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ABSTRACT Air handling systems are key sub-systems of Heating Ventilation and Air Conditioning 

(HVAC) systems.  They condition and deliver air to satisfy human thermal comfort requirements and 

provide acceptable indoor air quality.  Faults in their components and sensors may lead to high-energy 

consumption, poor thermal comfort and unacceptable indoor air quality.  Additionally, new types of faults 

may falsely be identified as known types.  Identifying failure modes and their severities with low false 

identification rates is thus critical to know what faults occur and how severe they are.  However, this is 

challenging since (1) classifying both failure modes and fault severities generates many categories of 

failures, leading to high computational requirements; (2) updating model parameters to adapt to changing 

environments requires accurate recursive equations that are hard to obtain; and (3) model errors and 

measurement noise may cause high false identification rates in detecting new types of faults.  In this paper, 

failure modes are identified by Hidden Markov Models (HMMs) and fault severities are estimated by 

filtering methods, leading to a decrease in the number of HMM states and low computational requirements.  

To adapt to changing environments, a new online learning algorithm is developed.  In this algorithm, HMM 

parameters are obtained based on their posterior distributions given new observations, thereby avoiding the 

need for accurate recurrence equations.  To identify new fault types with low false identification rates, a 

robust statistical method is developed to compare current HMM observations with those expected from 

existing states to obtain potential new types, and then confirm new types by checking whether observations 

have a significant change.  Physical knowledge is then used to find the reason for the new fault type.  

Experimental results show that failure modes and fault severities of both known and new types of faults are 

identified with high accuracy. 

INDEX TERMS Fault diagnosis, HVAC air handling system, online learning algorithm, hidden Markov 

model, new fault types 

I. INTRODUCTION 

Heating, Ventilation and Air-Conditioning (HVAC) 

systems account for 57% of energy used in the U.S. 

commercial and residential buildings [1].  Air handling 

systems are key sub-systems in HVACs.  They condition 

and deliver air to rooms to satisfy human thermal comfort 

and provide acceptable indoor air quality.  An air handling 

system consists of a mixing box, filters, cooling/heating 

coils, ducts and fans, as shown in Fig. 1.  The mixing box 

consists of an Exhausted Air (EA) damper, a Return Air 

(RA) damper and an Outdoor Air (OA) damper; and 

controls the ratio of the return airflow to the outdoor 

airflow.  Filters remove solid particulates such as dust from 

air, and cooling/heating coils condition the mixed air to 

satisfy human thermal comfort requirements.  The supply 

fan delivers conditioned air to Variable Air Volume (VAV) 

boxes, which control temperatures and airflow rates 

delivered to rooms.  The return fan then delivers return air 

from rooms to the outside and to the mixing box.  In the air 

handling system, various sensors measure air/water flow 

rates, temperatures and humidity ratios, including the 

supply air temperature sensor, the supply air humidity ratio 

sensor, the supply air mass flow rate sensor, the return air 

temperature sensor, the return air humidity ratio sensor and 
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the return air mass flow rate sensor, as shown in Fig .1.  

Given sensor readings, building management systems 

control HVACs to satisfy human thermal comfort 

requirements and provide acceptable indoor air quality.  

Faults in these components and sensors may result in high 

energy waste and poor thermal comfort and unacceptable 

indoor air quality.  Fault diagnosis includes the 

identification of failure modes and estimation of their 

severities, thus is critical.  Identification of failure modes 

helps to know which faults have occurred.  Estimation of 

fault severities allows building management personnel to 

know how severe the faults are, and helps in scheduling and 

dispatching maintenance crews to repair or replace failed 

components/sensors. 

Fault diagnosis, however, is challenging because (a) 

capturing both failure modes and fault severities may 

generate many categories, leading to high computational 

requirements; and (b) changing environments, e.g., weather 

and occupants, may cause sensor readings to change 

drastically even without faults, resulting in high false 

identification rates; and (c) it is hard to detect new fault 

types and find their reasons since new fault types are not 

captured in classifiers. 
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FIGURE 1.  Schematic diagram of an air handling system and VAV 
boxes in HVAC.   

 

This paper focuses on diagnosis of known and new types of 
faults in components and sensors of HVAC air handling 
systems.  Based on practice in HVACs [2], [3], 17 faults of 
the OA damper, the EA damper, cooling coil, supply fan, 
return fan and ducts are considered.  To test our method, two 
of these faults are considered as new fault types, and others 
are considered as known types.  For sensors, if the output 
signal of a sensor differs from the correct value by a 
constant, the constant is called as the sensor bias.  If the 
output signal slowly changes independent of the measured 
property, this is defined as the sensor drift.  Based on 
practice in [4], [5], bias and drift of sensors mentioned 
before are considered.  Some of these faults evolve slowly, 
such as a decrease in fan efficiency.  Severities of such 
faults are estimated to schedule repair or replacement for the 
failed components or sensors.  In Section 2, existing fault 
diagnosis methods are reviewed.  In these methods, filtering 
methods, e.g., Kalman Filters (KFs) and Particle Filters 
(PFs), developed based on Bayes rule, and estimate fault-
related parameters based on their previous estimates and 
new sensor readings, leading to accurate estimates.  Failure 
modes are identified if they have different signatures in 
estimates.  Additionally, fault severities are accurately 

identified based on continuous estimates.  However, fault-
related parameters may only reflect certain failure modes but 
not all of them, thus may not be enough to identify failure 
modes.  Unlike filtering methods, Hidden Markov Models 
(HMMs) set combinations of failure modes and fault 
severities as discrete states, thus all faults and their severities 
can be identified by estimating states.  However, the number 
of combinations increases drastically with increase in 
numbers of failure modes, resulting in many HMM states.  
Thus high computational effort is required.  Additionally, 
estimates of states are discrete, and thus may not be accurate 
enough to identify fault severities.  Most of existing methods 
do not adapt to changing environments, and rare papers 
investigate diagnosis of new fault types.  

To identify both known types and new types of faults 
while adapting to changing environments, a systematic 
method is developed as shown in Fig. 2.  In this method, to 
identify known types of failure modes and their severities 
with low computational requirements while adapting to 
changing environments, HMMs and filtering methods are 
used to identify failure modes and fault severities separately 
as shown in Section 3.  Since only failure modes are 
captured in HMMs, a few states are involved, and the 
method is computationally efficient.  To adapt to changing 
environments, existing methods require accurate recurrence 
equations to update HMM parameters.  These equations are 
derived based on some assumptions (e.g., homogeneity over 
a time window and large number of samples) that may not 
always be satisfied.  To address this issue, HMM parameters 
are generated based on their posterior distributions given 
new HMM observations, thereby obviating the need for 
accurate recurrence equations.  To identify fault severities of 
components and sensors with high resolution, fault-related 
parameters and sensor bias/drift are estimated via filtering 
methods, e.g., KF or PF, given the identified failure mode.   
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FIGURE 2.  Flow chart of the fault diagnosis method.   

