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Abstract—Methods for chiller plant energy savings may 

increase component degradation, thereby decreasing reliability. 

Joint optimization is thus important. The problem, however, is 

challenging. First, existing reliability models which are functions 

of time in terms of years are not suitable for operation 

optimization. Second, efficiency optimization are static and often 

runs every 10-15mins given current demand while reliability 

change in a short period is not obvious. In this paper, a dynamic 

chiller reliability model and a static hybrid plant model 

consisting of empirical and DNN models are developed, and a 

weighted sum of one hour’s plant power and chiller reliability is 

minimized with a time interval 10mins. The formulation 

consisting of six independent efficiency and one dynamic 

reliability optimization problems, and chiller power and 

reliability are coupled with some common variables. To address 

the two-time scale issue, the long time scale reliability is 

approximated by reliability change as a result of operations using 

Taylor series. To efficiently solve the problem with dynamics, 

mixed-integers, nonlinearity and no explicit equations in DNN, a 

recently developed decomposition and coordination-based 

method is combined with dynamic programming with rollout and 

the plant is decomposed into a simplified dynamic chiller 

subproblem and three simple static subproblems. Gradients 

needed are obtained by using finite difference without requiring 

explicit equations. Numerical testing demonstrates the 

advantages of joint optimization in terms of energy savings and 

reliability improvement as compared with a baseline. 

 
Index Terms—Joint optimization, reliability, dynamic, deep 

neural network and mixed-integer nonlinear. 

I. INTRODUCTION 

hiller plants provide cooling to buildings. As shown in 

Fig. 1, a typical plant includes four subsystems consisting 

of chillers, cooling towers, primary pumps and condenser 
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pumps. Reliability of a plant is important especially for 

hospitals and research facilities. Low reliability implies high 

risks of plants’ breakdowns which may lead to significant 

costs. According to [1, 2], abnormal room temperature was a 

major cause of data centers’ unplanned downtimes, and the 

average loss of unplanned downtime was around $5600 per 

minute in 2010 and $9000 per minute in 2016. Besides 

reliability, efficiency which implies energy consumption is 

another key concern of plant owners. According to [3], low 

efficiency plants cost billions of dollars annually in the U.S. 

Methods for energy savings may accelerate component 

degradation and increase risks of failures, thereby decreasing 

reliability. For example, high mass flow rates may save energy 

under certain conditions but cause vibration wear and erosion 

or corrosion of tubes and reduce reliability [4]. Efficiency and 

reliability joint optimization is thus important. The goal of this 

paper is to improve plant efficiency and reliability through 

their joint operation optimization by considering a commonly 

used primary-only plant with identical units in each 

subsystem. Plant reliability can be much improved by 

enhancing reliability of chillers’ since losses caused by 

chillers are much more serious than others. Chiller reliability 

is thus studied. Empirical models are simple but may not be 

compatible when used for an arbitrary plant. A hybrid model 

consisting of Deep Neural Network (DNN) and empirical 

models is developed where DNN is for plants’ largest energy 

consumer, chillers, and empirical models are for others. 

 
Fig. 1. Schematic of a chiller plant (Decision variables are in blue and 

depended variables are in red) 

The problem is challenging. Generally, reliability is 

considered as a function of time in terms of years, and its 

change during a short period is small as compared to itself. 

Influence of operations are seldom studied for chiller plants 

and there is no model for plant reliability operation 

optimization. For efficiency optimization, static models are 
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commonly used considering fast heat exchange processes in 

plants. The static optimization often runs every 10-15 minutes 

independently given current cooling demand and weather [5]. 

Lacking of reliability models and the two-time scale issue 

make the problem challenging. In this paper, based on the idea 

of wind turbine reliability modeling in [15], chiller reliability 

is modelled as a function of time, the number of 

startups/shutdowns and water mass flow rates in Section III. 

Model parameters are obtained by using a plant model 

operated based on rules. To address the two-time scale issue, 

reliability is approximated by reliability at current time which 

is constant and reliability change as a result of future 

operations by using Taylor series. Based on the chiller 

reliability model and a static hybrid plant model consisting of 

empirical and DNN models, a formulation is established 

where a weighted sum of one hour’s plant power consumption 

and chiller reliability is minimized with a time interval 

10mins. The problem consists of six independent efficiency 

and one dynamic reliability optimization problems. Static 

models of subsystems are separable with additive coupling 

constraints. Chiller DNN and reliability models are coupled 

with some common decision variables. The problem needs to 

be solved by looking ahead and a moving window is used. 

