formulations 

under different TMSR/TMOR values: (1) Standard; (2) Cuts; (3) Tightened; 

(4) Cplex cuts; (5) Cplex heuristics; and (6) 3-bin 

TABLE VI POLISH: NUMBER OF CUTS UNDER DIFFERENT TMSR/TMOR  

  IBC MIRC Other Total 

TMSR = 

140 

TMOR = 

300 

(1) Std 3,060 2,949 2,636 8,645 

(2) Cuts 828 2,926 1,820 5,574 

(3) Tightened 378 1,080 5,74 2,032 

(4) Cplex cuts 2,831 2,775 2,774 8,380 

(5) Cplex heuristics 2,916 2,805 2,764 8,485 

(6) 3-bin 7,075 4,745 2,985 14,805 

TMSR = 

150 

TMOR = 

290 

(1) Std 3,015 2,954 2,662 8,631 

(2) Cuts 810 2,991 1,777 5,578 

(3) Tightened 358 1,292 769 2,419 

(4) Cplex cuts 3,132 3,076 2,829 9,037 

(5) Cplex heuristics 3,108 2,900 2,750 8,758 

(6) 3-bin 6,888 4,634 2,894 14,416 

TMSR = 

140 

TMOR = 

290 

(1) Std 3,024 2,833 2,655 8,512 

(2) Cuts 697 2,895 1,676 5,268 

(3) Tightened 318 1,028 574 1,920 

(4) Cplex cuts 2,703 2,813 2,663 8,179 

(5) Cplex heuristics 2,964 2,773 2,783 8,520 

(6) 3-bin 6,898 4,639 2,974 14,511 

 

Comparing (1) to (3), it shows that time on branching and 

cutting is both dramatically reduced by adding cuts and 

tightened constraints, demonstrating computational efficiency 

of our approach.  In addition, the total numbers of implied 

bound cuts are reduced by 87% - 89%, implying most of this 

type of cuts are applied to single units.  The total numbers of 

mixed integer rounding cuts are reduced by 57% - 63%, and the 

remaining may be related to system-level constraints.  The total 

numbers of other cuts are reduced by 71% - 78%.  Results 

demonstrate great potential of our systematic approach to 

tighten complicated MBLP problems.   

Comparing (1), (4) and (5), the results show that the total 

cutting and branching time is reduced by 32% - 74% after 

adding aggressive cuts and heuristics in Cplex, but it is still 

higher than that obtained with our cuts and tightened constraints 

and without those aggressive cuts and heuristics.  In addition, 

after adding Cplex aggressive cuts and heuristics to the standard 

2-bin formulation, the total numbers of implied bound cuts, 

integer rounding cuts and other cuts are reduced by -5% ~ 3% 

(a negative value means that the number of cuts is increased), -

5% ~ -2% and 3% ~ 5%, respectively.  After adding our cuts 

and tightened constraints to the standard 2-bin formulation, 

time on branching and cutting are significantly reduced by 94% 

- 96%.  In addition, the numbers of implied bound cuts, integer 

rounding cuts and other cuts are dramatically reduced by 88% 

- 89%, 56% - 64% and 71% - 78%, respectively.   

Comparing (1) and (6), it can be seen that the 2-bin performs 

better in terms of solving time and numbers of cuts.  The total 

cutting and branching time with the standard 2-bin formulation 

is less than that of the 3-bin by 16% - 45%.  In addition, the 

total numbers of implied bound cuts, integer rounding cuts and 

other cuts with 2-bin before tightening is also less than those of 

3-bin by 56% - 57%, 37% - 39% and 8% - 12%, respectively.   

VI.  CONCLUSION 

In this paper, a systematic approach is developed to tighten 

single-unit UC formulations in the data pre-processing stage for 

the first time.  Existing cuts are first applied, and then tightened 

constraints are established based on novel “constraint-and-

vertex conversion,” “vertex elimination” and 

“parameterization” processes.  By analyzing problems with 

short-time horizons, e.g., two or three hours, tightened 
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formulations for single units with constant and generation-

dependent ramp rates are obtained, beyond what is in the 

literature.  For each category, its tightened constraints are 

developed, and a look-up table is established.  Then for each 

unit, tightened constraints can be identified through table 

lookup based on unit parameters in the data pre-processing 

stage.  Numerical testing results on IEEE 118-bus and Polish 

2383-bus systems demonstrate computational efficiency and 

solution quality benefits of formulation tightening.  The 

approach is general and has great potential for tightening 

complicated MBLP problems.  We believe that tightened 

single-unit formulations can be fully exploited by using our 

latest powerful decomposition and coordination approach [33].  

This will fundamentally change how we formulate and solve 

complicated MBLP problems in power systems and beyond.   