 

Unlike known types of faults, new types of faults are not 
captured in HMMs, thus the method presented in Section 3 
cannot detect and find reasons of new fault types.  In Section 
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4, a method is developed to distinguish new fault types from 
existing ones, and then find reasons of detected faults and 
estimate their severities based on physical knowledge as 
shown in Fig. 2.  To detect new fault types, the HMM-based 
method in Section 3 is improved by adding new HMM 
states dynamically to capture new fault types.  Because of 
model errors and measurement noise, it is hard to detect new 
fault types with low false identification rates.  Considering 
that occurrence of a new type is a state transition, it causes 
large changes in observations.  Additionally, observations 
corresponding to new types deviate from those belonging to 
existing types.  Thus a robust method is developed to 
distinguish new types from known types in these two 
perspectives.  To check changes in observations, Kullback-
Leibler (KL) divergence is used, since it measures how the 
distribution diverges from that represented by previous 
observations.  To test whether current observations deviate 
from those of existing types, a robust Bayes-factor-based 
hypothesis testing is developed.  To find the reason of the 
detected fault, changes of fault-related sensor readings are 
analyzed based on physical knowledge to find possible fault 
types as shown in Fig. 2.  The new fault type is identified by 
eliminating known types from possible ones.  

In Section 5, simulation data of a small building and 

ASHRAE-1312 data are used to test our method.  

Experimental results show that our method can identify 

known types and new types of failure modes and their 

severities with low false identification rates. 

 
II. LITERATURE REVIEW 

To diagnose known types of faults in air handling systems, 
many methods were developed.  However, papers that 
investigate diagnosing new fault types in air handling 
systems are rare.     

Methods for Diagnosing Known Fault Types of Components 
and Sensors in Air Handling Systems.  To diagnose known 
types of faults, multiple methods were developed, and are 
generally categorized into two types: model-free and model-
based.  Model-free methods, e.g., expert systems and 
decision trees, were developed based on physical knowledge 
and experience without establishing models.  These methods 
infer faults by investigating cause-effect relationships 
between faults and their impacts.  For example, expert 
systems employ physical knowledge and experience to 
generate if-then-else rules, and are widely used in HVACs, 
and in particular, air handling systems [6]-[8].  Decision 
trees established based on physical knowledge are also used.  
For instance, a decision tree was used to diagnose sudden 
and gradual faults of an Air Handling Unit (AHU) based on 
data from the ASHRAE project 1312-RP [9].  These 
methods have good explanatory capabilities for fault 
inference.  However, developing rules for a specific system 
requires expertise and knowledge that may not be available.  
Additionally, rules are usually fixed and may not adapt to 
changing environments, resulting in false identifications. 

In model-based methods, models are established to 
capture key features of systems, and can be generally 
categorized into three types, including (1) black-box models; 

(2) statistical models; and (3) physics-based models.  Black-
box models are established only based on data without 
considering physical knowledge.  Black-model-based 
methods, e.g., Principal Component Analysis (PCA), 
Artificial Neural Networks (ANN), Support Vector Machine 
(SVM) and extreme learning machine, are widely used in 
fault diagnosis of air handling systems.  For instance, PCA 
models are established for various sub-systems based on 
normal data.  By comparing new data with these models, 
anomalies are detected and the fault source is identified 
according to models [4].  In [10], a wavelet-PCA method 
was developed to diagnose sudden and gradual faults of an 
AHU by removing influence of weather conditions.  
Compared with PCA, ANNs are good at classifying failure 
modes based on training data, and are widely used for 
HVACs [11]-[13].  Based on single hidden-layer feed-
forward neural networks, extreme learning machine was 
developed by randomly selecting features for the hidden 
units.  It has much faster learning speed compared with 
traditional ANNs, and was used to diagnose faults of AHUs 
[14].  Like ANNs, SVMs are also good at classification.  
They were applied to classify faults of AHUs based on 
estimates of fault-related model parameters [15].  These 
methods classify normal and failure modes only based on 
sensor readings or features extracted from them.  State 
evolutions obtained from physical knowledge represent 
relationships among states, and thus help to identify current 
states.  However, state evolutions are rarely considered in 
these methods.  Moreover, structures of these classifiers are 
usually fixed and are not updated, and thus need to be 
retrained when new fault types occur.  Thus, they may not 
adapt to changing environments, leading to false 
identifications.  Most of existing methods focus on 
identifications of failure modes, but few of them consider 
estimating fault severities. 

Compared to black-box models, HMMs capture state 
evolutions and distributions of sensor readings given states 
by statistical models.  Conditions of components and sensors 
are considered as states of HMMs, and estimated to identify 
failure modes [16], [17].  However, if HMMs are used to 
identify both failure modes and fault severities, many HMM 
states are generated, leading to high computational 
requirements.  Additionally, structures and parameters of 
HMMs used for fault diagnosis are usually fixed, and thus 
cannot adapt to changing environments [18].  To address 
this issue, several online algorithms were developed by 
updating HMM parameters based on the Baum-Welch (BW) 
algorithm [19], [20].  In these algorithms, recurrence 
equations are developed based on homogeneity over a time 
window and large sample assumptions.  However, these 
assumptions may not always be satisfied.  

Filtering methods, such as KFs and PFs capture both 
state evolutions, and relationships between states and sensor 
readings, by physics-based models.  Fault-related parameters 
are modeled as states and are estimated to check whether 
they fall outside their control limits or not.  If failure modes 
have different signatures, they are diagnosed [21].  However, 
existing models may not contain enough fault-related 
parameters to diagnose all faults considered.  Additionally, 
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estimates of parameters are continuous.  They can reflect 
fault severities with higher resolution when compared to 
discrete state estimates obtained by HMMs.     

Methods for Diagnosing New Fault Types.  Diagnosing new 

fault types has two steps: detecting and finding reasons.  To 

detect new fault types, certain statistical hypothesis testing 

methods can be used.  For instance, detecting new types of 

faults is essentially equivalent to testing whether current 

sensor readings and previous ones are from different 

distributions.  Bayes-factor-based hypothesis testing can be 

used to make such inferences [22].  In this method, marginal 

probabilities of belonging to a known distribution and that 

belonging to a different one are calculated.  The ratio 

between the two probabilities is compared with one that is a 

constant threshold to check which case is more likely.  

Because of the constant threshold, model errors and 

measurement noise may cause high false identification rates.  

Additionally, analytical expressions of marginal probabilities 

for certain distributions are hard to obtain.  To detect new 

fault types in high voltage electronic and power equipment, a 

novel clustering method, integrating Gaussian mixture 

models and k-means, was developed [23].  New fault types 

are detected based on confidence scores.  In this method, no 

physical knowledge is considered for classification.  

