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Abstract— Many operation optimization problems such as
scheduling and assignment of interest to the automation commu-
nity are mixed-integer linear programming (MILP) problems.
Because of their combinatorial nature, the effort required to
obtain optimal solutions increases drastically as the problem size
increases. Such operation optimization problems typically need
to be solved several times a day and require short solving times
(e.g., 5, 10, or 20 min). The goal is, therefore, to obtain near-
optimal solutions with quantifiable quality in a computationally
efficient manner. Existing MILP methods, however, suffer from
slow convergence and may not efficiently achieve this goal. In this
paper, motivated by fast convergence of augmented Lagrangian
relaxation (LR), a novel advanced price-based decomposition and
coordination “surrogate absolute-value LR” (SAVLR) approach
is developed. Within the method, convergence of our recent
surrogate LR (SLR), which has overcome all major difficulties of
traditional LR, is significantly improved by penalizing constraint
violations by adding “absolute-value” penalties. Moreover, such
penalties are efficiently linearized in a standard way, thereby
enabling the use of MILP solvers. By exploiting the beautiful
property of exponential reduction of complexity of subproblems
upon decomposition, subproblems are efficiently solved and their
solutions are efficiently coordinated by updating Lagrangian mul-
tipliers. Convergence is then proved under novel adjustment of
penalty coefficients. A series of generalized assignment problems
is considered, and for these problems, superior performance
of SAVLR over other state-of-the-art and state-of-the-practice
methods is demonstrated. Accompanying CPLEX codes, whereby
SAVLR is implemented, are also included.

Note to Practitioners—Examples of important problems that
arise in automation community include scheduling and assign-
ment problems. Because of their combinatorial nature, the effort
required to obtain optimal solutions increases drastically as the
problem size increases. Existing mixed-integer linear program-
ming (MILP) methods, however, may suffer from slow conver-
gence and may not efficiently achieve this goal. The new method
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revolutionizes the way such problems can be solved with major
improvements on the overall performance. It is based on our
recent breakthrough “surrogate Lagrangian relaxation” (LR),
which has overcome all major difficulties of traditional LR
while exploiting the beautiful property of exponential reduction
of complexity upon decomposition. To significantly improve
convergence while maintaining linearity so as to use MILP
solvers, our idea is to penalize violations of relaxed constraints
by the infrequently used “absolute-value” penalty functions.
Although not differentiable, absolute-value penalties have the
advantage of being exactly linearizable through extra variables
and constraints. The difficulties caused by those extra constraints,
which couple subproblems, are resolved by adaptive adjust-
ment of penalty coefficients. A series of generalized assignment
problems is considered and superior performance of the new
method against state-of-the-art and state-of-the-practice methods
is demonstrated. Accompanying CPLEX codes whereby the new
method is implemented are also included.

Index Terms— Absolute-value penalty, branch-and-cut (B&C),
generalized assignment problems (GAPs), linearity, mixed-
integerlinear programming (MILP), separability, surrogate
Lagrangian relaxation (SLR), surrogate absolute-value
Lagrangian relaxation (SAVLR).

I. INTRODUCTION

MANY practical systems of importance to the automation
community such as manufacturing scheduling [1]–[8]

and generalized assignment problems (GAPs) [9], [10] are
created by establishing subsystems first and then by loosely
coupling them together to form the overall system. Opti-
mizing system performance is often formulated as mixed-
integer linear programming (MILP) problems (with integer
linear programming (ILP) problems being a special case).
The corresponding objective functions are additive in terms of
cost components associated with each subsystem. In addition,
constraints that couple subsystems are linear, therefore, are
also additive in terms of subsystems. Such MILP problems
are thus always separable. The difficulty solving MILP prob-
lems, however, is caused by the presence of integer decision
variables. These variables lead to combinatorial complexity,
which becomes very high when the problem size is large. As a
result, the effort required to obtain optimal solutions to MILP
problems increase exponentially. Since operation optimization
problems typically need to be solved several times a day
and require short solving times (e.g., 5, 10, or 20 min), for
practical purposes the goal is to obtain near-optimal solutions
with quantifiable quality in a computationally efficient manner.
However, this goal may not always be achieved by using
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state-of-the-art and state-of-the-practice MILP optimization
methods because of fundamental difficulties as explained
ahead.

Standard MILP methods such as branch-and-cut
(B&C) [11]–[20] exploit linearity. The idea of the method is
to obtain the convex hull, the smallest convex set that contains
feasible solutions, whereby feasible solutions (or “integer
solutions” if the original problem is an ILP problem) are
located at its vertices. In this case, the problem of solving an
MILP problem reduces to solving a linear programming (LP)
problem by using LP methods. To obtain the convex hull,
B&C cuts off LP regions without cutting off feasible solutions
by using linear “valid inequalities” (or cuts). If the convex hull
is difficult to obtain, the method resorts to time-consuming
branch and bound (B&B) and heuristics to obtain feasible
solutions.

A traditional decomposition and coordination Lagrangian
relaxation (LR) method [21]–[37] exploits separability into
subproblems, each with much reduced complexity. However,
because standard LR requires solving all subproblems to
update multipliers, the relaxed problem is difficult to fully
optimize and multipliers can suffer from severe zigzagging.
Moreover, convergence proof and implementation require the
knowledge of the optimal dual value. While adaptive estimates
of the optimal dual value have been used to guarantee conver-
gence, such adaptive adjustments may require many iterations.
As a result of high computational effort, zigzagging, and
inefficient estimations of the optimal dual value, the overall
convergence of the method is slow.