Computational requirement of the problem J(t) with t=1,…,6 

increases significantly as compared with efficiency 

optimization J(t) with t=1. Moreover, chillers are coupled 

across time and DNN is without explicit formulations. These 

increase the difficulty of solving the problem especially in 

view of the existence of discrete variables and nonlinearity. To 

the best of our knowledge, plant efficiency and reliability joint 

optimization has not been studied from the operation point of 

view. Reliability was only considered for design purpose and 

formulated as a function of time as shown in Section II. For 

efficiency optimization, both Neural Network (NN) and 

empirical models were used. For the former, only intelligent 

algorithms were adopted to solve the problem but solution 

quality cannot be quantified. To efficiently solve the problem 

for near-optimal solutions, dynamic programming (DP) with 

rollout, finite differences (FD), and a decomposition and 

coordination-based method are combined where chiller power 

consumption and reliability are grouped together as one 

subproblem and other subsystems are considered as individual 

subproblems in Section IV. To reduce nonlinearity and 

complexity of a subproblem, DP with rollout is applied where 

rules are used for t=2,…,6. Gradients needed are approximated 

by using FD without requiring explicit equations.  

In Section V, three examples are tested for a plant with four 

components in each subsystem. In Example 1, efficiency 

optimization is considered and results are compared with those 

obtained by using empirical models and the method from [5], 

demonstrating accuracy and efficiency of our method for 

problems with hybrid models. In Example 2, joint 

optimization of the plant for one cooling demand is solved by 

looking ahead one hour to show the idea and performance of 

our method. In Example 3, 20 years’ demands are considered. 

A moving window is used and for each demand, joint 

optimization is done by looking ahead one hour. Efficiency 

and reliability improvement by using our method is shown as 

compared with a baseline using rules, and Pareto Frontier is 

provided. 

II. LITERATURE REVIEW 

In this section, reliability optimization and efficiency 

optimization are reviewed first, followed by their joint 

optimization. 

Reliability Optimization 

Reliability is mainly considered from the design point of 

view or for maintenance scheduling, and is modeled as a 

function of time under the assumption that devices follow 

standard operating procedures [6, 18-20]. Relationships 

between operations and reliability are seldom considered. 

Using reliable devices and redundant configurations are two 

common ways to improve system reliability. For example, in 

[7], the number and the size of pumps are optimized by testing 

different combinations of pumps to reduce the life-cycle cost 

while maintaining reliability of a chilled water system. 

Efficiency Optimization 

Power consumption is commonly formulated as a function 

of operations considering fast heat exchanges processes in a 

plant and static empirical models are often used. Such models 

may not be compatible when used for an arbitrary plant. 

Artificial Neural Networks (ANN) models without the issue 

have been used in many applications [8]. Some papers use NN 

to solve simple optimization problems such as continuous 

linear and quadratic problems [21-24]. Chiller plant 

optimization, however, is complicated with mixed-integers 

and high nonlinearity. In existing studies [9-14], NN was only 

used to model component power consumption, and the 

problems were solved by using intelligent algorithms because 

NN does not have explicit equations.  However, the algorithms 

do not exploit problem structures, and solution quality cannot 

be quantifies. In one of our recent works [5], a decomposition 

and coordination-based method overcoming the above 

difficulties was used, and near-optimal solutions were 

obtained. Different from our problem here, the problem in [5] 

is static and based on empirical models. 

Efficiency and Reliability Joint Optimization 

To the best of our knowledge, efficiency and reliability joint 

optimization for plants has not been studied. A possible reason 

might be that operations during a short period do not have 

obvious influence on reliability. Beyond chiller plants, 

problems with two-time scales have not been studied either. In 

[15], wind turbine joint optimization was studied by 

considering turbine power and the reliability of bearings that 

were the major cause of turbine breakdown. The reliability is 

modelled as a function of load, time, and so on. A long time 

scale, the period between fault detection and the end of device 

life, was used for the whole problem. The ideas for reliability 

optimization are adopted in our work. 
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III. PROBLEM FORMULATION 

In this section, a formulation consisting of six independent 

efficiency and one dynamic reliability optimization problems 

is established based on a static hybrid plant model and a 

dynamic chiller reliability model. Chiller performance and 

reliability models are grouped together and presented in 

subsection A. Models of other components are briefly shown 

in subsections B and C, followed by coupling constraints 

between subsystems and the optimization problem. 