Additionally, the classification is only based on sensor 

readings and state evolutions are not considered.  Infinite 

HMMs, developed using Dirichlet processes, can also be 

used to detect new fault types [24].  In these HMMs, the 

number of states is determined based on data.  They can 

capture new fault types by adding new states.  However, they 

are purely data-driven, and no physical knowledge is used.  

In our problem, as in most engineering problems, physical 

knowledge and experience with failure modes are available.  

It is important to consider physical knowledge to improve 

robustness of the method under model errors and 

measurement noise.  Papers that investigate identifying 

reasons of new fault types are rare.  

 
III. IDENTIFICATION OF FAILURE MODES AND FAULT 
SEVERITIES FOR KNOWN FAULT TYPES 

In this section, HMMs and filtering methods are developed 
to identify known types of failure modes and their severities, 
respectively.  In subsection III-A, HMMs of components 
and sensors are established while capturing coupling among 
them.  In subsection III-B, an online learning algorithm is 
developed to estimate HMM states to identify failure modes 
while adapting to changing environments.  In subsection III-
C, fault-related parameters and deviations of sensor readings 
from their normal values are estimated to identify fault 
severities of components and sensors, respectively. 

A. HMMS TO IDENTIFY FAILURE MODES 

To identify failure modes and fault severities of 
components and sensors, it is important to estimate their 
states, i.e., the normal condition or failure modes.  States are 
estimated based on certain fault-related sensor readings 

including (a) temperatures, humidity ratios and mass flow 
rates of outdoor air, supply air and return air; (b) 
temperatures and mass flow rates of chilled water; and (c) 
power of supply and return fans.  Additionally, some sensor 
readings cannot track set-points when faults occur.  
Consequently, residuals between these sensor readings and 
set-points are also considered.  Relationships among sensor 
readings are represented by physics-based/gray-box models.  
A sensor reading can be estimated based on a model given 
other readings.  Sensor readings and their estimates obtained 
from models are consistent under the normal condition, but 
not under faulty conditions.  Residuals between sensor 
readings and their estimates represent the parity (consistency) 
relationships.  Consequently, sensor readings and residuals 
mentioned above are considered as HMM observations.  In 
this subsection, a cooling coil and sensors related to return 
air are used as examples to show how to establish HMMs 
for components and sensors. 

HMM of Cooling Coils.  A cooling coil is a coiled 
arrangement of tubes for heat transfer between chilled water 
and air as shown in Fig. 3.  Fins are used to increase the heat 
transfer area.  Valves are adjusted to control the chilled 
water mass flow rate.  Chilled water flows through tubes, 
and air passes through fins.  Air temperature is reduced 
through heat transfer between air and chilled water. 

Chilled Water

Air

Fins

Tubes

Valve

 

FIGURE 3.  A typical cooling coil 

 

To identify failure modes, an HMM of cooling coils is 

established as shown in Fig. 4.   

15 15 15

Occ(t+1)Occ(t) Occ(T)

14 14 14

1 1 1

0 0 0

......

Scc

(fcc,vlv_so, fcc,vlv_sc, fcc,fin, fcc,tube) = ‘0000’ 

... ... ...

(fcc,vlv_so, fcc,vlv_sc, fcc,fin, fcc,tube) = ‘1111’ 

 

FIGURE 4.  The HMM of a cooling coil 

 

For the cooling coil, four failure modes are considered, 
including (a) tube fouling; (b) dust on fins; (c) valve stuck 
closed; and (d) valve stuck open.  Since failure modes may 
be concurrent, the HMM state is set as (fcc,tube, fcc,fin, fcc,vlv_sc, 
fcc,vlv_so), where tube fouling is denoted by fcc,tube; dust on fins 
is denoted by fcc,fin; valve stuck closed is denoted by fcc,vlv_sc; 
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and valve stuck open is denoted by fcc,vlv_so.  State Scc = 0 is 
equivalent to (fcc,tube, fcc,fin, fcc,vlv_sc, fcc,vlv_so) = ‘0000’ which 
means that no faults present in the cooling coil.  (fcc,tube, fcc,fin, 
fcc,vlv_sc, fcc,vlv_so) = ‘1111’ means that all faults have occurred.  
The HMM thus has 24 = 16 states denoted by scc = 0, 1, …, 
15 as shown in Fig. 4, and the number of states is denoted 
by Ncc = 16.  To estimate these states, certain fault-related 
sensor readings are used.   For instance, the tube fault or the 
valve fault may cause a sudden or gradual change in the 

chilled water mass flow rate 
chw

m .  Similarly, dust on fins 

may cause a change in the supply air mass flow rate 
sup,a

m .  

Moreover, faults may cause a difference between the supply 
air temperature Ta,sup and its set-point.  Thus, the residual 

Tspt,sup between Ta,sup and its set-point is used as an HMM 
observation.  Additionally, residuals representing parity 
relationships are considered.  For instance, a cooling coil 
model was developed in [24] as 

),(
11)(

,

1

,

,,,

finouttube

w

f

tube

tube

ea

disamixamixa
AAR

LMTD

EEm

























 and (1) 

,/)(
,,sup,

LMTDEEmUA
disamixaacc

    (2) 

with ),ln/(ln)(
supsup rnrn

TTTTLMTD   [25] (3) 

where Afin and Atube,out are the fin surface area and the tube 
outside surface area, respectively; Atube,in is the tube’s inside 

surface area; tube is the tube thickness; λtube is the tube’s 
thermal conductivity; ηfin is the fin efficiency; dtube,in is the 

tube inside diameter; and variable ,
chw

v is the chilled water 

volumetric flow rate.  Here, Tsup = Ta,dis – Tchw,sup and Trn 
= Ta,mix – Tchw,rn.  Variables Ta,mix and Ta,dis are the mixed air 
and the discharge air temperatures, respectively; variables 
Tchw,sup and Tchw,rn are the supply and the return chilled water 
temperatures, respectively.  This model is validated by 
comparing it with a validated detailed physics-based model 
of cooling coils [26].  For validation, 10620 simulation data 
points from 7/18 to 9/25 are used.  Variables, e.g., mixed air 
temperature, air mass flow rate and chilled water mass flow 
rate, representing conditions of a cooling coil, are input in 
the two models.  Cooling capacities are calculated as model 
output since they represent performances of cooling coils.  
Residuals between cooling capacities of these two models 
are calculated, and the relative error of residuals is 0.041.  
The right-side of (1) depends on geometric parameters, e.g., 
dtube,in and Afin.  If these parameters are set to their normal 
values, (1) will not be valid when faults occur.  Thus, the 
residual Rgray between the left-side and the right-side of (1) 
is used as an HMM observation.  Similarly, the difference 
between the enthalpy of mixed air Ea,mix and the enthalpy of 
discharge air Ea,dis depends on the amount of heat exchange, 
and thus is determined based on geometric parameters of the 
cooling coil.  Component faults may cause changes in the 
geometric parameters, leading to increase in residuals.  To 
represent the relationship between the residual and sensor 
readings, a NN is established.  The inputs of this NN are (a) 