According to our knowledge, it is hard to extend the above 

approach to tighten the entire unit commitment problem with a 

large number of units considering system-level constraints, e.g., 

system demand, reserve requirement, and transmission capacity 

constraints.  To tighten those system-level coupling constraints, 

we have developed another systematic approach [34].   

VII.  APPENDIX  

A.  Applied cuts 

 ( ) 1 ( ) , .TMSR TMSR TMSRp t x t P P t           (A1) 

 max( ) ( ) ( ) 1 ( ) , .TMOR TMORp t p t p x t P x t t           (A2) 

j j i i
j i

a x g y b    

: 0

1/ (1 ) , .
i

j j i i
j i g

a x f g y b f b b


                       (A3) 

B.  Tight constraints for single-unit formulations  
min max min( 1) ( / 2) ( 1) ( / 2) ( 1)p t P R x t P P R u t         

max min( / 2)( ( ) ( )), .P P R x t u t t            (B1) 

min( 1) ( ) ( / 2) ( 1) / 2 ( 1)p t p t P R x t R u t          

min( / 2) ( ) / 2 ( ), .P R x t R u t t           (B2) 

min min( 1) ( ) ( ) ( ) ( 1)p t p t P x t P R x t        

/ 2 ( 1), [1, 1].R u t t T            (B3) 

min min( 1) ( ) ( 1) ( / 2) ( )p t p t P x t P R x t         

/ 2 ( ) / 2( ( 1) ( 1)), [1, 1].R u t R x t u t t T             (B4) 

min

min max min

( 1) ( ) ( 1) ( / 2) ( 1)

/ 2 ( 1) ( / 2) ( ) ( / 2) ( )

p t p t p t P R x t

R u t P R x t P P R u t

     

    



 
 

max max min( 1) ( / 2) ( 1), [1, 1].P x t P P R u t t T        (B5) 

max min max( 1) ( 3 / 2) ( ) ( 1)p t P P R u t P x t        

max min( / 2) ( 1), [1, 1].P P R u t t T             (B6) 

min

max min

( 1) ( / 2) ( 1) ( 1)

( ) ( / 2) ( )

p t P R x t Ru t

Rx t P P R u t

     

    
 

max min( 3 / 2)( ( 1) ( 1)), [1, 1].P P R x t u t t T           (B7) 

max min max( ) ( 3 / 2) ( 1) ( ) ( )p t P P R u t P R x t        

max min( / 2) ( )P P R u t  

( ( 1) ( 1)), [1, 1].R x t u t t T             (B8) 

min( 1) ( 1) ( / 2) ( 1) 3 / 2 ( 1)p t p t P R x t R u t         

min3 / 2( ( ) ( )) ( 1), [1, 1].R x t u t P x t t T            (B9) 

min( 1) ( 1) ( / 2) ( 1) ( 1) ( )p t p t P R x t Ru t Rx t          

min3 / 2 ( ) ( / 2) ( 1)R u t P R x t     

/ 2 ( 1), [1, 1].R u t t T          (B10) 

min( 1) ( 1) ( 1) / 2 ( )p t p t P x t R u t         

min( 2 ) ( 1) 3 / 2 ( 1), [1, 1].P R x t R u t t T           (B11) 

VIII.  REFERENCES 

[1] A. J. Wood, and B. F. Wollenberg, Power generation, operation, and 
control, John Wiley & Sons, 2012. 

[2] D. P. Bertsekas, Nonlinear programming, 3rd ed, Athena scientific, 2016. 

[3] G. Morales-España, J. M. Latorre, and A. Ramos, “Tight and compact 
MILP formulation for the thermal unit commitment problem,” IEEE T 

Power Syst., Vol. 28. no.4, pp.4897-4908, 2013.  

[4] B. Kocuk, S. S. Dey, and X. A. Sun, “New formulation and strong 
MISOCP relaxations for AC optimal transmission switching problem,” 

IEEE T Power Syst., Vol. 32, no. 6, pp. 4161-4170, 2017. 

[5] G. Angulo, S. Ahmed, S. S. Dey, and V. Kaibel, “Forbidden vertices,” 

Math. Oper. Res., Vol. 40, no. 2, pp. 350-360, 2014.  

[6] A. Frangioni, C. Gentile, and F. Lacalandra, “Tighter approximated MILP 

formulations for unit commitment problems,” IEEE T Power Syst., Vol. 
24, no. 1, pp. 105-113, 2008. 

[7] C. Zhao, and Y. Guan, “Unified stochastic and robust unit commitment,” 

IEEE T Power Syst., Vol. 28, no. 3, pp.3353-3361, 2013. 
[8] D. Rajan, and S. Tkriti, “Minimum up/down polytopes of the unit 

commitment problem with startup costs,” Report RC23628, IBM, 2005.  
[9] J. Lee, L. Leung, and M. François, “Min-up/min-down polytopes,” 

Discrete Optim., Vol. 1, no. 1, pp. 77 - 85, 2004. 