A. DNN and Reliability Models of Chillers 

A typical chiller is shown in Fig. 1. Chilled water is 

generated through heat exchange between water and 

refrigerant in the evaporator and the condenser, and electricity 

is consumed by the compressor. A Deep Neural Network 

(DNN) model is developed for chiller power consumption Pch 

and the architecture is shown in Fig. 2. There are three inputs: 

chilled water supply temperature Tchws, condenser water supply 

temperature Tcws and chiller cooling load Qch, which are 

bounded as 40C≤Tchws≤100C, 150C≤Tcws≤300C, and 

0.1Qcapacity ≤ Qch ≤Qcapacity, where Qcapacity is plant capacity. 

Data generated from the model in [5] under 453,600 operating 

conditions are used where 80% of them is for training and the 

remaining is for testing. The model is trained using 10-fold 

cross validation over the training data. Hidden layers and 

associated neurons are determined by using grid-based 

parameter search. In this model, there are two hidden layers 

with 1100 and 100 neurons, respectively, and the ReLu 

activation function [25] which was found to provide the best 

performance is used. The model achieves an R2 coefficient of 

0.998 and root mean squared error (RMSE) of 2.04KW.  

 

 

Fig. 2. DNN chiller model architecture  

The reliability model which is a function of time from [20] 

is modified for operation optimization with key factors that 

affect chiller degradation considered based on the idea of [15], 

and shown as follows. 

𝑅(𝑡) = 𝑒−ℎ(𝑡)×𝑡                                    (1) 

ℎ(𝑡) = 𝑘0 × 𝑒
𝑁𝑎𝑐𝑐(𝑡)−𝜇1

𝑐1
+

𝑇𝑎𝑐𝑐(𝑡)−𝜇2
𝑐2

+
𝑚𝑐ℎ𝑤(𝑡)−𝜇3

𝑐3
+

𝑚𝑐𝑤(𝑡)−𝜇4
𝑐4  (2) 

where k0 is the failure rate per year, Nacc is the number of 

startups/shutdowns, Tacc is running time, and mchw and mcw are 

water mass flow rates of the evaporator and the condenser, 

respectively. Each of the factors are normalized by subtracting 

their expected average number of accumulated usage per year 

𝜇𝑖 and dividing by the expected maximum usage at the end of 

the chiller life 𝑐𝑖. The parameters are obtained by simulating a 

chiller plant model under ideal baseline operating procedures. 

When baseline operating procedures are followed, reliability 

matching the model in the literature. If a chiller is used 

prudently, the reliability will decrease faster and vice versa.  

For identical chillers, they are assumed to be used 

alternately and have similar statuses for simplicity. Average 

running time, number of startups/shutdowns and mass flow 

rates are used. As mentioned before, reliability has a long time 

scale while efficiency has a short one. To address this issue, 

the long time scale reliability is approximated by a constant 

reliability and reliability change as a function of operations by 

using Taylor series. With small terms ignored, we have 
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The large constant term Rch,0 is reliability at a certain time 

t0, and can be removed in optimization. Since our goal is to 

improve efficiency and reliability by adjusting operations, 

reliability change 𝑅̂𝑐ℎ caused by operations is generated. 
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To describe the relationship between power consumption 

and reliability, running time and the number of 

startups/shutdowns are represented by the number of active 

chillers NAch as follows 
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where 𝛥𝑇𝑎𝑐𝑐(𝑡) = 𝑇𝑎𝑐𝑐(𝑡) − 𝑇𝑎𝑐𝑐(𝑡0), 
𝛥𝑁𝑎𝑐𝑐(𝑡) = 𝑁𝑎𝑐𝑐(𝑡) − 𝑁𝑎𝑐𝑐(𝑡0), 

𝛥𝑇𝑎𝑐𝑐(𝑡 + 1) = 𝛥𝑇𝑎𝑐𝑐(𝑡) +
(𝑁𝐴𝑐ℎ(𝑡 + 1) × 𝛥)

𝑁𝑐ℎ

, 

𝛥𝑁𝑎𝑐𝑐(𝑡 + 1) = 𝛥𝑁𝑎𝑐𝑐(𝑡) +
|𝑁𝐴𝑐ℎ(𝑡 + 1) − 𝑁𝐴𝑐ℎ(𝑡)|

𝑁𝑐ℎ

. 