sup,a
m ; (b) 

chw
m ; (c) the difference between the mixture air 

temperature Ta,mix and the discharge air temperature Ta,dis; 

and (d) the difference between the mixture air humidity ratio 
Wa,mix and the discharge air humidity ratio Wa,dis.  The output 
is Ea,mix - Ea,dis.  The residual RE,NN between Ea,mix - Ea,dis and 
its estimate obtained from the NN is considered as an HMM 
observation.  The matrix consisting of fault-related variables 
mentioned above is, 
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Since these variables have different units, and differences 
among them are large, they are normalized to avoid Xcc 
becoming an ill-conditioned matrix.  Additionally, these 
variables may be correlated, and contain redundant 
information.  To remove redundancy, PCA is used to project 
the matrix into a reduced space.  If m vectors represent more 
than 95% of the correlated information, they are considered 
as adequate set of “principal components” to reflect the 
original space [27].  The first three principal components 
capture 96.349% of variability in data, and thus are denoted 
by Occ and used to estimate HMM states in Fig. 4.  The 
HMM has three types of parameters, including (a) initial 
state probability distribution; (b) state transition matrix; and 
(c) emission probabilities.  The initial state probability 
distribution determines the likelihood of belonging to each 
state at the initial time; state transition matrices represent 
probabilities of transition among states; and emission 
probabilities govern distributions of observation sets which 
are observations corresponding to each state.  Since the 

HMM has 16 states, the HMM has a 1616 state transition 
matrix and 16 observation sets.  Similarly, HMMs of other 
components are established. 

HMMs of Sensors Related to Return Air.  For return fan, the 

temperature sensor, the humidity ratio sensor and the 

airflow sensor are considered.  Since the return fan is linked 

with VAV boxes, the return air is the mixture of airflows of 

all VAV boxes.  The return airflow rate is equal to the sum 

of those of VAV boxes,   

.ˆ
1 _,,  

M

i ivavarna
mm   (5) 

where 
rna

m
,

ˆ  is the estimate of the air mass flow rate of return 

air; variable ma,vav_i is the air mass flow rate of the ith VAV 
box; and M is the number of VAV boxes.  The estimate will 
deviate from ma,rn if a sensor fault occurs.  Thus the residual 

rnarna
mm

,,
ˆ   is used in the HMM.  Similarly, estimate of the 

return air temperature Ta,rn can also be calculated based on 
zone temperatures of VAV boxes as, 

,)(ˆ
1 _,1 ,_,,   

M

i ivava

M

i izoneivavarna
mTmT   (6) 

where Tzone,i is the temperature of the ith zone.  Residuals 
between estimates and measurements are considered as 
HMM observations.  For the return air humidity ratio sensor, 
the humidity ratio is estimated as  

,)(ˆ
1 _,1 ,_,,   

M

i ivava

M

i izoneivavarna
mWmW   (7) 
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where Wzone,i is the humidity ratio of the ith zone.  The 
residual between the estimate and the measurement is 
considered.  For each sensor, drift and bias are considered as 
failure modes, and thus the HMM of a sensor has 22 = 4 
states.  Similarly, HMMs of other sensors are established.  
Since each component or sensor has its own HMM, 
concurrent faults of different components and sensors can be 
identified separately based on corresponding HMMs. 

Coupling among Components and Sensors.  Components are 

linked through air or chilled water flows.  A fault in a 

component may cause a load increase in other components, 

which will then be more likely to break down.  For instance, 

valve stuck closed in a cooling coil results in decreased 

chilled water.  The supply fan needs to provide more air to 

rooms, and is more likely to wear, leading to a decrease in 

fan efficiency.  Similarly, sensor faults may cause 

components to work under extreme conditions.  Thus, 

coupling among adjacent components, and coupling between 

components and related sensors are considered.  This is done 

by using a coupled HMM algorithm developed in [18] with 

state transition matrices that are dependent on other 

components.  For instance, to capture the coupling between 

the cooling coil and the supply fan, the HMM of the supply 

fan have different state transition matrices corresponding to 

various states of the cooling coil. 

B. AN ONLINE LEARNING ALGORITHM TO IDENTIFY 
FAILURE MODES OF KNOWN FAULT TYPES 

Conditions of components and sensors change with 

operating environments, e.g., weather and occupants.  To 

adapt to changing environments, HMM parameters need to 

be updated based on new observations.  Existing Baum-

Welch (BW)-based methods require accurate state 

recurrence equations which are derived based on 

assumptions that may not always be satisfied [19], [20].  

Unlike them, the Gibbs-sampler-based method does not 

require these equations.  Thus a Gibbs-sampler-based 

online learning algorithm is derived to update HMM 

parameters.  In this method, observation sets are updated by 

adding new observations and removing oldest ones.  Given 

prior distribution, Bayesian inference is used to deduce 

posterior distribution of HMM parameters based on updated 

observation sets and state estimates.  HMM parameters are 

then drawn from their posterior distributions to replace their 

previous values.  The method of updating HMM parameters 

is described below. 

Update Observation Sets of HMMs.  Assume that the 

current time is t+1, observation sets for different states are 

available as well as state estimates from the beginning to 

time t.  To update observation sets at time t+1, the new 

observation Ot+1 should be added in the corresponding 

observation set.  Thus it is important to know the state to 

which Ot+1 belongs.  To estimate the state, the Viterbi 

algorithm is usually used since it gives the probability of 

the most likely sequence of states.  However, it is difficult 

to use the algorithm in this case since HMM parameters at 

time t+1 are yet to be derived.  Unlike using the Viterbi 

algorithm, using the forward variable αt+1(i) provides us 

with a probability of the partial observation sequence until 

time t+1, with State i at time t+1, 

).(])([)(
11 ,1  

ti

N

j tjitt
Obaji    (8) 

This variable depends on state transition probabilities aji,t at 
time t and the observation likelihood bi(Ot+1), and it gives 
the marginal probability for each state.  Thus the state 
having the forward variable with the maximum value is 
considered as the rough state estimate at time t+1.  To show 
the procedure in detail, updating HMM parameters of a 
cooling coil coupled with the supply fan at time t+1 is 
presented as an example and is shown in Fig. 5. 

Ot-L+2

...

Ot+1

µ  and Σ are calculated

D0,Ssf=j: Data set for S = 0

Di,Ssf=j: Data set for S = i

...

Dk,Ssf=j: Data set for S = N

Time t+1

Observation in window

Training data sets

nik|ssf = j = nik|ssf = j + 1 

Ot-n

Remove the oldest observation in Di,Ssf=j 

Add Ot+1 in Di,Ssf=j 

...

...

State transition matrix

Emission matrix

Parameters for Time t

St-L+2 = i

...

