
2377-3766 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/LRA.2018.2850056, IEEE Robotics
and Automation Letters

1
IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED June, 2018


Abstract–Job-shop scheduling is an important problem in

planning and operation of manufacturing systems. For such

difficult problems to be solved daily within short amounts of time,

the only practical goal is to obtain near-optimal solutions with

quantifiable quality fast. Recent developments of powerful

Mixed-Integer Linear Programming (MILP) methods such as

branch-and-cut provide an opportunity for a fresh perspective at

new at effective MILP formulation and resolution of the problem.

Moreover, formulation tightening is critically important since if

constraints directly delineate the convex hull of an MILP problem,

it can be solved by linear programming without combinatorial

difficulties. To achieve the above goal, three major contributions

of this paper are: 1) to efficiently formulate the problems in an

MILP form; 2) to develop a novel systematic formulation

tightening approach for the first time; and 3) to establish a

decomposition and coordination method with exponential

reduction of complexity and accelerated convergence to

efficiently solve the problem. Testing results show that our

formulation tightening is effective in terms of computational

efficiency and solution quality. With decomposition,

time-consuming branching is no longer needed when solving

subproblems, and coordination is effective. For dynamic job-shop

scheduling problems, schedule can be regenerated fast based on

previous scheduling results. This work opens up new directions

for more exploration to efficiently solve MILP problems.

Index terms–Manufacturing, job-shop scheduling,

mixed-integer linear programming, formulation tightening,

branch-and-cut, surrogate absolute-value Lagrangian relaxation

I. INTRODUCTION

n planning and operation of manufacturing systems,

job-shop scheduling is an important yet a difficult problem.

In a job shop, each part has several operations to be

processed, and each operation requires a fixed amount of time

on one machine of a given set [1]. The problem is to find a

schedule to process parts on available machines to minimize

the required objective such as the total tardiness, while

satisfying precedence and processing time constraints. For

such difficult problems to be solved daily within short amounts

of time, the only practical goal is to obtain near-optimal

solutions with quantifiable quality fast. Recent development of

Manuscript received: February, 15, 2018; Revised May, 9, 2018; Accepted

June, 7, 2018. This paper was recommended for publication by Editor Kevin

Lynch upon evaluation of the Associate Editor and Reviewers’ comments. This

work is supported by the National Science Foundation under grant
ECCS-1509666. Any opinions, findings, and conclusions or recommendations

expressed in this material are those of the author(s) and do not necessarily

reflect the views of the NSF.
Bing Yan, Mikhail A. Bragin, and Peter B. Luh are with the Department of

Electrical and Computer Engineering, University of Connecticut, Storrs, CT

06269-4157, USA (bing.yan@uconn.edu, mikhail.bragin@uconn.edu, and
Peter.Luh@uconn.edu).

Digital Object Identifier (DOI): see top of this page.

powerful Mixed-Integer Linear Programming (MILP) methods

such as branch-and-cut provide an opportunity for a fresh

perspective at effective MILP formulation and resolution.

Moreover, formulation tightening is critically important since

if constraints directly delineate the convex hull of an MILP

problem, it can be solved by Linear Programming (LP) without

combinatorial difficulties.

As reviewed in Section II, metaheuristics have been

frequently used to solve job-shop scheduling problems because

of low computational requirements. However, if a solution is

obtained, its quality cannot be quantified, it is thus very

difficult to systemically improve the quality. To overcome

complexity difficulties of standard job-shop scheduling

formulations [2], formulations with “separable structures”

were established to be effectively exploited by Lagrangian

relaxation (LR) [3]. LR is a decomposition and coordination

approach with major distinguishing features such as

near-optimal solutions with quantifiable quality. However,

traditional LR has slow convergence. Also with nonlinear

formulations, the problem cannot be solved by MILP methods.

This paper is a pioneering effort to obtain near-optimal

schedules with quantifiable quality for large-scale job-shops by

three major contributions. The first one is to reformulate the

problem in an MILP form with efficient linearization to make

effective use of popular MILP methods in Section III.

Complicated features such as batching and sequence-

dependent setups are not considered. The second contribution

is to develop a novel systematic approach to tighten MILP

formulations for the first time based on a novel integration of

“constraint-and-vertex conversion” and “vertex projection”

processes in Section IV. Inspired by penalization principles of

Augmented Lagrangian relaxation, the last contribution is to

develop a decomposition and coordination method with

exponential reduction of complexity and accelerated

convergence in Section V. It is based on our recently

developed Surrogate Absolute-Value Lagrangian relaxation

(SAVLR). Although absolute-values are not differentiable,

they have the advantage of being exactly linearizable through

introduction of few extra variables and constraints.