Heat exchange equations are from our previous work for 

chiller plant efficiency optimization [5].   

( ) ( ) ( ) ( )( ) ,ch p chchw chwr chwsQ t = C m t T t T t − 
   (6) 

( ) ( ) ( ) ( )( ) ,cd p chcw cwr cwsQ t = C m t T t T t − 
   (7) 

( ) ( ) ( ),ch ch cdP t +Q t = Q t        (8) 

( ) ( ) ( ),Ach ch demandN t Q t Q t =        (9) 
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( ) ( ) ( ),min ,max ,Ach ch demand Ach chN t Q Q t N t Q        (10) 

where Cp is water specific heat, Tchwr is chilled water return 

temperature, 𝑚̇𝑐ℎ𝑐ℎ𝑤  is chilled water mass flow rate, Qcd is 

heat rejected by the condenser, Qdemand is building cooling 

requirement, and Qch,min and Qch,max are the minimum and 

maximum cooling provided by a chiller, respectively.   

B. Cooling Tower Model  

Cooling towers are devices generating condenser water 

through heat exchange between water and air. The model in 

our previous work [5] is used.  

( )
3

,

,nom

,cta

ct ct nom

cta

m t
P P

m

 
=   

 
       (11) 

where Pct,nom is the nominal power consumption and 𝑚̇𝑐𝑡𝑎,𝑛𝑜𝑚 

is the nominal air mass flow rate.  

Heat exchange is based on the approach temperature and 

details can be found in [5]. 

C. Variable-speed Pump Model 

The pump model from [5] is used and details are not 

presented here. 

D. Coupling Constraints between Subsystems 

As Fig. 1 shows, chilled water of primary pumps flows into 

chillers, and condenser water of condenser pumps flows into 

chillers and then cooling towers. Based on mass balance,  

( ) ( ) ( ) ( ),App pp Ach chchwN t m t N t m t=     (12) 

( ) ( ) ( ) ( ),Acp cp Ach chcwN t m t = N t m t      (13) 

( ) ( ) ( ) ( )= ,Act ct Ach chcwN t m t N t m t      (14) 

where NApp, NAcp and NAct are the numbers of active primary 

pumps, condenser pumps and cooling towers, respectively, 

and 𝑚̇𝑝𝑝 and 𝑚̇𝑐𝑝 are primary and condenser pump mass flow 

rates, respectively. 

To separate chillers and cooling towers, temperatures for 

individual subsystem are introduced. Tcws_ch and Tcwr_ch are for 

chillers, and Tcws_ct and Tcwr_ct are for cooling towers: 

( ) ( )_ _ ,cws ch cws ctT t T t=        (15) 

( ) ( )_ _ .cwr ch cwr ctT t T t=        (16)  

E. The Optimization Problem 

The objective is to minimize one hours’ plant power 

consumption and chiller reliability change for a plant with 

identical units in each subsystem. The problem is:  

( )

( ) ( ) ( )( )
, , , , , ,

1 2

1

min ,

ˆwith 1 ,

Ach Act App Acp chws pp cpN N N N T m m

T

plant ch

t

J

J w P t w R T 
=

    + −   − 
  

    (17) 

where 𝑃𝑝𝑙𝑎𝑛𝑡 = 𝑁𝐴𝑐ℎ𝑃𝑐ℎ + 𝑁𝐴𝑐𝑡𝑃𝑐𝑡 + 𝑁𝐴𝑝𝑝𝑃𝑝𝑝 + 𝑁𝐴𝑐𝑝𝑃𝑐𝑝, 

0 ≤ 𝑤 ≤ 1, 𝜃1 =
1

𝑃𝑝𝑙𝑎𝑛𝑡,𝑏𝑎𝑠𝑒(𝑡)
, 𝜃2 =

1

−𝑅̂𝑐ℎ,𝑏𝑎𝑠𝑒(𝑇)
, 𝑇 =

1

𝜏
, 𝜏 is the 

time interval, and subject to heat exchange constraints (6-9), 

lower/upper bounds such as (10), and coupling constraints 

(12-16). Power consumption and reliability are normalized by 

using costs obtained based on rules and θi is the normalization 

parameter. Weight w can be chosen by users based on their 

requirements. Model parameters will be updated for particular 

plants in the future when data are available.  