St-n+1 = k

State sequence in window

St-n = i

...

St+1 = i

Transition 

from i to k

Belong to 

S = i

 

FIGURE 5.  The procedure of updating HMM parameters at time t+1. 

 

At time t+1, the supply fan is in State j.  By calculating 

forward variables, the rough state estimate of the cooling 

coil is i.  The observation Ot+1 is added in the observation 

set 
jsfsi

D
,

 corresponding to State i of the cooling coil and 

State j of the supply fan, and oldest observations are 

removed.  

Update Parameters of HMMs and Estimate States. After 

updating observation sets, Bayesian rule is used to infer 

posterior distributions of HMM parameters given their prior 

distributions.  As discussed in [18], the prior probability of 

the mean of observations corresponding to Scc = i and Ssf = j 

is normally distributed 

).,(~| 1

,0,0






iijsfsi
N    (9) 

Based on the Bayes rule, the posterior distribution is 

derived as 

),|,|(~|
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with  
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and 
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where
jsfsi

n


|  is the number of observations corresponding 

to State i of the cooling coil and State j of the supply fan; 

and 
jsfsi

o


|  is the average value of the observations.  The 

prior density of the covariance matrix of observations 
corresponding to Scc = i and Ssf = j are assumed to follow an 
Inverse Wishart (IW) distribution.  The prior distribution is 

 .,~|
iijsfsi

IW 


 (13) 

 Then, the posterior distribution is derived as, 
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As justified in [18], probabilities of state transitions follow 

a Dirichlet distribution.  The prior distribution is  

).1,,1(~|),,(
1,0,

 Diraa
jsfsccNii 

   (15) 

Given the number of visits to each state, the posterior 

distribution is also Dirichlet and is given by: 

),1|,,1|(~|),,(
1,01,0,


 jsfsccNijsfsijsfsccNii

nnDiraa   (16) 

where 
jsfsi

n


|
0

 is the number of transitions from State i to 

State 0 (normal condition) when the supply fan is in State j.  
These values are obtained by counting visits to each state 
given state estimates before time t+1.  Given updated 
parameters, the Viterbi algorithm is used to estimate states 
in the current moving window consisting of Ot-L+2, …, Ot+1, 
where L is the window length.  The computational 
complexity of the Viterbi algorithm is O(N2T), where N is 
the number of states and T is the length of the state 
sequence.  In our method, for each t, the state sequence in 
the moving window needs to be estimated, thus the 
complexity is O(N2TL).  The state estimate at the end of the 
sequence is considered as the estimate at time t+1.  

Evaluate State Estimates. To measure fault diagnosis 

accuracy, F-measure is used since it reflects the precision and 

recall (correct/false identification rates) [15].  To generate F-

measures, four statistical measures related to identification 

rates are considered, including (a) true positive; (b) false 

positive; (c) true negative; and (d) false negative.  True 

positive means that the normal condition is correctly 

estimated; true negative means that the failure mode is 

correctly estimated; false positive means that the normal 

condition is falsely estimated as a failure mode; and false 

negative means that the failure mode is falsely estimated as 

the normal condition or other failure modes.  The larger the 

F-measure is, the better the performance of a diagnosis 

method is.   

C. METHOD OF IDENTIFYING SEVERITIES OF KNOWN 
FAULT TYPES 

For components, deviations of fault-related parameters 
from their normal values represent severities of fault 
impacts.  For sensors, deviations of sensor readings from 
their actual values reflect fault severities.  Filter-based 
methods including KF and PF are developed to estimate 
fault severities of components and sensors.  For linear 
models, KF is used since it is an optimal linear filter.  For 
the nonlinear case, PF is used since it is good at dealing 
with nonlinearities.  Our methods are discussed below.  

Identify Fault Severities of Components.   As presented 
before, four faults in cooling coils are considered, including 
(a) tube fouling; (b) dust on fins; (c) valve stuck closed; and 
(d) valve stuck open.  Tube fouling causes a decrease in the 
tube inside diameter dtube,in.  Similarly, dust accumulation 
leads to a decrease in the fin outside surface area Afin.  
Severities of these two faults are reflected as the amount of 
decease in the two parameters.  To estimate the parameters, 

they are considered as parametric states T

finintubecc
Adx ][

,
 .  

The state evolution is  

),()()1( tvtxtx
cccccc

   (17) 

where process noise is denoted by vcc(t) = [vtube(t) vfin(t)]T.  
For simplification, process noise is assumed white, zero 
mean and normally distributed, and vtube(t) and vfin(t) are 
uncorrelated.  To represent the relationship between the two 
parametric states and sensor readings, the measurement 
equation is derived from the physics-based model (1): 
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  (19) 

and wcc(t) is the measurement noise and is normally 
distributed.  To estimate states of this nonlinear model, a PF 
is used.  PF uses a set of particles to represent the posterior 
distribution given noisy observations.  For PF, particles can 
be input in nonlinear models for computation directly.  
There is no big difference between linear models and 
nonlinear models for PF, and thus it is good at dealing with 
nonlinearities.  Unlike tube fouling and dust on fins, valve 
stuck closed occurs suddenly, and thus the chilled water 
mass flow rate becomes almost 0.  The cooling coil cannot 
reduce the air temperature.  In this case, the failure mode 
should be resolved immediately.  Similarly, valve stuck 
open also occurs suddenly.  The supply air temperature is 
too low to track its set-point, and this fault should also be 
resolved as soon as possible.   
Identify Fault Severities of Sensors.  If the output signal of 

a sensor differs from the correct value by a constant, the 

constant is called as the sensor bias.  If the output signal 

slowly changes independent of the measured property, this 

is defined as the sensor drift.  The two kinds of sensor faults 

are considered.  To identify fault severities of sensors, 

estimates of sensor bias and drift are required.  To represent 

the two kinds of faults, two models are developed 

separately.  For instance, state equations capturing a drift in 

the supply air mass flow rate sensor are,  
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where kMsup(t) is the drift rate of the sensor at time t; the term 
xMsup(t) represents the sensor drift at time t; For 
simplification, process noises wk,Msup(t) and wMsup(t) are 
assumed to be normally distributed, and uncorrelated.  
Based on the fan model in [28], the measurement equation is 
obtained as, 
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The measurement noise vsf(t) is normally distributed.  
Similarly, for the bias, the state equation is developed as, 

),()()1(
sup,sup,sup,

twtxtx
biasMbiasMbiasM

  (25) 

since the sensor bias is assumed to be a constant.  The 

measurement equation is similar to that of drift, except 

replacing the drift term xMsup,drift by the bias term xMsup,bias in 

(21), (23) and (24).  Given the inference of failure modes 

from the HMM, occurrence of a bias or a drift in sensors is 

known, and the appropriate model is selected.  KF or PF are 

then used to estimate sensor bias/drift based on the models 

as fault severities.  Unlike the supply air mass flow rate, 

other sensor readings, such as the return air temperature, are 

not contained in existing physics-based/gray-box models.  