In this paper, MILP optimization methods are reviewed
in Section II. Major difficulties of standard LR have been
overcome by our recent SLR [38], whereby proper “surrogate
subgradient directions” are obtained by requiring the satisfac-
tion of only the simple “surrogate optimality condition” [39].
When solving separable problems, the surrogate optimality
condition is automatically satisfied after solving one or several
subproblems at a time and resulting surrogate subgradient
directions are smooth, thereby alleviating zigzagging and
reducing computational requirements. However, the difficulty
is that levels of constraint violations may not reduce suf-
ficiently fast, thereby causing difficulties searching feasible
solutions. Moreover, lower bounds generated by the method
may not provide a sufficiently good measure of solutions
quality. These difficulties have been demonstrated when solv-
ing power systems’ unit commitment (UC) problems with a
significant number of combined cycle (CC) units [40], [41].

In Section III, a GAP is introduced first to convey ideas by
providing an example of a separable ILP problem, and then a
general separable MILP problem formulation is presented.

In Section IV, computational difficulties associated with
existing methods are overcome by developing a novel
advanced price-based decomposition and coordination “surro-
gate absolute-value LR” (SAVLR). Within the method, conver-
gence of our recent SLR is significantly improved by penaliz-
ing constraint violations using “absolute-value” penalties with
exact linearization through extra variables and constraints.
While these extra constraints couple subproblems and the
surrogate optimality condition may not be satisfied when

penalty coefficients are too large, convergence is guaranteed
by a novel adjustment of penalty coefficients. Moreover,
relaxed problems are decomposed into MILP subproblems
with drastically reduced complexity, and their solutions are
efficiently coordinated, thereby resulting in fast convergence.

In Section V, to demonstrate the performance of SAVLR and
to compare with SLR, alternate direction method of multipliers
(ADMM) and standard B&C, a series of GAPs is considered
including problems with machine availability, job release, and
sequence-dependent setup times. It is demonstrated that for
these problems, SAVLR is much faster compared to other
methods.

II. LITERATURE REVIEW

Existing MILP methods such as B&C and LR are used to
obtain feasible solutions while quantifying their quality and
their difficulties are reviewed in Section II-A. Recent surrogate
subgradient method (SSM) and SLR that improve convergence
of standard LR are reviewed in Section IV-B. Other methods
such as genetic algorithm that does not provide a measure of
solutions quality and heuristics are excluded. Also, the branch-
and-bound (B&B) method, which is essentially as the “tail
end” or “the last resort” of B&C, is mentioned only briefly.

A. Relevant Optimization Methods

When solving MILP problems, state-of-the-art and state-of-
the-practice methods may not obtain near-optimal solutions
with quantifiable quality in a computationally efficient manner
because of fundamental difficulties as explained next.

1) Branch-and-Cut (B&C) [11]–[20]: When solving an LP
problem, its convex hull (the smallest convex set containing
all feasible solutions) is piecewise linear and is identical to
the feasible set. An optimal solution is at one of its vertices.
When solving an MILP problem, however, the feasible set of
the integrality relaxed LP problem is typically larger than the
convex hull, and the resulting LP solution is typically not feasi-
ble with respect to the original MILP problem. B&C attempts
to obtain the convex hull by cutting off LP regions without
cutting off feasible solutions using linear “valid inequalities”
(or cuts). If the convex hull is obtained, feasible solutions (or
“integer solutions” if an original problem is an ILP problem)
are located its vertices. In this case, the problem of solving an
MILP problem reduces to solving an LP problem by using
LP methods. When the convex hull is difficult to obtain,
the method relies on B&B and heuristics to obtain feasible
solutions. When solving Midcontinent Independent System
Operator’s (the largest independent system operator in the
USA) UC problems with a large number of CC units, cutting
operations typically cannot obtain the convex hull, and a
significant number of branching operations is then required to
obtain feasible solutions. For these problems, we have vividly
witnessed the breakdown of B&C. The fundamental difficulty,
we believe, is that B&C has no “local” concept. Without
exploiting “local” subsystem features, constraints associated
with transitions among configurations within one CC unit are
treated “globally,” thereby affecting the solution process of the
entire problem, thereby leading to long CPU times and large
mixed-integer programming (MIP) gaps [40], [41].
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2) Lagrangian Relaxation (LR): LR in combination with
subgradient methods was traditionally used to solve MILP
problems by exploiting separability [21]–[37]. After relaxing
system-wide coupling constraints and decomposing the relaxed
problem into subproblems associated with individual sub-
systems, subproblem solutions are coordinated by iteratively
updating Lagrangian multipliers. The major difficulties of
standard LR with subgradient methods are that: 1) they require
solving all subproblems to update multipliers, leading to high
computational effort and zigzagging of multipliers and 2) the
convergence proof requires the knowledge of the optimal dual
value, which is generally unknown. While convergence can be
achieved in practice by adaptively estimating the optimal dual
value, such process is typically inefficient. As a result of the
above difficulties, overall convergence may be very slow.