According to (17), the problem is made up of T independent 

efficiency optimization problems and one dynamic reliability 

optimization problem. The static models of subsystems are 

separable with additive coupling constraints. Chiller DNN and 

reliability models share some common decision variables. The 

problem is a mixed-integer nonlinear problem with dynamics, 

and has no explicit equations for chiller power consumption. 

To get the optimized results for t=1, the problem is solved by 

looking ahead one hour and a moving window is used. 𝜏 is 

10mins and T is 6 in our study. Computational requirement of 

the problem is much increased as compared with efficiency 

optimization where w=1 and T=1. 

IV. SOLUTION METHODOLOGY 

To efficiently solve the problem for near-optimal solutions, 

a recently developed decomposition and coordination-based 

method, surrogate augmented Lagragian relaxation + 

sequential quadratic programming [5], is combined with 

dynamic programming with rollout and finite difference 

without requiring explicit gradient equations. 

The Relaxed Problem 

Considering that the subsystems are separable with additive 

coupling constraints, the relaxed problem is obtained by 

relaxing (12-16) and adding penalty for (12) which is difficult 

to be satisfied:  
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 (18) 

subject to (6-9) and lower/upper bounds such as (10).  

As mentioned, chiller power and reliability are coupled, 

they can be grouped together. The problem is then 

decomposed into four subproblems for each subsystem. 

Chiller Subproblem  

All the terms related to chillers are collected and variables 

of other subsystems in the quadratic terms that are not 

separable are replaced by their solutions of previous iterations.  
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( ) ( ) ( ) ( )( )
2

1 1 10.5 1 1 1 1 ,k k k k

App pp Ach chchwc N m N m− − − + −


    (19) 

subject to (5-9) and lower/upper bounds.  

With reliability considered, the subproblem is dynamic. To 

solve efficiently the subproblem, Dynamic Programming (DP) 

with rollout is used. Running time and the numbers of 

startups/shutdowns are the states x(t). Stage-wise costs at time 

t=1 are established by using sequential quadratic 

programming (SQP) and finite difference (FD). Gradients 

required are obtained by using FD and information read from 

DNN models as shown in Fig. 3. If no feasible solution is 

found, the cost is infinite. Following rules are used for t=2, …, 

T: Tchws = 6.5 0C; Tcws = 4 + the wet-bulb temperature; NAch = 

NAct = NApp = NAcp; A chiller is turned on when Qdemand > 

0.9Qcapacity; Tchwr = Tchwr,max and Tcwr = Tcwr,max. Based on rules, 

at t=2 ,…, 6, power consumption of cooling towers Pct,r and 

pumps Ppp,r and Pcp,r depends on decision variables of chillers. 

Thus they are collected in the chiller subproblem. 

 

Fig. 3. The framework of SQP with finite difference 

Cooling Tower Subproblem and Pump Subproblem 

The cooling tower subproblem at kth iteration is obtained by 

collecting all the terms related to cooling towers as: 

( )

( ) ( ) ( ) ( ) ( )ct T _

min ,

with 1 1 1 1 1 ,
Act

ct
N

k k

ct Act ct Act ct cwr ct

L

L N P N m T  − −
 

                                  (20) 

subject to heat exchange and lower/upper bound constraints. 

Since the subproblem is not coupled across time, SQP is used 

by considering all the possible cases. The final solution of the 

subproblem is the one with minimum cost.  

Pump subproblems are obtained and solved similarly as the 

cooling tower subproblem. Details are not presented.  