To identify their fault severities, residuals between sensor 

readings and their estimates are considered.  For instance, 

as shown in (6), the return air temperature can be estimated 

based on zone temperatures.  The residual between the 

return air temperature and its estimate is used to represent 

the fault severity. 

 

IV. IDENTIFICATION OF FAILURE MODES AND FAULT 
SEVERITIES FOR NEW FAULT TYPES 

In this section, a statistical method is developed to identify 

new failure modes and their severities.  In subsection IV-A, 

a robust Bayes-factor-based method is developed to find 

potential new fault types.  In subsection IV-B, a KL-

divergence-based method is developed to confirm potential 

types as true ones.  In subsection IV-C, physical knowledge 

is used to find the cause of the new fault type and estimate 

its severities. 

A. FINDING POTENTIAL NEW FAULT TYPES 

To detect new types of faults, current observations are 
compared with the expected observations of all existing 
states.  If current observations do not belong to all existing 
states, a potential new fault type is declared.  To test whether 
two groups of observations are from different distributions, 

Bayes-factor-based testing is usually used.  In the testing, 
the ratio of the probability of belonging to the same 
distribution to that of belonging to different distributions is 
calculated.  If the ratio is smaller than one, which is a 
constant threshold, a new fault type is detected.  Because of 
measurement noise and modeling errors, false declaration of 
a new fault type may result.  To distinguish new fault types 
from noise and model errors, the constant threshold is 
replaced by control limits on the ratio.  Consequently, the 
comparison is not sensitive to measurement noise and model 
errors.  Additionally, in the testing, an analytical expression 
for the Bayes-factor in the multivariate case is derived. 

In our Bayes-factor based testing, to test whether current 
observations and observations of an existing state i are from 
different distributions, there are two hypotheses which are 

H0: μnew = μi versus H1: μnew  μi, where μi is the mean of the 
observation distribution corresponding to State i and μnew is 
that of observations in the current moving window.  The 
mean μi is unknown.  To simplify the problem, μi is 
approximated by the average value of observations 
corresponding to State i.  Thus the hypotheses are converted 

as 
inewi

H  :
,0

 versus 
inewi

H  :
,1

.  Based on Bayes 

rule, the probability that current observations belong to State 
i is obtained 

.
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HPHoP
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Similarly, the probability that current observations do not 
belong to State i, P(H1,i|onew),  is obtained.  Since most of 
failure modes are considered and covered by our HMMs, 
occurrence of a new fault type is a small probability event.  
Prior probabilities for the two hypotheses are set as  

 .
01.0)(

99.0)(

,1

,0











i

i

HP

HP
 (27) 

Based on Bayes rule, the ratio of the two posterior 
probabilities is  
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where Bf = m0/m1 is the Bayes factor.  To detect new fault 
types, control limits of this ratio are calculated.  If the ratio 
is lower than the lower bound of the control limits, it means 
that the probability of belonging to the existing State i is 
much lower than that of belonging to other states.  
Considering that the ratio may be too large or too small, log 
of the ratio is considered.  By assuming that log of the ratio 
follows a normal distribution, the control limits are obtained 
based on training data as 

],2,2[
log_log_log_log_ rtortortorto

   (29) 
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where  
rtolog_

  is the average value of log ratios, and 
rtolog_

  is 

the standard deviation of log ratios.  In (28), the posterior 
probability m0,i corresponding to State i is  
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XXnU   ,   

L

j jj
XXXXS 1 )()( ; 

the parameter L is the moving window length; Xj is the jth 

observation in the current moving window; X is the average 

value of observations; and  is the covariance matrix of 

observations.  The prior πa = ||-1 was considered [29].  This 

is an integration with respect to a matrix , and is defined as 
the iterated integral of a function with respect to each 

element of  [30].  Elements in  are denoted by σjk, j = 1, 
…, d and k = 1, …, d, where d is the observation dimension.  
Then, (30) is converted into 
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If the dimension of  is large, it is complex to calculate this 
integration.  Since the probability density function of the 
inverse matrix gamma distribution is 
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it follows, 
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It is evident that (33) is like (30).  Letting α = -(d+1)/2 + n/2 

+1, β = 2 and  = U + S, (30) is converted to 
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which can be easily calculated.  The multivariate gamma 
function is 
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(34) is converted into 
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The analytical expression for m0,i is obtained.  Compared 
with m0,i, m1,i is difficult to calculate.  In [29], a recursive 
formula was derived to calculate m1,i as 
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Thus, the Bayes factor BF is obtained.  

B. CONFIRMING POTENTIAL NEW FAULT TYPES AS 
TRUE ONES 

New fault types cause large changes in observations.  To 
further reduce false identification rates, deviations of current 
observations from previous ones are also considered.  The 
potential new fault type is confirmed as the true one if 
observations have significant changes.  To identify changes 
in observations, statistical process controls are usually used.  
However, observations may have multiple dimensions.  
Statistical process controls are usually applied to the 
univariate case rather than the multivariate case.  It is 
difficult to combine analysis for each dimension together.  
To address this issue, a KL-divergence-based method is 
developed since it measures how the distribution represented 
by all dimensions diverges from that represented by 
previous observations.  In our method, potential new fault 
types are confirmed as true ones if KL-divergence falls 
outside its control limits determined based on a small false 
identification rate.  To derive the control limits, distributions 
of KL divergences are required.  As discussed in [31], the 
KL divergence between two univariate random variables 
follows a non-central chi-square distribution with one 
degree of freedom.  However, the distribution of KL 
divergence for the multivariate case is not available, and is 
derived.  The method is presented below.    

Confirm Potential New Fault Types as True Ones based on 
KL Divergence.  The KL divergence between observations 
onew in the current moving window and observations opre in 
the previous moving window is denoted by DKL(onew||opre) 
and is calculated as  

,
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where pnew(x) and ppre(x) are probability density functions of 
onew and opre.  By assuming that observations follow normal 
distributions, the KL divergence between current 
observations and previous observations is [31] 
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where μnew and μpre are means of distributions represented by 

onew and opre, respectively; and new and pre are covariance 
matrices of onew and opre, respectively.  Since observations 
are extracted via PCA, they are uncorrelated.  It is therefore 

reasonable to assume that new and pre are almost diagonal.  
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Since new and pre are different, it can be found that new = 

pre where  is a diagonal matrix.  Then 
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with 
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where Dj = μnew,j – μpre,j;  λj is the non-centrality parameter of 
the non-central chi-square distribution χ(λj) corresponding to 
the jth dimension of observations.  It can be found that X is a 
linear combination of non-central chi-square distributions as 
shown in (41).  In [32], the cumulative density function of a 
linear combination of non-central chi-square distributions 
was developed.  Given the false identification rate Pf = 0.01, 
the control limits are calculated by using the cumulative 
density function as: 

)|(
0

HhDPP
KLf
   (44) 

where h is the upper limit of DKL since DKL is definitely 

positive.  If DKL is larger than h, it means that there is a large 

change in observations, and the potential new fault type is 

confirmed as a true one.   