The resulting method is implemented by using CPLEX, and

two examples are presented in Section VI. The first is to

demonstrate the effectiveness of formulation tightening. The

second is to show computational efficiency and scalability of

SAVLR combined with branch-and-cut.

II. LITERATURE REVIEW

Developing efficient formulation and resolution of job-shop

scheduling is challenging because of its complex

characteristics, large sizes of practical problems, and high

combinatorial complexity. Existing problem formulations,

Novel Formulation and Resolution of Job-Shop

Scheduling Problems
Bing Yan, Member, IEEE, Mikhail A. Bragin, Member, IEEE, Peter B. Luh, Life Fellow, IEEE

I

2377-3766 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/LRA.2018.2850056, IEEE Robotics
and Automation Letters

2

IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED June, 2018

formulation tightening, and solution methodologies are

reviewed in Subsections A, B and C, respectively.

A. Problem formulation

Standard job-shop scheduling formulations are complex

because of the large number of decision variables and

constraints [2]. For these problems, formulations with

“separable structures” were established and efficiently

exploited by Lagrangian relaxation (LR) in [3]. However, the

model of [3], as well as those of [4, 5], is nonlinear. Integer

linear programming (ILP) models have also been considered [6,

7]. With sequence-dependent setups, ILP models have been

developed by modeling an immediate job successor of a

predecessor through the use of additional variables in [6]. In

[8], an ILP scheduling formulation was developed for

high-volume and low-variety manufacturing. However, with a

large number of decision variables and constraints, those

models cannot be effectively solved by MILP methods.

B. Formulation tightening

Formulation tightening is much overlooked but critically

important since if constraints directly delineate the convex hull

of an MILP problem, the problem can be solved by LP without

combinatorial difficulties. However, the problem of obtaining

the convex hull is fundamentally difficult and there are no clear

ways to tighten formulations. In the literature, a few tightened

constraints were presented without providing how they were

obtained. In [6], a number of valid inequalities, including

facet-defining cuts were obtained. In [7], a number of valid

cuts were developed based on problem structures.

C. Solution methodologies

Metaheuristics such as Tabu search [9-11], simulated

annealing [12], evolutionary algorithms [13, 14], and Particle

swarm [15, 16] have been widely used because of their low

computational requirements. A two-step tabu search algorithm

was established in [11] to: (1) search for the best sequence of

job operations and (2) find the best choice of machine

alternatives. In [13], a multi-objective evolutionary

algorithm-based proactive-reactive method was developed.

Particle swarm optimization was distributed into a multi-agent

system to decentralize decisions and to make sure such that

each entity participates in the resolution of the whole problem

in [15]. However, if a solution is obtained, its quality cannot be

quantified, and it is difficult to systemically improve it.

Branch-and-cut (B&C) has also been used for job-shop

scheduling problems with ILP models [6, 7]. In B&C,

integrality requirements on integer variables are first relaxed,

and the problem is solved by LP. If the values of all integer

decision variables are integers, the solution is optimal to the

original problem. If not, B&C attempts to obtain the convex

hull by cutting off LP regions without cutting off feasible

solutions by “valid inequalities” (or cuts). If the convex hull is

obtained, the problem can be directly solved by LP without

combinatorial difficulties. Otherwise, the method relies on

time-consuming branching operations. Without exploiting

“local” problem features, all constraints are treated as “global,”

affecting the entire solution process and leading to very slow

convergence. In [6], the problem was solved by using CPLEX.

However, because of the above difficulties, for a 10-part and

8-machine problem, a solution with a 26.7% Mixed-Integer

Programming (MIP) gap was found after one hour. In [7],

performance of the valid inequalities was investigated through

testing using randomly-generated datasets in CPLEX. In [8], a

two-phase approach was established in the framework of B&C.

By exploiting the beautiful property of exponential

reduction of complexity upon decomposition, Lagrangian

relaxation (LR) has also been widely used with major

distinguishing features such as near-optimal solutions with

quantifiable quality [3-5]. With separable structures, the

problem was decomposed into part subproblems after relaxing

machine capacity constraints in [3]. Subproblems were solved

by dynamic programming, and solutions were coordinated by

updating multipliers based on levels of constraint violations

(subgradient directions). There are few other research papers

on job-shop scheduling using LR [4, 5]. However, standard LR

suffers from major difficulties, e.g., high computational effort,

significant multiplier zigzagging, and the requirement of

optimal dual value for convergence proof and practical

implementations. As a result, the overall convergence may be

very slow. These difficulties have been overcome by our

recent surrogate Lagrangian relaxation (SLR), where the

solution of one or few subproblems is sufficient to update

multipliers [17]. Moreover, convergence has been proved

without requiring the optimal dual value.