The Dual Problem and Feasible Solutions 

The dual function is shown as: 

( )
max ,with .ch ct pp cpq q L L L L



 + + +    (21) 

After solving one subproblem, multipliers are updated 

based on (22-24) and then used for next subproblem until the 

dual function is maximized [16-17].  

( ) ( ) ( ) ( )( )1 ,k k k kt t s t g x t + = +      (22) 

( ) ( )
( )( )

( )( )

1

1 ,

k

k k

k k

g x t
s t s t

g x t


−

−=      (23) 

( )
1

1 , 0 1, 1, 1, 2, ...,p

k M k p M k
−

= −     =  (24) 

where s is the stepsize, M and p are constants, k is the number 

of iterations and g̃ is the augmented surrogate subgradient. 

With coupling constraints relaxed, solutions obtained above 

may not be feasible for the original problem, and a lower 

bound is obtained. To get feasible solutions, SQP is directly 

used with NAch, NApp, NAcp and NAct obtained above given. 

V. NUMERICAL TESTING 

Our method has been implemented in MATLAB 2018b on a 

Core i7 3.6 GHz desktop with 16 GB memory, and a solver 

slp_sqp [26] is used. Three examples are tested. In Example 1, 

efficiency optimization based on the hybrid model is 

considered, and the results are compared with those obtained 

based on empirical models for validation. In Example 2, joint 

optimization is considered for one cooling demand by looking 

one hour ahead to show the idea and performance of our 

method. In Example 3, 20 years’ cooling demands are 

considered and a moving window is used to show energy 

savings and reliability improvement by using our methods as 

compared with a baseline using rules.  

Example 1 

Based on UTC Supervisory Control Synthesis project, a 

plant with four identical units in each subsystem is used for 

efficiency optimization based on the hybrid model. Parameters 

are from [15]. With cooling load requirements from 25% to 

75% of Qcapacity, results for CPU times, gaps, and feasible costs 

are obtained and shown in Table I.  

Table I. Efficiency optimization based on the hybrid model 

Qp 0.25 0.35 0.45 0.55 0.65 0.75 

CPU(s) 22.37 42.82 51.58 43.89 40.66 43.38 

Gap(%) 0.2342 0.2013 0.2695 0.4297 0.6101 0.9387 

Cost(kw) 177.56 251.54 328.48 411.33 498.16 593.24 

As shown in Table I, gaps are small showing that the 

quality of the solutions is good. Computational times are short 

as compared with the requirement (within 10-15mins). For 

optimization validation, results based on empirical models are 

calculated by using the method in [15] where gradients are 

obtained directly from model equations. The same solver 

slp_sqp is used. 

Table II. Efficiency optimization based on the empirical models 

Qp 0.25 0.35 0.45 0.55 0.65 0.75 

CPU(s) 21.32 16.90 19.14 17.06 19.45 23.42 

Gap(%) 0.4474 0.1730 0.1389 0.1073 0.1141 0.1891 

Cost(kw) 174.81 250.08 325.22 409.17 494.25 589.06 

According to Table I and Table II, the differences in power 

consumption are within the model error (RMSE= 2.04) and 

CPU times by using the hybrid model are larger than those by 
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using empirical models, but within the requirement. The 

results demonstrate that our method achieves good 

performance for optimization based on the hybrid model. 

Example 2 

The plant in Example 1 is used for joint optimization. 

Optimized results for one cooling demand 720 KW is 

calculated by looking ahead one hour with demands [720 KW; 

720 KW; 733.39 KW; 749.84 KW; 766.28 KW; 782.72 KW]. 

Initial statues are t0 = 1 month, Tacc,0 = 0.0417, Nacc,0 =  2.1250, 

NAch(0) = 2, mcw,0=15 and mchw,0=10. By using our method, 

results for CPU times, gaps, the number of active chillers, 

water mass flow rates are obtained.  