3) Augmented Lagrangian Relaxation (ALR) and Alternate
Direction Method of Multipliers (ADMM): Augmented LR
(ALR) was first introduced in the late 1960s by Hestenes [42]
and Powell [43], and is a powerful method to improve
convergence of standard LR by penalizing constraint viola-
tions using quadratic penalties [44]–[46]. Under assumptions
of convexity and smoothness of the objective function and
constraints, convergence was proven. The major difficulty is
that with the introduction of quadratic penalties, the overall
problem is no longer linear nor separable. To reduce the
effort in optimizing the relaxed problem, ADMM was intro-
duced in 1970s [47]–[50]. Within ADMM [50, pp. 13–14],
two subproblems are formulated by fixing selected decision
variables. When problems are large, however, each subproblem
may also be significant in size and complexity. Moreover,
when solving MILP problems, the method typically does not
converge because stepsizes within ADMM do not approach
zero, which is required for convergence when optimizing
associated nonsmooth dual functions [50, p. 73].

B. Recent Developments

1) Surrogate Subgradient Method (SSM) [38] and Surrogate
Lagrangian Relaxation (SLR) [39]: Computational difficulties
associated with standard LR have been overcome by SSM [39].
Within SSM, “surrogate subgradient directions” that form
acute angles with directions toward the optimal multipliers are
obtained after solving one subproblem at a time only subject
to the simple “surrogate optimality condition” [39] with much
reduced computational effort and zigzagging. As a result,
by updating multipliers along these directions with appropri-
ately chosen stepsizes, multipliers get closer to the optimal
multipliers. However, within SSM [39], stepsizes require the
knowledge of the optimal dual value for convergence proof
as well as for practical implementations. Within our recent
SLR [38], convergence has been proven without requiring
the knowledge of the optimal dual value. This was achieved
with a constructive process based on the contraction mapping
concept, whereby distances between Lagrange multipliers at
consecutive iterations decrease, and as a result, multipliers
converge to a unique limit. At the same time, stepsizes are kept
sufficiently large to avoid premature algorithm termination.
In addition, a constructive stepsizing formula satisfying these
criteria has been developed.

2) Combination of SLR and B&C [40], [41], [51]–[54]:
SLR has been combined with B&C, whereby B&C has been
used to solve subproblems. However, within the method, levels
of constraint violations may not reduce fast enough. For MILP
problems such as UC with a significant number of CC units
that arise in power systems, computational improvements over
standard B&C may not be significant enough.

III. MILP PROBLEM FORMULATION

In Section III-A, the GAP [9], [55] is presented to convey
ideas by providing an example of a “separable” ILP problem.
In Section III-B, a general MILP problem formulation is
presented, whereby a GAP is as a special case.

A. Motivating Generalized Assignment Problem

The goal of GAPs is to minimize the total assignment cost
while assigning a set of jobs I to a set of machines J , while
making sure that every job i is assigned to only one machine j ,
and that machines’ available capacity Tj is not exceeded by
assigned jobs [9], [55]. Assignment of a job i to a machine j
is captured through assignment binary variables yi, j , which
are equal to 1 if and only if job i is assigned to a machine j .
With each assignment, there is an associated cost gi, j and a
time ti, j that a job i requires to be processed on a machine j .
The problem is formulated in the following way:

min
yi, j

I�

i=1

J�

j=1

gi, j yi, j , yi, j ∈ {0, 1}, gi, j ≥ 0

ti, j ≥ 0, Tj ≥ 0 (1)

s.t.
I�

i=1

ti, j yi, j ≤ Tj , j = 1, . . . , J (2)

J�

j=1

yi, j = 1, i = 1, . . . , I. (3)

The problem (1)–(3) can be viewed as machine subsystems,
which are subject to machine capacity constraints (2), coupled
together by job assignment constraints (3). This problem is
separable because the objective function (1) and system-wide
coupling constraints (3) are additive in terms of machine
subsystems. The problem is an ILP problem, a special case
of MILP problems introduced next.

B. General Formulation of MILP Problems

As reviewed in introduction, practical systems of impor-
tance are created by establishing subsystems and by coupling
them together to form the overall system. Optimizing system
performance is formulated as MILP problems. The objective
function of such problems is written in the following generic
way:

min
x,y

{(dx)T x + (d y)T y}, (x, y) ∈ � ⊂ Rnx × Zny (4)

where dx and d y are nx × 1 and ny × 1 cost column vectors
and x and y are an nx × 1 and ny × 1 decision column vec-
tors, consisting of pairwise disjoint decision column vectors
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{(x j , y j )} j=1,...,J , where x j and y j are nx
j × 1 and ny

j × 1
column vectors such that

�
j
nx

j
= nx and

�
j
ny

j
= ny .

Individual subsystems are subject to subsystem constraints

Ax
j x j + Ay

j y j ≤ b j , (x j , y j ) ∈ � j , j = 1, . . . , J (5)

where matrices Ax
j and Ay

j have dimensions m j × nx
j and

m j ×ny
j , b j are m j ×1 column vectors; Subsystems are coupled

through system-wide coupling constraints

Ax,0x + Ay,0y = b0. (6)

Matrices Ax,0 and Ay,0 have dimensions m0×nx and m0 × ny ,
and b0 is an m0×1 column vector. Because of linearity, objec-
tive function (4) and system-wide coupling constraints (6) are
additive in terms of subsystems, therefore, problems (4)–(6)
are always separable. Existence of solutions to (4)–(6) is
ensured per following assumption.

Assumption 1: The feasible set of (4)–(6) is nonempty and
domain � is bounded.