Inspired by fast convergence of Augmented Lagrangian

relaxation, quadratic penalty terms with subsequent linear

approximation was used to significantly improve the reduction

of constraint violation [18]. Convergence was further

improved by using “absolute-value” penalty functions [19].

Although not differentiable, such penalties have advantage of

being exactly linearizable through the introduction of a few

extra variables and constraints.

III. PROBLEM FORMULATION

As reviewed in Section II, job-shop scheduling

formulations with “separable structures” in [3] are nonlinear.

To make effective use of powerful MILP solvers, an MILP

formulation is established in this section.

A. Machine capacity constraints

Consider a job shop with M types of machines indexed by m.

In the shop, I parts indexed by i need to be processed, and each

part requires Ji operations indexed by j, where operation j of

part i is denoted by (i, j). Assuming that the time horizon is

long enough to process all parts required, the horizon is

discretized into T time slots indexed by t. To capture whether

an operation j for a part i is active or not at time t, a set of binary

variables ijt with three indices is introduced as follows:

1, if operation of part is active at time ;

0, otherwise.
ijt

j i t



 


For each machine type m, the total number of active parts

cannot exceed its capacity Mij at any time slot, i.e.,

(,)

, , .
m

ijt ij
i j O

M m t
 

   (1)

In the above, Om denotes the set of (i, j) that can be processed

by machine type m.

B. Processing time requirements

Let bij and cij denote the beginning and completion time of

operation (i, j). They are integer decision variables linked

2377-3766 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/LRA.2018.2850056, IEEE Robotics
and Automation Letters

3
Yan et al: Novel Formulation and Resolution of Job-Shop Scheduling Problems

through processing time requirements. Part processing is

assumed to be “non-preemptive” so that a contiguous time

block of length pij is needed to process operation (i, j), i.e.,

1, , .ij ij ijc b p i j     (2)

Within [bij, cij], ijt must be 1, and 0 otherwise, i.e.,

1, if ;

0, otherwise.

ij ij

ijt

b t c


 
 


 (3)

The above logical constraint can be linearized by the standard

big-M method [20]. Since the pure big-M method may not be

efficient, our idea is to linearize (3) as follows:

   1 , 1 , , , ;ij ijt ij ijtt c T t b T i j t          (4)

, , .ijt ij
t

p i j    (5)

The above constraints guarantee that ijt = 1 iff bij ≤ t ≤ cij;

and ijt = 0 when t < bij or t > cij. Therefore linear constraints (4)

and (5) are equal to the logical constraint (3).

C. Operation precedence constraints

It is assumed there is a fixed sequence of operations for a

particular part. Operation precedence constraints require that

operation (i, j+1) cannot start before (i, j) is completed, i.e.,

, 1 1, , .i j ijb c i j     (6)

Also, operation j cannot start before part i is arrived, i.e.,

, , .ij ijb a i j   (7)

In the above, aij is the arrival time of operation (i, j).

D. Objective function

The objective function is to minimize the total weighted

tardiness as described below:

 max(,0) .
ii iJ i

i

c d   (8)

Here, i

is a weight for part i, and di denotes its due date. The

tardiness function is modeled by a piecewise-linear function

and linearized by special ordered set techniques [21]. The

upper and lower bounds for ciJi - di are pij - di and T - di, with

corresponding tardiness of 0 and T - di. For this function, the

three break points are pij - di, 0 and T - di (if pij - di < 0 < T - di).

Based on special ordered set techniques, three continuous

variables w1, w2, and w3 are used for each i to denote weights of

these three points and three binary variables Y1, Y2 and Y3 to

restrict the upper bound of these weights. After the conversion,

the above formulation is purely linear. Here and later in the

paper, the max function is kept for compactness of notation.

IV. FORMULATION TIGHTENING

In this section, a systematic formulation tightening

approach is developed through a novel integration of

“constraint-and-vertex conversion” and “vertex projection”

processes based on our previous work on unit commitment

problems in power systems [22]. The linearity of the objective

function is important, but irrelevant for formulation tightening.