Add New States and Update HMM Parameters to Capture 

The Detected New Fault Type.  To capture the detected new 

fault type, new states are added in the HMM, and HMM 

parameters are updated accordingly.  For instance, a new 

fault type of the cooling coil is detected.  The number of 

failure modes is increased from four to five.  Thus, the 

number of states Ncc is increased from 24 to 25.  Accordingly, 

each 24×24 state transition matrix is replaced by a 25×25 state 

transition matrix.  New state transition matrices are generated 

by following (16).  To generate new observation sets, it is 

reasonable to assume that observations in the current moving 

window belong to the detected new fault type.  Considering 

the coupling between the supply fan and the cooling coil, 

observation sets corresponding to the new state of the cooling 

coil and existing states of the supply fan are generated.  

Means and covariance matrices of these observation sets are 

obtained based on (10) and (14) to represent emission 

matrices.  

C. IDENTIFYING THE DETECTED NEW FAULT TYPE 
AND ITS SEVERITIES VIA PHYSICAL KNOWLEDGE 

After detecting the new fault type, it is important to find the 
cause of the fault based on physical knowledge.  For 
instance, pump leakage is considered as a new fault type.  A 
fault tree of the cooling coil is established as shown in Fig. 
6.  In this figure, known types of faults are represented by 
solid circles and new fault types are represented by dashed 
circles.  Both known types and new types of faults are 
reflected by certain fault-related sensor readings, such as the 
chilled water mass flow rate marked by a black dot. 
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FIGURE 6.  The fault tree of the cooling coil. 

 

After detecting a new fault type, by checking sensor 

readings used by the HMM of the cooling coil, it can be 

found that the chilled water mass flow rate gradually 

decreases.  Based on the fault tree, either tube fouling or 

pump leakage occurs.  Considering that tube fouling is an 

existing fault, the detected fault should be pump leakage.  

Since pump leakage causes a decrease in the chilled water 

mass flow rate passing through the pump, the amount of 

decrease is used to identify the fault severity.  

V. EXPERIMENTAL RESULTS 

Our fault diagnosis method was implemented by using 
MATLAB 2014a and was run on a laptop with Intel Core i7-
6920HQ 2.9GHz processor and 32GB of memory.  The 
method is tested using simulation data and real data.  In 
Example 1, a small building is simulated by using two 
packages: DesignBuilder [33] and EnergyPlus [26].  Results 
show that (a) known types of failure modes in components 
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and sensors are identified by coupled online HMMs with 
low false identification rates; (b) fault severities of existing 
faults are estimated accurately given inferences of failure 
modes; and (c) our statistical method of integrating Bayes-
factor testing and KL divergence detects new fault types 
with low false identification rates.  In Example 2, our 
method is tested using real data from the ASHRAE project 
1312-RP [3].  Results illustrate that both known types and 
new types of failure modes are diagnosed with low false 
identification rates, and their severities are estimated 
accurately.  

Example 1: The simple building has two 95.517 m3 rooms.  
In the building, tube diameter dtube,in is set to be 0.01445 m; 
the outside surface area of fins is 43.59555 m2; the fan 
efficiency is 0.7.  For the cooling coil, tube fouling is 
simulated from 7/18 to 7/23; dust on fins is simulated from 
7/24 to 7/29; and pipe leakage is simulated from 7/30 to 8/3.  
For the supply fan, a decrease in supply fan efficiency is 
simulated from 8/2 to 8/4.  Drift of the return air temperature 
sensor is simulated from 9/23 to 9/25, and the bias is 
simulated on 9/30.  Other sensor faults are also simulated.  
2/3 of the data are used for training and the rest are used for 
testing.   

Identify Known Types of Failure Modes of Components. 
States of the cooling coil are estimated by using the coupled 
online HMM.  Actual states and state estimates are 
represented by black dashed lines and blue stars, 
respectively, as shown in Fig. 7.  The x-axis is the time, and 
the y-axis is the state of the cooling coil.  States 
corresponding to the normal condition, the tube fouling, the 
dust on fins and valve stuck closed are denoted by ‘0,’ ‘8,’ 
‘4’ and ‘2.’  In the figure, most actual state points and their 
estimates are the same and are overlapped.  Also, there are 
some false identifications.  For instance, certain points 
belonging to the normal condition are falsely estimated as 
tube fouling on 8/17.  Similarly, certain points belonging to 
the normal condition are falsely estimated as dust on fins 
around 10/4.  F-measures of the tube fouling, dust on fins 
and valve stuck closed are 0.989, 0.928 and 0.994.  The false 
alarm rate is 0.6%.  The coupled online HMM captures 
coupling between the cooling coil and the supply fan and 
adapts to changing environments.  States of the cooling coil 
are therefore estimated with low false identification rates.  
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FIGURE 7.  States of the cooling coil estimated by coupled online HMM. 

 

If the coupled HMM with fixed parameters is used, the 
changing environments cannot be tracked.  Thus, more false 
identifications occur when compared to the coupled online 
HMM as shown in Fig, 8.  F-measures of the three failure 
modes are 0.981, 0.930 and 0.992.  It can be concluded that 
most of the F-measures are worse than those of using the 

coupled online HMM.  Additionally, the false alarm rate is 
0.7%, which is slightly larger than that of using the coupled 
online HMM.   
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FIGURE 8.  States of the cooling coil estimated by coupled HMM with 
fixed parameters. 

 

If the online HMM is used, states are estimated as shown in 
Fig. 9.  Since the online HMM does not capture coupling 
among components, and thus it performs worse than the 
coupled online HMM.  F-measures of the three failure 
modes are 0.982, 0.926 and 0.938, and the false alarm rate is 
0.9%, considerably higher. 
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FIGURE 9.  States of the cooling coil estimated by online HMM. 

 

Estimate Fault Severities of Components. To illustrate the 
estimation of component fault severities, the supply fan is 
used as an example.  Failure modes of the supply fan are 
estimated by using the coupled online HMM as shown in 
Fig. 10, where ‘0’ means the normal condition, and ‘4’ 
means a decrease in fan efficiency.  Decrease in fan 
efficiency is diagnosed on 8/2.  Given the state estimates, 
KF is used to estimate supply fan efficiency based on the fan 
model containing fan efficiency.  The normal value of fan 
efficiency is 0.7.  Residuals between the estimates of fan 
efficiency and its normal value represent severities as shown 
in Fig. 11.  It can be found that residuals increase gradually 
with decrease in fan efficiency, and have three segments 
with different increased speed.   This is because the fan 
efficiency cannot be decreased constantly due to limitations 
of the simulation packages used.  
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FIGURE 10.  Estimates of failure modes of the supply fan. 
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FIGURE 11.  Residuals between estimates of the supply fan efficiency 
and its normal value. 