In terms of (1)–(3), y = (y1,1, . . . , yi, j , . . . , yI,J )T ∈ � =
{0, 1}I ·J , and dT consists of assignment costs gi, j . First J
elements of the first row of A0 are 1 and remaining are zero;
first J elements of the second row of A0 are 0, next J elements
are 1, and the remaining are zeros. All I elements of b0

are 1. Since there is only one constraint (2) per subsystem,
each matrix A j is a vector consisting of 0 and ti, j , and each
vector b j is a scalar Tj .

IV. SOLUTION METHODOLOGY

This section is to overcome difficulties of existing methods
presented in Section II. Motivated by the idea of the method
of multipliers (frequently referred to as ALR) [42]–[46], novel
SAVLR is developed. Within SAVLR, our recent SLR is
enhanced by using “absolute-value” penalty terms, thereby
improving convergence and enabling the use of MILP solvers
in Section IV-A. In Section IV-B, convergence of SAVLR is
proven through novel adjustment of penalty coefficients to sat-
isfy the “surrogate optimality condition,” thereby guaranteeing
overall convergence of the method. In Section IV-C, practical
implementation of SAVLR is discussed.

A. Surrogate Absolute-Value Lagrangian Relaxation

To improve convergence of SLR [38], constraint violations
of relaxed constraints are penalized by using “absolute-value”
penalty terms with positive penalty coefficients {ck}. The
“absolute-value” relaxed problem is formulated as

min
x,y

Lck (x, y, λk), s.t., (5), (x, y) ∈ �, λk ∈ Rm (7)

where

Lck (x, y, λk)

≡ (dx)T x + (d y)T y + (λk)T g(x, y) + ck

2
�g(x, y)�1 (8)

is the “absolute-value” Lagrangian function with ||·||1 denoting
an L1-norm, and g(z) denoting levels of constraint violations

g(x, y) = Ax,0x + Ay,0y − b0. (9)

If some or all system-wide coupling constraints are inequali-
ties, they are first converted into equalities by introducing non-
negative slack variables, and the “absolute-value” Lagrangian
function is formed exactly as in (8).

Because the domain is bounded per Assumption 1, prob-
lem (7) has a bounded solution and a bounded value of g(x, y)
for any (x, y) ∈ � and for any positive ck . Moreover, the SLR
framework can be used to establish convergence because the
function (8) can be viewed as a Lagrangian function for the
following problem1:

min
x,y

�
(dx)T x + (d y)T y + ck

2
�g(x, y)�1

�

s.t. (5), (6), (x, y) ∈ �. (10)

Moreover, subproblems can be formed from (7) by selecting
variables associated with one subsystem as decision variables
and fixing variables associated with other subproblems at
previously obtained values as

min
x j ,y j

Lck

�
x j , xk−1

− j , y j , yk−1
− j , λk�,

s.t. (5), (x j , y j ) ∈ � j , λk ∈ Rm . (11)

For compactness of notation, x− j and y− j with subscripts
“− j” mean that x− j and y− j are components of x and y
without x j and y j , respectively. In case whereby there are
slack variables, such variables are not fixed within subprob-
lems. Also, subproblems can be formed by selecting variables
associated with several subsystems and fixing decision vari-
ables associated with other subsystems.

Following standard practice,2 subproblems are linearized
exactly and subproblem j can be written as an MILP sub-
problem after introducing continuous decision variables qi as

min
x j ,y j ,{qi }i=1,...,I

⎧
⎪⎨

⎪⎩

�
dx

j

�T
x j + �

d y
j

�T
y j

+(λk)T g
�
x j , xk−1

− j , y j , yk−1
− j

� + ck

2

�

i

qi

⎫
⎪⎬

⎪⎭

(12)

s.t. (5), −qi ≤ gi
�
x j , xk−1

− j , y j , yk−1
− j

� ≤ qi

i = 1, . . . , I. (13)

Since the complexity of subproblems (12), (13) is much
reduced upon the decomposition, obtaining subproblem solu-
tions is much easier compared to that of the original prob-
lem (4)–(6).

Within SLR, one subproblem, which may consist of
one or few subsystems, is solved at a time, and a solu-
tion (xk

j , yk
j ) to subproblems (12), (13) should satisfy the

1Within SLR [38], linearity of the objective function is not required, but
linearity of constraints [38, p. 178] and boundedness of constraint norms
[38, p. 176] are required. Linearity of constraints is immediate from (6), and
boundedness follows from linearity of (6) and Assumption 1.

2The linearization of absolute-value functions is performed in a standard
way based upon [56, p. 28]. Consider a simple problem: min

x,y
{x + |y − ay |}.

This problem is linearized by introducing a continuous decision variable q y ,
and two constraints. The linearized problem can then be equivalently
written as

min
x,y,q y

{x + q y},
s.t. − q y ≤ y − ay ≤ q y .
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surrogate optimality condition [38], [39]

L̃ck

�
xk

j , xk−1
− j , yk

j , yk−1
− j , λk�

< L̃ck

�
xk−1

j , xk−1
− j , yk−1

j , yk−1
− j , λk�. (14)

Here

L̃ck

�
xk

j , xk−1
− j , yk

j , yk−1
− j , λk�

≡ �
dx

j

�T
xk

j + �
d y

j

�T
yk

j + (λk)T

× g
�
xk

j , xk−1
− j , yk

j , yk−1
− j

� + ck

2

�

i

qk
i (15)

is a surrogate dual value defined for a solution (xk
j , yk

j ) of
a subproblem (12), (13) obtained at iteration k, and most
recent solutions to other subproblems (xk−1

− j , yk−1
− j ) obtained at

previous iterations up to iteration k−1. Since within SLR only
one of few subproblems are solved at a time, the surrogate dual
value is higher than that of the dual value, which is obtained
by solving all subproblems to optimality.