The goal is to tighten a single part formulation as system-wide

machine capacity constraints will be relaxed in Section V.

Given part parameters (processing time p and arrival time

a) in numerical values, the idea is to relax integrality

requirements on discrete decision variables, and generate

vertices from constraints of the resulting LP-relaxed problem

in numerical values by using linear algebra with algorithms

well established and software available [23]. If all integer

decision variables are integers at all vertices, then the

formulation is tight. If not, those non-integer values are

rounded up or down to nearest feasible integers - essentially

projecting vertices onto the original convex hull. These

projected vertices are converted back to constraints, again by

using software, and the resulting formulation should be tight.

If there are too many non-integer vertices, the process can

be carried out in an iterative manner, with a few vertices

projected onto the original convex hull at each iteration. The

process terminates when all vertices are feasible, i.e., integer

decision variables are integers for all vertices. If the process is

stopped before termination, the formulation is not tight, but

should be tighter as compared to the original one.

For illustration purposes, consider a problem with one part,

one operation and a scheduling horizon of 7 (T = 7), subject to

processing time requirements (2), (4) and (5) only. Decision

variables are processing status of part t (binary), beginning

time b (integer), and completion time c (integer). For this

problem with p = 3 and a = 1, after relaxing integrality

requirements, the constraints are shown in Fig. 1 (a) (x1: b; x2:

c; x3 - x9: 1 - 7). By constraint-to-vertex conversion, 529

vertices are obtained with some of them shown in Fig. 1 (b),

and there are only 5 integer vertices out of 529.

Figure 1 (a): Original constraints Figure 1 (b): Vertices

New vertices are obtained by projection as shown in Fig. 2

(a), and constraints are generated through “vertex-to-constraint

conversion,” as shown in Fig. 2 (b) below.

Figure 2 (a): Projected vertices Figure 2 (b): Tightened constraints

Equality constraints (2), (3) and (5) in Fig. 2(b) can be

converted to a set of tightened constraints as follows,

2377-3766 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/LRA.2018.2850056, IEEE Robotics
and Automation Letters

4

IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED June, 2018

1 4 7 2 5 3 6
1.             (9)

Since the processing time is 3, three consecutive  must be 1.

Therefore, one of  from time slots 1, 4, and 7 has to be 1 as

implied in Eq. (9), same for time slots 2 and 5, and 3 and 6.

Inequality constraint (4) in Fig. 2(b) can be converted to

another set of tightened constraints is obtained as follows,

   2 3 1 4 3 4 2 5
2 , 2 ,            

   4 5 3 6 5 6 4 7
2 , 2 .             (10)

The first inequality implies that if 2 and 3 are both 1, either 1

or 4 must be 1, similar for the other three constraints.

The above tightened constraints directly constrain variables

1 - 7 and tighten the formulation, but can hardly be obtained

manually without going through this tightening process. With

those constraints, the total number of vertices is dramatically

reduced from 529 to 60, and the resulting formulation is much

tighter than the original one (not tight yet). The above

tightened constraints can be extended to other parts/operations

whose processing time is not 3.

Coefficients of these tightened constraints, however, are in

numerical values, not generic in terms of part parameters (i.e.,

p and a). To overcome this issue, the idea is to analyze physical

meanings of constraints under possible part statuses (i.e., active

or not), and convert constraints back to generic forms while

remaining meaningful under all possible part statuses.

V. SOLUTION METHODOLOGY

This section is on the solution methodology based on our

recent Surrogate Absolute-Value Lagrangian Relaxation

(SAVLR) with accelerated convergence [19].

A. Standard Lagrangian Relaxation

In standard Lagrangian Relaxation, after relaxing

system-wide machine capacity coupling constraints (1) by

using Lagrangian multipliers λ, the relaxed problem becomes:

  
 , , ,

min max ,0 .
i

m

k

i iJ i tm ijt ij
c i t m i j O

c d M


  
 

  
       

  
 (11)

With system-wide constraints relaxed, the relaxed problem can

be decomposed into individual part subproblems:

 
, , (,)

min max ,0 .
i

m

k

i iJ i tm ijt
c t m i j O

c d


  


       
  

 (12)

Complexity of each subproblem (12) is drastically reduced as

compared to that of the original problem. Multipliers are

updated based on appropriately chosen stepsizes and constraint

violations (subgradient directions) as:

 

1

,

,
m

k k k k

tm tm ijt ij
i j O

s M  



 
   

 
 (13)

where ijt
k
 is latest available value of decision variable ijt.