 

Identify Known Types of Failure Modes of Sensors. To show 
the process of identifying failure modes of sensors, the 
return air temperature sensor is considered as an example.  
By using the coupled online HMM, states of the sensor are 
inferred as shown in Fig, 12, where ‘1’ and ‘2’ mean ‘bias’ 
and ‘drift,’ respectively.  Their F-measures are 0.998 and 
0.996. 

09/23 10/03 10/14

0

1

2

S Ta rn state

S
ta

te
 o

f 
S

 T
a

 r
n

 

 

Estimates of states

Actual states

 

FIGURE 12.  State estimates of the return air temperature sensor 
obtained by coupled online HMM. 

 

Estimate Fault Severities of Sensors. Return air temperature 
can be estimated based on zone temperatures corresponding 
to all VAV boxes.  Residuals between sensor readings and 
the estimates are calculated and shown in Fig. 13.  It can be 
found that residuals in Fig. 13 correspond to state estimates 
in Fig. 12.  The residual has a sudden change due to the 
sensor bias and a gradually increase caused by the sensor 
drift, and represents fault severities. 

09/14 09/23 10/03

0

1

2

3

4

5

Diff between Ta
rn

 and Ta
rn,est

 

 

Ta
rn

 - Ta
rn

,
est

 (Physics-based model of VAV boxes)

 

FIGURE 13.  Residuals between sensor readings and actual values of 
the return air temperature sensor. 

 

Detect and Identify New Types of Faults. To test our method, 
pump leakage is considered as a new fault type.  It occurs on 
8/9 and is detected by our statistical method after 86 hours.  
As discussed before, compared to known fault types, new 
fault types have limited corresponding observations 
compared to known ones.  Their observation information 
may not be enough for distinguishing.  Additionally, our 
method is conservative to achieve a low false alarm rate.  
Thus more time is required to detect the new fault types 
compared with that of known fault types.  The detected new 
fault type is then diagnosed by the coupled online HMM as 
shown in Fig. 14.  A low false alarm rate 0.5% is achieved.   
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FIGURE 14.  Pump leakage (new fault type) detected by our statistical 
method based on Coupled online HMM. 

 

By observing sensor readings of the cooling coil, it can be 

seen that the chilled water mass flow rate is reduced.  Based 

on physical knowledge, it is known that both tube fouling 

and pump leakage can cause a decrease in the chilled water 

flow rate.  Tube fouling is an existing fault, thus the new 

fault type must be the pump leakage.  

Example 2:  In ASHRAE project 1312-RP, there are two 
AHUs, AHU-A and AHU-B, which were calibrated to be 
identical [3].  AHU-B is fault-free, and multiple faults were 
implemented in AHU-A during spring, summer and winter.  
This paper focuses on the cooling mode, thus summer data 
from 8/19 to 9/8 are used.  Detailed description of data can 
be found in [10].  In the data, faults of the EA damper, the 
OA damper, ducts, the return fan were implemented, but 
sensor faults are not implemented.  

Identify Known Types of Failure Modes in Components. To 
show the process of identifying the failure modes of 
components, the EA damper and the OA damper are used as 
examples.  By using the coupled online HMMs, failure 
modes of the EA damper are estimated as shown in Fig. 15.  
In the figure, ‘1’ means that the damper is stuck closed.  Its 
F-measure is 0.966.  Similarly, states of the OA damper are 
estimated as shown in Fig. 16.  ‘1’ denotes the damper 
leakage, and ‘2’ means that the damper is stuck closed.  F-
measures of the two failure modes are 1 and 1, respectively. 
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FIGURE 15.  State estimates of the EA damper. 
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FIGURE 16.  State estimates of the OA damper. 

 

Estimate Severities of Failure Modes. OA damper leakage is 
used as an example to show the process of estimating fault 
severities.  As mentioned in [3], the normal value of the 
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damper opening is 40%.  To realize the damper leakage, the 
damper opening is changed to 45% on 9/5 and 55% on 9/6.  
Residuals between the damper opening and its normal value 
are calculated to represent the fault severities as shown in 
Fig. 17. 
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FIGURE 17.  Residuals between the OA damper opening and its normal 
value (40% opening is normal). 

 

Detect and Identify New Types of Faults. To test our 
method, stuck open of the EA damper is considered as a new 
fault type.  The new fault type is detected by using our 
statistical method, and new states are estimated by our 
coupled online HMM as shown in Fig. 18.  Since the new 
fault type is detected by the HMM of the EA damper, the 
new fault type should be related to the airflow passing 
through the EA damper.  By observing the airflow, it can be 
found that the airflow rate is always maximum.  Thus the 
fault is identified as damper stuck open.  
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FIGURE 18.  EA damper stuck open (new fault type) detected by our 
statistical method. 

 

Comparison between our Method and Others.  Many 
methods such as SVM, decision tree, Bayesian network and 
ANN have been developed to diagnose faults in air handling 
systems.  To evaluate our method, F-measures of known 
fault types are compared with those obtained by using other 
methods also based on the ASHRAE project 1312-RP data 
as shown in Table. 1.  

TABLE I 
F-MEASURES OF FAILURE MODE OBTAINED BY OUR METHOD AND OTHERS 

 Our method SVM [15] Decision tree [9] 

fea_dmp,sc 0.966 0.923 0.9 

foa_dmp,sc 1 NA NA 

foa_dmp,leak 1 0.994 NA 

fcc,vlv_sc 1 0.928 1 

fcc,vlv_so 1 0.785 0.98 

fduct,lb 0.998 0.981 1 

fduct,la 0.821 1 NA 

frf,cf 0.999 0.887 1 

frf,fs 1 0.795 1 

Average 0.976 0.923 0.97 

In this table, it can be seen that the average F-measure of our 

method is better than that of the SVM [15] and the decision 

tree [9].  Additionally, as mentioned in [15], the average F-

measure of their method is 0.923 that is significantly better 

than other methods, e.g., LibSVM, Naïve Bayes, radial basis 

function network, Bayesian network, NN and random forest 

decision tree.  Therefore, the performance of our method is 

also better than these methods. 

VI. CONCLUSION 

In this paper, a systematic method is developed to identify 

known and new types of failure modes and their severities in 

air handling systems with low false identification rates.  In 

this method, to identify known types of faults, an online 

learning algorithm is developed to estimate the states of 

components and sensors, while updating HMM parameters to 

adapt to changing environments.  To identify new types of 

faults with low false identification rates, a robust statistical 

method is developed to detect the new fault type, and the 

new fault type is labeled based on physical knowledge (e.g., 

a fault tree or a human-in-the-loop).  By adapting to changing 

environments and capturing coupling among components, 

our method performs better than others. 
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