[10] J. M. Arroyo, and A. Conejo, “Modeling of start-up and shut-down power 
trajectories of thermal units,” IEEE T Power Syst., Vol. 19. no.3, pp.1562-

1568, 2004.  

[11] C. Simoglou, P. Biskas, and A. Bakirtzis, “Optimal self-scheduling of a 
thermal producer in short-term electricity markets by MILP,” IEEE T 

Power Syst., Vol. 25. no.4, pp.1965-1977, 2010. 

[12] P. Damcı-Kurt, S. Küçükyavuz, D. Rajan, and A. Atamtürk, “A 
polyhedral study of production ramping,” Math. Program., Vol. 158, no. 

1, pp. 175-205, 2016. 

[13] J. Ostrowski, M. F. Anjos, and A. Vannelli, “Tight mixed integer linear 
programming formulations for the unit commitment problem,” IEEE T. 

Power Syst., Vol. 27. no.1, pp.39-46, 2012.  

[14] K. Pan, and Y. Guan, “A polyhedral study of the integrated minimum-
up/-down time and ramping polytope,” arXiv:1604.02184, 2016. 

[15] Y. Guan, K. Pan, and K. Zhou, “Polynomial time algorithms and extended 

formulations for unit commitment problems,” IISE Transactions, Vol. 50, 
no. 8, pp. 735-751, 2018. 

[16] H. Song, T. Zheng, H. Liu, and H. Zhang, “Modeling MW-dependent 

ramp rate in the electricity market,” 2014 IEEE PES GM, 2014. 
[17] B. Yan, P. B. Luh, E. Litvinov, T. Zheng. D. Schiro, M. A. Bragin, F. 

Zhao. J. Zhao, and I. Lelic, “Effective modeling and resolution of 

generation-dependent ramp rates for unit commitment,” 2017 IEEE PES 
GM, 2017. 

[18] B. Yan, P. B. Luh, E. Litvinov, T. Zheng. D. Schiro, M. A. Bragin, F. 

Zhao. J. Zhao, and I. Lelic, “A systematical approach to tighten unit 
commitment formulations,” 2018 IEEE PES GM, 2018. 

[19] B. Knueven, J Ostrowski, and J Wang, “The ramping polytope and cut 

generation for the unit commitment problem,” INFORMS Journal on 
Computing, 2017.  

[20] M. Carrión and J. M. Arroyo, “A computationally efficient mixed-integer 

linear formulation for the thermal unit commitment problem,” IEEE T 
Power Syst., Vol. 21, no. 3, pp. 1371-1378, Aug. 2006. 

[21] ISO-NE, ISO New England Operating Procedure No. 8 Operating 

Reserve and Regulation, May 2015, http://www.iso-
ne.com/rules_proceds/operating/isone/op8/op8_rto_final.pdf 

[22] D. G. Luenberger and Y. Ye, Linear and Nonlinear Programming, Fourth 

Edition, Springer, 2015. 
[23] Ed Rothberg, “The CPLEX Library: Presolve and Cutting Planes.”  

[24] G. Nemhauser and L. A. Wolsey, Integer and Combinatorial 

Optimization, John Wiley & Sons, 1988.  
[25] G. B. Dantzig, and B. Curtis Eaves, “Fourier-Motzkin elimination and its 

dual,” J Comb Theory A, Vol.14, no. 3, pp. 288-297, 1973. 

http://www.iso-ne.com/rules_proceds/operating/isone/op8/op8_rto_final.pdf
http://www.iso-ne.com/rules_proceds/operating/isone/op8/op8_rto_final.pdf


0885-8950 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPWRS.2019.2935003, IEEE
Transactions on Power Systems

 

 

[26] Heidelberg University, http://www.iwr.uni-
heidelberg.de/groups/comopt/software/PORTA/  

[27] L. Khachiyan, E. Boros, K. Borys, V. Gurvich, and K. Elbassioni, 

“Generating all vertices of a polyhedron is hard,” Twentieth Anniversary 

Volume, pp. 1-17, Springer, New York, NY, 2009. 

[28] A. Schrijver, Combinatorial optimization: polyhedra and efficiency, 

Springer Science & Business Media, 2003. 
[29] E. Balas, and R. Jeroslow, “Canonical cuts on the unit hypercube,” SIAM 

J Appl Math, Vol.23, no. 1, pp. 61-69, 1972. 

[30] IBM ILOG, “IBM ILOG CPLEX Optimization Studio Information 
Center,” http://pic.dhe.ibm.com/infocenter/cosinfoc/v12r5/index.jsp.  