Because of integer decision variables involved in the opti-
mization, the dual function is nonsmooth and polyhedral
concave. As a result, a line search along subgradient directions
may not lead to higher values of dual function. Nevertheless,
subgradient directions always form acute angles with direc-
tions toward λ∗. Therefore, with appropriate stepsizes, it is
possible to get closer to λ∗. Within SLR, to guarantee that
surrogate subgradient directions defined as

g̃(xk, yk) = g(x, y)|x=xk,y=yk (16)

form acute angles with directions toward λ∗, a solution
(xk, yk), which in (16) for brevity denotes all subproblem solu-
tions obtained up to iterations k, needs to satisfy the surrogate
optimality condition (14). Then, by updating multipliers

λk+1 = λk + sk g̃(xk, yk) (17)

along these surrogate subgradient directions with appropriately
chosen stepsizes, multipliers get closer to λ∗ from one iteration
to the next. Within SLR [38], [53], to guarantee convergence
without requiring the optimal dual value, stepsizes are set as

sk = αk
sk−1�g̃(xk−1, yk−1)�2

�g̃(xk, yk)�2
, 0 < αk < 1 (18)

where

αk = 1 − 1

Mkρ
, ρ = 1 − 1

kr
, M ≥ 1, 0 < r < 1. (19)

B. Convergence of Surrogate Absolute-Value
Lagrangian Relaxation

As reviewed in Section II, when using SLR, the relaxed
problem is decomposed into independent subproblems and
the surrogate optimality condition is satisfied after solving
one or few subproblems. However, within SAVLR, subprob-
lem solutions are not independent as can be seen from
constraints (13), which are introduced to linearize absolute-
value penalty terms. Moreover, with very large penalties,
constraint violations are forced to zero, thereby leading to
a suboptimal feasible solution. As a result, the surrogate

optimality condition may not be satisfied. In the following
Proposition 1, it is established under which condition the
surrogate optimality condition is satisfied.

Proposition 1: Satisfaction of the surrogate optimality con-
dition: Within one iteration (after solving all subproblems
exactly once) if qk−1

i 	= 0 for at least one i , then the surrogate
optimality condition is satisfied. Moreover, if qk−1

i = 0 all i ,
then the surrogate optimality condition may not be satisfied.

Proof: If qk−1
i 	= 0 then constraint violation is not zero for

at least one system-wide constraint. Assume that there does
not exist j , such that the surrogate optimality condition (14) is
satisfied after solving a subproblem j . In this case, there exists
no such value in (15) that satisfies (14). This is impossible
because this would imply that there is no violation and the
cost is optimal. There is a contradiction with the assumption
that qk−1

i 	= 0 for at least one i . When qk−1
i = 0 all i ,

a feasible solution is found, which is generally not guaranteed
to be optimal. �

For as long as the surrogate optimality condition is satis-
fied for at least one subproblem within one iteration, ck is
increased as

ck+1 = ck · β, β > 1. (20)

However, when ck becomes too large, feasibility is overem-
phasized at the expense of optimality and from Proposition 1
it follows that the “surrogate optimality condition” may not
be satisfied, thereby leading to suboptimal feasible solutions.
At the other extreme, when ck is zero, SAVLR becomes SLR,
which has been proven to converge [38]. Therefore, the idea
to satisfy the surrogate optimality condition is to reduce ck

whenever the surrogate optimality condition is not satisfied as

ck+1 = ck/β, β > 1. (21)

In order not to increase the possibility that the surrogate opti-
mality condition is violated again, ck is no longer increased.

As proved in Proposition 1, when levels of constraint
violations are zero, no subproblem solution will satisfy the
surrogate optimality condition (14). It is also possible that
when levels of constraint violations are close to zero, most of
subproblem solutions will not satisfy (14). As a result, it may
require solving many subproblems to satisfy (14). To speed
up the process, ck is reduced per (21) after a predetermined
number of subproblems h (<J ) are solved without satisfy-
ing (14). In the following Theorem 1, convergence of SAVLR
is proven.

Theorem 1 (Convergence of SAVLR): By updating multipli-
ers (17) with stepsizes (18), (19) and adjusting penalty coef-
ficients (20), (21), multipliers converge to λ∗

c that maximize
the dual function

qck (λ) ≡ min
x,y

Lck (x, y, λ). (22)

Proof: There are two possible cases.
Case 1: During the entire iterative process, after a

finite number of overall reductions of ck , the surrogate
optimality condition (14) is satisfied. Therefore, following
Theorem 2.1 of SLR [38], SAVLR will converge.
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Case 2: After a sufficiently many iterations, condition (14)
is still not satisfied. Then ck approaches zero and SAVLR
essentially becomes SLR. As proved in [38], SLR converges
when multipliers are updated as in (17) and stepsizes are set
as in (18) and (19). Therefore, SAVLR also converges. �

Corollary 1 (Rate of Convergence): SAVLR converges with
a linear rate outside a sphere centered at λ∗

c . Moreover,
the radius of this sphere is smaller than that for SLR.