Table III. Joint optimization results by using our method 

Weight 0 0.1 0.2 0.3 0.4 0.5 

CPU(s) - 26.28 23.42 23.98 24.73 25.69 

Gap (%) - 0.13 0.14 0.15 0.16 0.12 

TAcc(min) 5 5 5 5 5 2.5 

NAcc 0 0 0 0 0 0.25 

mchw(kg/s) 14.26 14.26 14.26 14.26 14.26 28.52 

mcw(kg/s) 12.5 12.5 12.5 12.5 12.5 25.0 

Weight - 0.6 0.7 0.8 0.9 1 

CPU(s) - 26.57 26.34 25.56 25.21 25.42 

Gap (%) - 0.13 0.13 0.14 0.14 0.14 

TAcc(min)  2.5 2.5 2.5 2.5 2.5 

NAcc - 0.25 0.25 0.25 0.25 0.25 

mchw(kg/s)  28.52 28.52 28.52 28.52 28.52 

mcw(kg/s)  25.0 25.0 25.0 25.0 25.0 
 

As shown in Table III, gaps of our methods are small 

showing that the quality of the solutions is good. 

Computational time is short as compared with the requirement 

(within 10-15mins). According to the results, the number of 

startups/shutdowns and water mass flow rates play an 

important role for reliability. Running time is not as important 

as them. This is reasonable since reliability has a long time 

scale. As w increases, efficiency becomes more important and 

the amount of average water increases.  

Example 3 

The plant in Example 1 and 20 years’ cooling demands 

scaled down from UCONN’s chiller plant are used to show 

power consumption and reliability by using our method as 

compared with a baseline using rules. Since the data set is 

large, for simplicity, considering that a plant is mainly 

operated at June, July and August, we select one week’s 

demands (8 hours per day) from each of the months above to 

estimate the results for 20 years. A moving window is used 

and for each cooling requirement, the problem is solved by 

looking ahead one hour. 

 

Fig. 4. Cooling loads modified from UConn’s plant 

Results for reliability and power consumption based on 

joint optimization with w=0.5, efficiency optimization, 

reliability optimization, and baseline strategies are as follows. 

Table IV. Chiller reliability and power consumption  

 Chiller reliability Power consumption 

Joint 0.4892 70,802,000 

Efficiency 0.1863 65,716,000 

Reliability 0.5323 78,762,000 

Baseline 0.3401 75,050,000 

 

 

Fig. 5. Percentage power reduction as compared with the baseline 

According to Table IV and Fig. 5, based on the joint 

optimization, total reduction is 10.59% and maximum 

reduction is 16.84% as compared with the baseline. The 

savings exceed the target set by industry partners (10%). 

Based on efficiency optimization, total percentage power 

reduction is 12.44% and the maximum one is 19.64%. Power 

consumption based on reliability optimization is larger than 

that of the baseline because energy is not considered in 

reliability optimization. Assume that the price of energy is 

$0.05 kwh [3]. Baseline cost is $625,420, efficiency 

optimization cost is $547,630 and joint optimization cost is 

$590,020. Plant capacity of our problem is small. For 

UConn’s plant whose capacity is around 8.5 times of ours, the 

reduced cost based on joint optimization is around $300,900, 

demonstrating significant savings. 

Assume that lifespan of a chiller using baseline strategies is 

20 years and the corresponding reliability 0.3401 is used as the 

indicator for the end of chiller life. Lifespan based on 

optimized strategies are estimated. According to Fig. 6, chiller 

lifespan based on efficiency optimization is 14.83 years, based 

on joint optimization is 42.75 years and based on reliability 

optimization is over 45 years.  

 

Fig. 6. Chiller reliability based on different strategies 
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According to results above, under certain conditions such as 

w=0.5, both energy savings and reliability are improved by 

using joint optimization as compared with the baseline. With 

w from 0.1 to 0.9 (increased by 0.1), Pareto Frontier is 

obtained and shown in Fig. 7. According to the results, the 

relationship between reliability and performance is almost 

linear. The reason is that mass flow rate has a large impact on 

both power consumption and reliability. As mass flow rate 

increases, reliability decreases while efficiency increases. As 

w increases, efficiency becomes more important than 

reliability and more water is used. For customers who care 

about energy savings, a big w can be used and vice versa. 

 

Fig. 7. Pareto Frontier 

VI. CONCLUSION 

In this paper, a decomposition and coordination-based 

approach is developed in combination with DP with rollout 

and FD for chiller plant joint optimization using a hybrid 

model. Results show that near-optimal solutions are obtained 

with short computational time by using our method and both 

energy savings and reliability are improved as compared with 

the baseline. Our method is general and can be extended to 

problems with multiple objectives beyond chiller plants. 
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