[31] IEEE 118-bus system. [Online]. Available: http://motor.ece.iit.edu/data/ 

[32] Polish 2383-bus system. [Online]. Available: http://www.pserc.cornell. 
edu/matpower/docs/ref/matpower5.0/case2383wp.html 

[33] M. A. Bragin, P. B. Luh, B. Yan, and X. Sun, “A Scalable Solution 

Methodology for Mixed-Integer Linear Programming Problems Arising 
in Automation,” IEEE T Autom. Sci. Eng., early access.  

[34] B. Yan, P. B. Luh, E. Litvinov, T. Zheng. D. Schiro, M. A. Bragin, F. 

Zhao. J. Zhao, and I. Lelic, “Effects of tightening unit-level and system-
level constraints in unit commitment,” 2019 IEEE PES GM, 2019. 

 

Bing Yan (S’11-M’17) received the B.S. degree from Renmin University of 
China in 2010, M.S. and Ph.D. degrees from University of Connecticut in 2012 

and 2016, respectively. She is currently an assistant professor in the Department 

of Electrical and Microelectronic Engineering, Rochester Institute of 
Technology. Her research interests include power system optimization, grid 

integration of renewables, energy-based operation optimization of distributed 

energy systems, and scheduling of manufacturing systems.  
 

Peter B. Luh (S’77-M’80-SM’91-F’95) received the B.S. degree from 

National Taiwan University, the M.S. degree from M.I.T., and the Ph.D. degree 
from Harvard University. He has been with the University of Connecticut since 

1980, and is the Board of Trustees Distinguished Professor and SNET Professor 

of Communications & Information Technologies. His research interests include 
smart power systems–smart grid, design of auction methods for electricity 

markets, effective renewable (wind and solar) integration to the grid, electricity 

load and price forecasting with demand response, and micro grid. He was the 
Vice-President of Publication Activities for the IEEE Robotics and Automation 

Society.  
 

Tongxin Zheng (SM’08) received the B.S. degree in electrical engineering 

from North China Institute of Electric Power, Baoding, China, in 1993, the M.S. 
degree in electrical engineering from Tsinghua University, Beijing, China, in 

1996, and the Ph.D. degree in electrical engineering from Clemson University, 

Clemson, SC, USA, in 1999. He is currently a Technical Director at ISO New 
England. His main research interests include power system optimization and 

electricity market design.  

 
Feng Zhao (M’08) received the B.S. degree in automatic control from 

Shanghai JiaoTong University, Shanghai, China, in 1998, the M.S. degree in 

control theory and control engineering from Tsinghua University, Beijing, 
China, in 2001, and the Ph.D. degree in electrical engineering from the 

University of Connecticut, Storrs, CT, USA, in 2008. He is currently a Lead 

Analyst at ISO New England, Holyoke, MA, USA. His research interests 
include mathematical optimization, power system planning and operations, and 

economics of electricity markets.  

 
Mikhail A. Bragin (S’11-M’17) received his B.S. and M.S. degrees in 

mathematics from the Voronezh State University, Russia, in 2004, the M.S. 

degree in physics and astronomy from the University of Nebraska-Lincoln, 

USA, in 2006, and the M.S. and Ph.D. degree in electrical and computer 

engineering from the University of Connecticut, USA, in 2014 and 2016, 

respectively. He is an assistant research professor in electrical and computer 
engineering at the University of Connecticut. His research interests include 

mathematical optimization, including power system optimization, grid 

integration of renewables (wind and solar), energy-based operation 
optimization of distributed energy systems, and scheduling of manufacturing 

systems. 

 
Jinye Zhao (M’11) received the B.S. degree from East China Normal 

University, Shanghai, China, in 2002, the M.S. degree in mathematics from 

National University of Singapore, Singapore, in 2004, and the M.S. degree in 
operations research and statistics and the Ph.D. degree in mathematics from 

Rensselaer Polytechnic Institute, Troy, NY, USA, in 2007. She is currently a 

Lead Analyst at ISO New England, Holyoke, MA, USA. Her main interests 

include game theory, mathematical programming, and electricity market 
modeling.  

 

Dane A. Schiro (M’14) received the B.S. degree in environmental engineering 

from the Johns Hopkins University, Baltimore, MD, USA, and the Ph.D. degree 

in industrial engineering from the University of Illinois, Urbana, IL, USA. He 

is currently a Senior Analyst at ISO New England, Holyoke, MA, USA. His 
research interests include the intersection of optimization theory, economics, 

and operations. 

 
Izudin Lelic (M’98) received the B.S. and M.S. degrees in electrical 

engineering from University of Tuzla, Bosnia-Herzegovina and University of 

Belgrade, Serbia. He is currently a Principal Analyst at ISO New England, 
Holyoke, MA, USA. His research interests include electricity markets and 

power system analysis and simulations. 

http://www.iwr.uni-heidelberg.de/groups/comopt/software/PORTA/
http://www.iwr.uni-heidelberg.de/groups/comopt/software/PORTA/
http://motor.ece.iit.edu/data/