Proof: As established in [38, p. 187, Proposition 2.5],
assuming that there exists a scalar μ > 0, multipliers approach
λ∗ with a linear rate of convergence outside of a sphere cen-
tered at λ∗. Moreover, the radius of the sphere is proportional
to the norm of levels of constraint violations

sk�g̃SLR(xk, yk)�2

μ
< �λ∗ − λk�2, k = 0, 1, . . . . (23)

As established in Section III-A, SAVLR can be viewed as SLR
with respect to a problem with the objective function (10).
Therefore, within SAVLR, assuming that there exists a scalar
μc > 0, the following inequality also holds:

sk�g̃SAVLR(xk, yk)�2

μc
<

��λ∗
c − λk

��2
, k = 0, 1, . . . . (24)

Assuming μ and μc exist and are the same in value, then
with much reduced constraint violations, multipliers within
SAVLR get much closer to λ∗

c and with linear rate as com-
pared to how close multipliers approach λ∗ with linear rate
within SLR. �

C. Implementation of the SAVLR Method

Key steps of the Algorithm. The key steps are as follows.

Step 0: Initialize λ0, x0, y0, s0, and c0;
Step 1: Update αk and sk per (18) and (19), update λk+1 per

(17), and update ck+1 per (20);
Step 2: For given λk+1, solve subproblem (12) and (13). If the

surrogate optimality condition (14) is satisfied, go to
Step 4;

Step 3: If (14) is not satisfied, go to Step 2 and solve the
next subproblem. If (14) is not satisfied after solving
each subproblem, reduce the penalty coefficient ck

per (21) and go to Step 2;
Step 4: Check stopping criteria such as the CPU time, num-

ber of iterations, and surrogate subgradient norm.
If satisfied, go to Step 5. Otherwise, go to Step 1;

Step 5: Search for feasible solutions. If a solution is found,
go to Step 6. Otherwise, go to Step 1;

Step 6: Check duality gap. A duality gap can be calculated by
using the best available feasible cost and the largest
available dual value. If duality gap is satisfactory,
then Stop. Otherwise go to Step 1.

1) Obtaining of Feasible Solutions: The process of obtain-
ing feasible solutions is generally problem dependent since
each problem may have its own structures. Solutions to sub-
problems are typically feasible with respect to subproblems,
but these solutions may not satisfy relaxed constraints. To sat-
isfy these constraints, some or all integer decision variables are
fixed within the original problem (4)–(6) at yk

i , the most recent

values obtained by solving subproblems, and the resulting
problem is solved by B&C. Because constraint violations are
penalized and become much smaller than those for SLR,
the effort spent on heuristics to obtain feasible solutions to
original problems is much reduced. If a solution feasible with
respect to the original problem is not obtained, multipliers are
adjusted for a few more iterations, and a feasible solution is
searched again.

2) General Applicability for MILP Problems: The method
can still be used for problems without the separable structures
considered in this paper. For these problems, however, many
more constraints need to be relaxed and penalized, and the
method may not be as effective as for problems with separable
structures.

V. NUMERICAL TESTING

The SAVLR method is implemented in CPLEX 12.7.1, and
is tested on a laptop with the processor Intel Xeon CPU
E3-1535M v6 at 3.1-GHz, 32 GB of RAM, and Windows 10.
To demonstrate the efficiency of SAVLR, a series of GAPs are
considered, and SAVLR is tested against other methods: B&C,
SLR, and ADMM [47, pp. 13–14].3 In Example 1, standard
GAPs are considered. In Example 2, machine availability and
job release features are included. In Example 3, sequence-
dependent setup time feature is added. A brief guide of how
to obtain results and how to by running associated CPLEX
codes are explained in “readme” files within each of the
supplementary zip files as well as within each code.

Example 1 (Generalized Assignment Problems): As
explained in Section III-A, the goal of the GAP is to minimize
the total assignment cost while satisfying machine capacity
and assignment constraints. Within SAVLR, a subproblem j
associated with machine j is formulated as

min
yi, j

�
I�

i=1

gi, j yi, j + λk
i yi, j + ck

2
qi

�
(25)

s.t. (2),−qi ≤ yi, j +
�

l=1 to J, l 	= j

yk−1
i,l − 1 ≤ qi

i = 1, . . . , I. (26)

In the OR-Library, there are five standard types of GAPs
(A, B, C, D, and E) [9], [55], [57]. According to testing experi-
ence of [9], [55], problem instances type D are most difficult.
To test performance of SAVLR, a problem instance type D
with 20 machines and 1600 jobs (d201600) is considered first.
SAVLR is very fast because of: 1) drastically reduced com-
plexity of machine subproblems upon decomposition allowing
solving such subproblems to optimality; 2) efficient coor-
dination of subproblem solutions inherited from SLR; and
3) accelerated convergence accomplished through absolute-
value penalties. As shown in Fig. 1, a feasible cost 97 828 is
obtained after 1371 s, which to the best of our knowledge is
better than the smallest value 97 837 reported in [9] and [55].

3Because of a significant, sometimes even prohibitive, the computational
effort required to optimize the relaxed problem within the Augmented
Lagrangian Relaxation (ALR) method, its decomposable version, referred to
as ADMM is tested.
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Fig. 1. Comparison of SAVLR versus SLR, ADMM, and B&C for the
problem d201600 with 20 machines and 1600 jobs.