However, in order to obtain subgradient directions, all

subproblems need to be solved to optimality. Because of this,

as explained in Section II, standard LR suffers from high

computational effort, and multipliers may suffer from

zigzagging, resulting in slow convergence.

B. Surrogate Lagrangian Relaxation (SLR) [17]

In the method, computational effort is reduced by solving

one or few subproblems at a time before updating multipliers.

Within the multiplier-updating formula (13), instead of

subgradient directions, surrogate subgradient directions are

used and defined as:

 ,

() .
m

k k

ijt ij
i j O

g M 
 

  (14)

Since not all subproblems are solved at a time, surrogate

directions do not change drastically from one iteration to the

next and zigzagging difficulties are thus alleviated.

Within SLR, convergence is guaranteed without using the

optimal dual value by using the following stepsizes:

 

 

1 1

2

2

, 0 1,

k k

k

k kk

s g
s

g


 



 

   (15)

where  represents all the decision variables ijt, and

1 1
1 , 1 , 1, 0 1.

k r
M r

Mk k
        (16)

C. Surrogate Absolute-Value Lagrangian Relaxation (SAVLR)

[19]

To accelerate reduction of constraint violations and

improve convergence of SLR, violations of relaxed machine

capacity constraints (1) are penalized by using “absolute-

value” penalty terms with positive penalty coefficients v
k
. The

“absolute-value” relaxed problem is formulated:

  
 

 

,

, ,

,

max ,0

min .

2

i

m

m

k

i iJ i tm ijt ij ij
i i j O

kc z

ijt ij ij
i j O

c d z M

v
z M



  



 

 

  
          

 
       

 (17)

where zij are real-valued non-negative slack variables.

Subproblems can be formed based on (17) by selecting

variables associated with one part i as decision variables and

fixing decision variables associated with other subproblems at

previously obtained values as:

 

 

, (,)

, ,

'
, ' , (,)

max ,0

min .

2

i

m

m m

k

i iJ i tm ijt ij
t m i j O

kc z
k

i jt ijt ij ij
t m i i j O i j O

c d z

v
z M



  

 



  

           
 

          

 (18)

Following standard practice
1
, subproblems are linearized

exactly and subproblem i can be written in MILP form after

introducing continuous decision variables qtm as:

 
,

2

0,max

min

,,),(

,,




























 
 mt

tm

k

mt Oji
ijijt

k

tm

iiJi

zc q
v

z

dc

m

i

ii 




 (19)

 
'

' , (,)

. .(2), (4) (7), .
m m

k

tm i jt ijt ij ij tm
i i j O i j O

s t q z M q 
  

        (20)

Subproblems (19)-(20) are linear and combinatorial, and

are solved by using branch-and-cut. Since complexity of

subproblems is significantly reduced upon decomposition,

obtaining subproblem solutions is much easier as compared to

1
 The linearization of absolute-value functions is performed in a standard way.

Consider a simple problem:

  y

yx
ayx 

,
min .

This problem is linearized by introducing a continuous decision variable qy,
and two constraints. The linearized problem can be equivalently written as:

  ...,min
,,

yyyy

yqyx

qayqtsqx 

2377-3766 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/LRA.2018.2850056, IEEE Robotics
and Automation Letters

5
Yan et al: Novel Formulation and Resolution of Job-Shop Scheduling Problems

that of the original problem (1), (2), (4)-(8). After one or

several subproblems are solved, multipliers are updated as in

(13), where stepsizes are defined in (15) and (16) and surrogate

subgradient directions are:

 ,

() .
m

k k k

ijt ij ij
i j O

g z M 
 

   (21)

Job-shop scheduling are dynamic and schedules have to be

executed in a stochastic environment. With our decomposition

and coordination approach, the schedule can be regenerated

fast with multipliers from the previous scheduling results.

VI. NUMERICAL RESULTS

The above tightening approach is implemented by using

software Porta [23], and the decomposition and coordination

method is implemented by using CPLEX 12.7.1.0 [24]. Two

examples are tested on a laptop with the processor Intel®

Xeon® CPU E3-1535M v6 @ 3.1-GHz and 32.00 GB of RAM.

The first example demonstrates the effectiveness of

formulation tightening. The second shows the computational

efficiency and scalability of SAVLR with branch-and-cut.