Fig. 2. Comparison of SAVLR versus SLR, ADMM, and B&C for the
problem d401600 with 40 machines and 1600 jobs.

Within SLR, constant violations are not penalized and do
not reduce fast. As a result, a feasible cost 97 841 is obtained
after 2661 s. Within ADMM, two subproblems are formed
by grouping every 10 machine subsystems. Subproblems
created within ADMM are nonlinear and are much higher
in complexity as compared to those created within SAVLR,
thereby leading to very long, sometimes even prohibitive,
solving times. To speed up the process, ADMM subproblems
are solved with a 0.25% gap tolerance. Since subproblems
are not solved to optimality, the lower bound for ADMM is
not obtained and thus not reported. A feasible cost 97 851 is
obtained after 2938 s. Within B&C, a feasible cost 97 869
is obtained after 4800 s.

A problem instance type D with 40 machines and 1600 jobs
is considered next. As shown in Fig. 2, within SAVLR, the
feasible cost 97 111 is obtained after 1183 s. Within SLR, the
norm of constraint violations decreases much slower than that
within SAVLR and only one feasible solution with the feasible
cost 97 314 is found after 447 s without further improvement.
Within ADMM, two subproblems are formed by grouping
every 20 machine subsystems, and a feasible cost 97 185 is
obtained after 5700 s. Within B&C, a feasible cost 97 201
is obtained after 5500 s.

Fig. 3. Comparison of SAVLR versus B&C for the problem d801600 with
80 machines and 1600 jobs.

TABLE I

SCALABILITY RESULTS FOR EXAMPLE 1

Last, the largest instance of category D from the
OR-Library [57] is considered with 80 machines and 1600 jobs
(d801600), and results are shown in Fig. 3.

As shown in Fig. 3, SAVLR converges fast, thereby leading
to good feasible solutions and tight lower bounds. Best feasible
costs obtained within SAVLR are 97 048 after 554 s and
97 039 after 1350 s, and both to the best of our knowledge are
better as compared to 97 052, the smallest value is reported
in [9] and [55]. Within SLR, the norm of constraint violations
decreases very slowly, and within ADMM the computational
effort required to solve subproblems is very high. The results
for these methods are not provided.

A. Scalability Results

To test scalability of SAVLR, three instances of GAPs are
considered: d201600, d401600, and d801600. The stopping
criterion for these instances is 0.01%, and the results are shown
in Table I.

B. Comparison and Robustness of SAVLR Versus
That of Branch-and-Cut

To test robustness, 30 simulations are performed after
slightly perturbing parameters Tj for the problem instance with
20 machines and 1600 jobs (d201600).

Within SAVLR, the stopping criterion is 0.05% duality
gap, and results are shown in Fig. 4 (red). All instances are
solved within 300 s, and the average solving time is 210 s.
As demonstrated in Fig. 4 (gray), B&C solves six instances
within 500 s under the stopping criterion of 0.05% MIP gap.
For the remaining 24 instances, it takes at least 1500 s.

Example 2 (Generalized Assignment Problems With
Machine Availability and Job Release Times): Generally,
a machine may not be available at the beginning of a period
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Fig. 4. Histogram showing performance of SAVLR (red) and B&C (gray)
for solving problems with 20 machines and 1600 jobs.

until certain time amachine
j and jobs may not be released until

certain time ajob
i . To account for machine availability and

job release, integer decision variables bi, j that denote the
beginning of the processing time of job i on machine j are
introduced that satisfy the following inequalities:

bi, j ≥ ajob
i , bi, j ≥ amachine

j , i = 1, . . . , I, j = 1, . . . , J.

(27)

Also, integer variables ci, j that denote job i completion time
on machine j are introduced to ensure that all jobs are
completed before the due date Tj

ci, j ≤ Tj , i = 1, . . . , I, j = 1, . . . , J. (28)

Moreover, completion time should be equal to the beginning
time plus processing time if a job is assigned

yi, j = 1 ⇒ ci, j − bi, j = ti, j , i = 1, . . . , I, j = 1, . . . , J.

(29)

Constraint (29) can be linearized using a “big-M” inequality as

ti, j − M(1 − yi, j ) ≤ ci, j − bi, j ≤ ti, j + M(1 − yi, j ),

i = 1, . . . , I, j = 1, . . . , J. (30)

Lastly, time slots [bi, j , ci, j ] during which jobs are processed
should not intersect, and this can be ensured by requiring that
job i is either completed before any other job i � or job i is
processed after any other job i � is completed

ci, j ≤ bi �, j OR ci �, j ≤ bi, j

i 	= i �, i, i � = 1, . . . , I, j = 1, . . . , J. (31)

This logical inequality can be linearized after introducing extra
binary variables as

ci, j ≤bi �, j +Mz1
i,i � , j ; ci �, j ≤bi, j +Mz2

i,i � , j ; z1
i,i � , j + z2

i,i � , j = 1,

i 	= i �, i, i � = 1, . . . , I, j = 1, . . . , J. (32)

The objective function, machine capacity, and assignment
constraints are the same as in (1)–(3).

GAP instances with 40 machines with amachine
j and ajob

i are
generated using uniform distributions U[0, 100] and U[0, 300],
tested using SAVLR, SLR, ADMM, and B&C, and the results
are shown in Figs. 5–7. To speed up computations, ADMM

subproblems are solved with a 10% gap tolerance. Since
subproblems are not solved to optimality, the lower bound
for ADMM is not obtained and thus not reported.