Example 1: Medium-size problems

This example is to demonstrate the effectiveness of the

formulation tightening. Two medium-size problem instances

are considered. For the first one, data is taken from Pratt &

Whitney’s Development Operation shop [3] and the first 89

parts are considered. There are 19 machine types characterized

by parts/operations they can process, and each type consists of

1 to 6 machines. For simplicity, it is assumed that all machines

are available during all 200 time slots and the tardiness weights

are 1 for all parts. With and without tightened constraints (9)

and (10), the problem is solved by using branch-and-cut (B&C)

with stopping criteria as 120 seconds (s) and 1% MIP gap.

Results are shown in Table I. CPU time includes data and

model loading, solving and solution outputting time.

TABLE I COMPARISON OF DIFFERENT FORMULATIONS: 19 MACHINE TYPES

AND 89 PARTS

Formulation Total weighted
tardiness

MIP gap
(%)

CPU
time (s)

Solving
time (s)

Branching
time (s)

(1): Original 1793 1.03 80 72 58

(2): (1) + (9) 1793 1.06 67 60 34

(3): (2) + (10) 1792 1.01 40 34 0.5

Results show that CPU time is reduced by tightening and

the solution quality is still high. In addition, branching time is

dramatically reduced by adding both tightened constraints.

The second instance with 20 machines and 100 parts is

taken from the standard OR-library [25], and the total number

of time slots is 300. With different linearization methods and

tightening constraints, the problem is solved by using B&C.

The stopping criteria are 1200 s and 1% MIP gap. Testing

results are shown in Table II.

TABLE II COMPARISON OF DIFFERENT FORMULATIONS: 20 MACHINES AND

100 PARTS

Formulation Total weighted

tardiness

MIP

gap (%)

CPU

time (s)

Solving

time (s)

Branching

time (s)

(1) If-then in CPLEX / / 1446 1200 /

(2) Standard Big-M 1504 2.86 1213 1201 1019

(3): Our original 1471 0.85 609 602 469

(4): (3) + (9) 1466 0.51 162 153 63

(5): (4) + (10) 1463 0.31 108 99 28

Results show that the CPU and branching time is much

reduced by our linearization and tightening. The results are

also compared with other recent results in the literature. In [26],

it takes roughly 10,000 s to solve the 20-mahcine and 100-job

problem on a workstation equipped with an Intel Core i5-4570

CPU @3.2GHz and 16 GB RAM in. Our results are obtained

on a workstation equipped an Intel Xeon CPU E3-1535M v6 @

3.1-GHz and 32 GB RAM. According to [27], the multi-core

integer speed of our CPU is 40% faster than the one in [26],

therefore, it would take roughly 7143 s to solve the problem by

using the approach in [26] with our CPU. Although the testing

data may not be exactly the same, it can still demonstrate

computational efficiency of our approach. The above results

on two instances demonstrate the great potential of formulation

tightening for complicated MILP problems.

Example 2: Large-size problems

This example is to show computational efficiency and

scalability of SAVLR +with B&C. The first problem instance

is taken from [3] with 127 parts, and the total number of time

slots is 300. Other settings are the same as in Example 1. With

and without tightening, the problem is solved by B&C with

stopping criteria as3600 s and 1 % MIP gap. With the

tightened formulation, the problem is also solved by SAVLR

with B&C, and the stopping criterion is 2 for the norm of

constraint violations. The CPU time includes data and model

loading, subproblem solving, surrogate subgradient and

multiplier updating, feasible solution searching and solution

outputting time, and solving time excludes loading and

outputting time. Results are shown in Table III and Fig. 3

below.

TABLE III COMPARISON OF DIFFERENT FORMULATIONS AND METHOD: 19

MACHINE TYPES AND 127 PARTS

Formulation Original Tightened

Approach B&C B&C SAVLR + B&C

Total weighted tardiness 2059 1962 1961

Lower bound 1855.4 1843.2 1958.2
Gap (%) 9.89 (MIP) 6.05 (MIP) 0.14 (Duality)

CPU time (s) 3699.1 3690.4 1260.4

Solving time (s) 3612.2 3600.2 636.9

Cutting time (s) 52.4 88.9 /

Branching time(s) 3545.8 3522.7 160.8

Figure. 3. Comparison of different formulations and methods: 19 machine

types and 127 parts

As seen from the results, with our formulation tightening,

B&C obtains a feasible solution with a gap of 6% in 3699 s,

with 3546 s on branching. Within the same CPU time, the gap

is 9% without formulation tightening. SAVLR with B&C

1800

1900

2000

2100

2200

2300

2400

2500

2600

56.25112.5 225 450 900 1800 3600

T
ar

d
in

es
s

Solving Time (sec)

SAVLR +B&C

(w/tightening)

(Feasible Cost)
SAVLR +B&C

(w/tightening) (Lower

Bound)
B&C with tightening

(Feasible cost)

B&C with tightening

(Lower bound)

B&C (Feasible cost)

B&C (Lower bound)

2377-3766 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/LRA.2018.2850056, IEEE Robotics
and Automation Letters

6

IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED June, 2018

obtains a feasible solution with a gap of 0.14% in 1260 s, with

161 s on branching when finding feasible solutions.