SAVLR is significantly much more efficient compared to
SLR, ADMM, and B&C because of the exponential reduction
of complexity upon the decomposition, and efficient coordi-
nation of multipliers with accelerated convergence through
penalization of constraint violations through novel “absolute-
value” penalties with their exact linearization.

Example 3 (Generalized Assignment Problems With
Sequence-Dependent Setup Times): Sequence-dependent setup
times frequently arise because setup times to process jobs
generally depend on the previous job and on the machine. This
feature brings another layer of difficulty because the number
of possible sequences of jobs grows fast as the number of
jobs increases. In this example, sequences of jobs are captured
through binary variables xi,i � , j that take values of 1 if job
i is assigned on machine j right before i � and 0 otherwise.
Therefore, at most one job can be assigned right before job i �

J�

j=1

I�

i=1

xi,i � , j ≤ 1, i � = 1, . . . , I (33)

and at most one job can be assigned right before job i

J�

j=1

I�

i �=1

xi,i � , j ≤ 1, i = 1, . . . , I. (34)

A sequence of jobs (i, i �) can only occur on at most one
machine

J�

j=1

xi,i � , j ≤ 1, i, i � = 1, . . . , I. (35)

Also, a sequence of jobs (i, i �) is assigned to machine j
(xi,i �, j = 1) if both jobs i and i � are assigned to machine
j (yi, j = 1 and yi �, j = 1), and this condition can be
formulated as

1 − xi,i � , j ≤ M
�
2 − yi �, j − yi, j

�
,

i, i � = 1, . . . , I, j = 1, . . . , J. (36)

To avoid the simultaneous assignment of job i before job i �
and assignment of job i � before job i , the following logical
constraint is introduced:
1 − xi,i � , j

≤ M
�
2−yi �, j −yi, j

�
OR 1 − xi �,i, j

≤ M
�
2−yi �, j −yi, j

�
, i, i � = 1, . . . , I, j = 1, . . . , J. (37)

Constraint (37) can be linearized as explained in (32). The
objective function (1) is modified to include setup costs as

min
xi,i� , j

⎧
⎨

⎩

I�

i=1

J�

j=1

gi, j yi, j +
I�

i=1

I�

i �=1

J�

j=1

hi,i � , j xi,i � , j

⎫
⎬

⎭

xi,i � , j , yi, j ∈ {0, 1}, gi, j ≥ 0, hi,i � , j ≥ 0

i, i � = 1, . . . , I, j = 1, . . . , J. (38)
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Fig. 5. Comparison of SAVLR versus SLR, ADMM, and B&C for the
problem with 40 machines and 100 jobs and with amachine

j and a
job
i generated

using uniform distribution U[0, 100].

Fig. 6. Comparison of SAVLR versus SLR, ADMM, and B&C for the
problem with 40 machines and 100 jobs and with amachine

j and a
job
i generated

using uniform distributions U[0, 100] and U[0, 300], respectively.

where hi,i � , j is a setup cost of assigning job i is assigned
on machine j right before i �. In a similar fashion, capacity
constraints (2) can be modified as

I�

i=1

ti, j yi, j +
I�

i=1

I�

i �=1

si,i � , j xi,i � , j ≤ Tj , j = 1, . . . , J (39)

where si,i � , j is time required to set up job i � after job i on
machine j . The assignment constraint (3) remains unchanged.

To demonstrate performance of SAVLR, the problem
instance with 40 machines and 100 jobs is considered. Costs
hi,i � , j and setup times si,i � , j are generated using uniform
distributions U[0, 100] and U[0, 20], respectively. Results as
well as comparison against SLR and B&C are shown in Fig. 8.
Comparison against ADMM is not included because of the
very high computational effort required to solve subproblems.

As shown in Fig. 8, within SAVLR, the overall performance
is much better as compared to that of SLR and standard B&C.

C. Comparison and Robustness of SAVLR Versus
Those of Branch-and-Cut

To test robustness, 100 simulations are performed after
slightly perturbing Tj . The stopping criterion is 10 min for
SAVLR and 60 min for B&C.

As shown in Fig. 9, SAVLR is more robust and much more
efficient: the duality gap obtained by SAVLR after 10 min

Fig. 7. Comparison of SAVLR versus SLR, ADMM, and B&C for the
problem with 40 machines and 100 jobs and with amachine

j and ajob
i generated

using uniform distribution U[0, 300].

Fig. 8. Comparison of SAVLR and standard B&C for GAP with sequence-
dependent setup times with 40 machines and 100 jobs.

Fig. 9. Histogram showing performance of (a) SAVLR and (b) B&C for
problems with 40 machines and 100 jobs.

is less than 2% for all 100 simulations with the average gap
0.67%, which is drastically smaller as compared to MIP gaps
within standard B&C even after 1 h of CPU time.

VI. CONCLUSION

In this paper, a novel advanced price-based decomposition
and coordination SAVLR approach is developed. Within the
method, convergence of our recent SLR, which overcame all
major difficulties of standard LR, is significantly improved
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by penalizing constraint violations by using “absolute-value”
penalties, which have the advantage of being exactly lin-
earized. Testing results demonstrate that SAVLR obtains much
better solutions and converges much faster as compared to
other methods. With such effective coordination of subproblem
solutions, our capabilities to solve difficult MILP problems
that arise in the automation community and beyond will be
advanced in a major way.
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