To test scalability, a problem instance with 20 machines and

200 parts is taken from the OR-library [25], with 400 time

slots. Results by SAVLR with B&C are shown in Table IV

below. With formulation tightening, a feasible solution with a

gap of 10.79% is obtained after 1500 s with solving time of 600

s. With systematic quality improvement, the method obtains

another solution with a gap of 2.81% in 3000 s with solving

time of 1200 s. Comparison with pure B&C is not included

since it cannot obtain any feasible solution in 2 hours.

TABLE IV PERFORMANCE OF SAVLR FOR THE PROBLEM WITH 20 MACHINES

AND 200 PARTS

CPU time (s) 1500 3000

Solving Time (s) 600 1200

Feasible cost 3642 3343

Duality gap (%) 10.79 2.81

All the results are obtained with initial multipliers as 0, and

re-optimization with latest multipliers should be much faster.

They demonstrate great potential of our formulation tightening

and decomposition and coordination approach for complicated

MILP problems.

VII. CONCLUSION

This paper is a pioneering effort toward obtaining

near-optimal solutions with quantifiable quality fast for

job-shop scheduling by: (1) reformulating the problems in an

MILP form to make effective use of popular MILP methods

such as branch-and-cut; (2) establishing a decomposition and

coordination framework based on the problem reformulated in

(1) with exponential reduction of complexity and accelerated

convergence; (3) and developing a novel systematic approach

to tighten subproblem MILP formulations in (2) for the first

time. Testing results demonstrate that formulation tightening

leads to significant computational improvement, and

decomposition and coordination is efficient. For dynamic

job-shop scheduling, the schedule can be regenerated fast

based on the previous scheduling results. In the future work,

more features such as energy efficiency will be considered with

subsequent tightening. Moreover, motivated by Industry 4.0

and smart manufacturing, a distributed and asynchronous

implementation of the approach will be investigated. We

believe that this paper opens up new directions for more

exploration to efficiently solve MILP problems.

REFERENCES

[1] I. G. Drobouchevitch, and V. Strusevich, “Heuristics for the two-stage
job shop scheduling problem with a bottleneck machine,” European

Journal of Operational Research, Vol. 123, No. 2, pp. 229-240, 2000.

[2] M. R. Garey, D. S. Johnson, and R. Sethi, “The complexity of flowshop
and jobshop scheduling,” Mathematics of Operations Research, Vol. 1,

No. 2, pp. 117-129, 1976.

[3] D. J. Hoitomt, P. B. Luh, K. R. Pattipati, “A practical approach to job
shop scheduling problems,” IEEE Transactions on Robotics and

Automation, Vol. 9, No. 1, pp. 1-13, 1993.

[4] C. A. Kaskavelis, and M. C. Caramanis, “Efficient Lagrangian relaxation
algorithms for industry size job-shop scheduling problems,” IIE

transactions, Vol. 30, No. 11, pp. 1085-1097, 1998.

[5] H. Chen, C. Chu, J. M. and Proth, “An improvement of the Lagrangean
relaxation approach for job shop scheduling: a dynamic programming

method,” IEEE Transactions on Robotics and Automation, Vol. 14, No.

5, pp. 786-795, 1998.

[6] R. Z. Ríos-Mercado, and J. F. Bard, “Computational experience with a

branch-and-cut algorithm for flowshop scheduling with setups,”
Computers & Operations Research, Vol. 25, No. 5, pp. 351-366, 1998.

[7] M. Karimi-Nasab, and M. Modarres, “Lot sizing and job shop scheduling

with compressible process times: a cut and branch approach,” Computers
& Industrial Engineering, Vol. 85, pp. 196-205, 2015.

[8] B. Yan, H. Y. Chen, P. B. Luh, S. Wang, and J. Chang, “Litho machine

scheduling with convex hull analyses,” IEEE Transactions on
Automation Science and Engineering, Vol.10, No. 4, pp. 928-937, 2013.

[9] J. Hurink, B. Jurisch, and M. Thole, “Tabu search for the job-shop

scheduling problem with multi-purpose machines,”
Operations-Research-Spektrum, Vol. 15, No. 4, pp.205-215, 1994.

[10] S. Dauzère-Pérès, and J. Paulli, “An integrated approach for modeling

and solving the general multiprocessor job-shop scheduling problem
using tabu search,” Annals of Operations Research, vol. 70, No.0,

pp.281-306, 1997.

[11] M. Saidi-Mehrabad and P. Fattahi, “Flexible job shop scheduling with
tabu search algorithms,” International Journal of Advanced

Manufacturing Technology, Vol. 32, No. 5-6, pp. 563-570, 2007.

[12] J. Kuhpfahl, and C. and Bierwirth, “A study on local search
neighborhoods for the job shop scheduling problem with total weighted

tardiness objective,” Computers & Operations Research, Vol. 66,

pp.44-57, 2016.
[13] X. N. Shen, and X. Yao, “Mathematical modeling and multi-objective

evolutionary algorithms applied to dynamic flexible job shop scheduling

problems,” Information Sciences, Vol. 298, pp.198-224, 2015.
[14] S. Nguyen, M. Zhang, M. Johnston, and K. Tan, “Automatic design of

scheduling policies for dynamic multi-objective job shop scheduling via
cooperative coevolution genetic programming,” IEEE Transactions on

Evolutionary Computation, Vol. 18, No.2, pp. 193-208, 2013.

[15] M. Nouiri, A. Bekrar, A. Jemai, S. Niar, and A. C. Ammari, “An effective
and distributed particle swarm optimization algorithm for flexible

job-shop scheduling problem,” Journal of Intelligent Manufacturing, Vol.

29, No.3, pp. 603-615, 2018.
[16] G. Zhang, X. Shao, P. Li, and L. Gao, “An effective hybrid particle

swarm optimization algorithm for multi-objective flexible job-shop

scheduling problem,” Computers & Industrial Engineering, Vol. 56,
No.4, pp.1309-1318, 2009.

[17] M. A. Bragin, P. B. Luh, J. H. Yan, N. Yu, and G. A. Stern,

“Convergence of the surrogate Lagrangian relaxation method,” Journal
of Optimization Theory and Applications, Vol. 164, No. 1, pp. 173-201,

2015.

[18] X. Sun, P. B. Luh, M. A. Bragin, Y. Chen, J. Wan, and F. Wang, “A
decomposition and coordination approach for large-scale security

constrained unit commitment problems with combined cycle units,”

IEEE Transactions on Power Systems, published online March 2018,
DOI 10.1109/TPWRS.2018.2808272.

[19] M. A. Bragin, P. B. Luh, B. Yan, and X. Sun, “A Scalable Solution

Methodology for Mixed-Integer Linear Programming Problems Arising
in Automation,” IEEE Transactions on Automation Science and

Engineering, published online June 2018, DOI:

10.1109/TASE.2018.2835298.
[20] G. Belov, P. J. Stuckey, G. Tack, and M. Wallace, M., 2016, “Improved

linearization of constraint programming models,” in Proceeding of

International Conference on Principles and Practice of Constraint
Programming, pp. 49-65, Springer, Cham, 2016.

[21] E. M. L. Beale and J. J. H. Forrest, “Global optimization using special

ordered sets,” Mathematical Programming, Vol. 10, No. 1, pp. 52-69,
1976.

[22] B. Yan, P. B. Luh, E. Litvinov, T. Zheng, D. Schiro, M. A. Bragin, F.

Zhao, J. Zhao, and I. Lelic “A Systematical Approach to Tighten Unit
Commitment Formulations,” in Proceeding of 2018 IEEE Power and

Energy Society General Meeting.

[23] Heidelberg University,
http://www.iwr.uni-heidelberg.de/groups/comopt/software/PORTA/

[24] IBM ILOG CPLEX V 12.1 User’s Manual.

[25] Beasley'sOR-Library,
http://mistic.heig-vd.ch/taillard/problemes.dir/problemes.html

[26] R. Braune, and G. Zäpfel, “Shifting bottleneck scheduling for total

weighted tardiness minimization-A computational evaluation of
subproblem and re-optimization heuristics,” Computers & Operations

Research, Vol. 66, pp. 130-140, 2016.

[27] http://cpu.userbenchmark.com/Compare/Intel-Core-i5-4570-vs-Intel-Xe
on-E3-1505M-v6/2770vsm233404

