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 
Abstract–Job-shop scheduling is an important problem in 

planning and operation of manufacturing systems.  For such 

difficult problems to be solved daily within short amounts of time, 

the only practical goal is to obtain near-optimal solutions with 

quantifiable quality fast. Recent developments of powerful 

Mixed-Integer Linear Programming (MILP) methods such as 

branch-and-cut provide an opportunity for a fresh perspective at 

new at effective MILP formulation and resolution of the problem. 

Moreover, formulation tightening is critically important since if 

constraints directly delineate the convex hull of an MILP problem, 

it can be solved by linear programming without combinatorial 

difficulties. To achieve the above goal, three major contributions 

of this paper are: 1) to efficiently formulate the problems in an 

MILP form; 2) to develop a novel systematic formulation 

tightening approach for the first time; and 3) to establish a 

decomposition and coordination method with exponential 

reduction of complexity and accelerated convergence to 

efficiently solve the problem. Testing results show that our 

formulation tightening is effective in terms of computational 

efficiency and solution quality. With decomposition, 

time-consuming branching is no longer needed when solving 

subproblems, and coordination is effective. For dynamic job-shop 

scheduling problems, schedule can be regenerated fast based on 

previous scheduling results. This work opens up new directions 

for more exploration to efficiently solve MILP problems. 

 

Index terms–Manufacturing, job-shop scheduling, 

mixed-integer linear programming, formulation tightening, 

branch-and-cut, surrogate absolute-value Lagrangian relaxation 

I. INTRODUCTION 

n planning and operation of manufacturing systems, 

job-shop scheduling is an important yet a difficult problem.  

In a job shop, each part has several operations to be 

processed, and each operation requires a fixed amount of time 

on one machine of a given set [1].  The problem is to find a 

schedule to process parts on available machines to minimize 

the required objective such as the total tardiness, while 

satisfying precedence and processing time constraints.  For 

such difficult problems to be solved daily within short amounts 

of time, the only practical goal is to obtain near-optimal 

solutions with quantifiable quality fast.  Recent development of 
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powerful Mixed-Integer Linear Programming (MILP) methods 

such as branch-and-cut provide an opportunity for a fresh 

perspective at effective MILP formulation and resolution.  

Moreover, formulation tightening is critically important since 

if constraints directly delineate the convex hull of an MILP 

problem, it can be solved by Linear Programming (LP) without 

combinatorial difficulties.   

As reviewed in Section II, metaheuristics have been 

frequently used to solve job-shop scheduling problems because 

of low computational requirements.  However, if a solution is 

obtained, its quality cannot be quantified, it is thus very 

difficult to systemically improve the quality.  To overcome 

complexity difficulties of standard job-shop scheduling 

formulations [2], formulations with “separable structures” 

were established to be effectively exploited by Lagrangian 

relaxation (LR) [3].  LR is a decomposition and coordination 

approach with major distinguishing features such as 

near-optimal solutions with quantifiable quality.  However, 

traditional LR has slow convergence.  Also with nonlinear 

formulations, the problem cannot be solved by MILP methods.   

This paper is a pioneering effort to obtain near-optimal 

schedules with quantifiable quality for large-scale job-shops by 

three major contributions.  The first one is to reformulate the 

problem in an MILP form with efficient linearization to make 

effective use of popular MILP methods in Section III.  

Complicated features such as batching and sequence- 

dependent setups are not considered.  The second contribution 

is to develop a novel systematic approach to tighten MILP 

formulations for the first time based on a novel integration of 

“constraint-and-vertex conversion” and “vertex projection” 

processes in Section IV.  Inspired by penalization principles of 

Augmented Lagrangian relaxation, the last contribution is to 

develop a decomposition and coordination method with 

exponential reduction of complexity and accelerated 

convergence in Section V.  It is based on our recently 

developed Surrogate Absolute-Value Lagrangian relaxation 

(SAVLR).  Although absolute-values are not differentiable, 

they have the advantage of being exactly linearizable through 

introduction of few extra variables and constraints.   

The resulting method is implemented by using CPLEX, and 

two examples are presented in Section VI.  The first is to 

demonstrate the effectiveness of formulation tightening.  The 

second is to show computational efficiency and scalability of 

SAVLR combined with branch-and-cut.   

II. LITERATURE REVIEW 

Developing efficient formulation and resolution of job-shop 

scheduling is challenging because of its complex 

characteristics, large sizes of practical problems, and high 

combinatorial complexity.  Existing problem formulations, 
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formulation tightening, and solution methodologies are 

reviewed in Subsections A, B and C, respectively.   

A.  Problem formulation  

Standard job-shop scheduling formulations are complex 

because of the large number of decision variables and 

constraints [2].  For these problems, formulations with 

“separable structures” were established and efficiently 

exploited by Lagrangian relaxation (LR) in [3].  However, the 

model of [3], as well as those of [4, 5], is nonlinear.  Integer 

linear programming (ILP) models have also been considered [6, 

7].  With sequence-dependent setups, ILP models have been 

developed by modeling an immediate job successor of a 

predecessor through the use of additional variables in [6].  In 

[8], an ILP scheduling formulation was developed for 

high-volume and low-variety manufacturing. However, with a 

large number of decision variables and constraints, those 

models cannot be effectively solved by MILP methods.   

B. Formulation tightening  

Formulation tightening is much overlooked but critically 

important since if constraints directly delineate the convex hull 

of an MILP problem, the problem can be solved by LP without 

combinatorial difficulties.  However, the problem of obtaining 

the convex hull is fundamentally difficult and there are no clear 

ways to tighten formulations.  In the literature, a few tightened 

constraints were presented without providing how they were 

obtained.  In [6], a number of valid inequalities, including 

facet-defining cuts were obtained.  In [7], a number of valid 

cuts were developed based on problem structures.  

C. Solution methodologies 

Metaheuristics such as Tabu search [9-11], simulated 

annealing [12], evolutionary algorithms [13, 14], and Particle 

swarm [15, 16] have been widely used because of their low 

computational requirements.  A two-step tabu search algorithm 

was established in [11] to: (1) search for the best sequence of 

job operations and (2) find the best choice of machine 

alternatives.  In [13], a multi-objective evolutionary 

algorithm-based proactive-reactive method was developed.  

Particle swarm optimization was distributed into a multi-agent 

system to decentralize decisions and to make sure such that 

each entity participates in the resolution of the whole problem 

in [15].  However, if a solution is obtained, its quality cannot be 

quantified, and it is difficult to systemically improve it.   

Branch-and-cut (B&C) has also been used for job-shop 

scheduling problems with ILP models [6, 7].  In B&C, 

integrality requirements on integer variables are first relaxed, 

and the problem is solved by LP.  If the values of all integer 

decision variables are integers, the solution is optimal to the 

original problem.  If not, B&C attempts to obtain the convex 

hull by cutting off LP regions without cutting off feasible 

solutions by “valid inequalities” (or cuts).  If the convex hull is 

obtained, the problem can be directly solved by LP without 

combinatorial difficulties.  Otherwise, the method relies on 

time-consuming branching operations.  Without exploiting 

“local” problem features, all constraints are treated as “global,” 

affecting the entire solution process and leading to very slow 

convergence.  In [6], the problem was solved by using CPLEX.  

However, because of the above difficulties, for a 10-part and 

8-machine problem, a solution with a 26.7% Mixed-Integer 

Programming (MIP) gap was found after one hour.  In [7], 

performance of the valid inequalities was investigated through 

testing using randomly-generated datasets in CPLEX.  In [8], a 

two-phase approach was established in the framework of B&C.  

By exploiting the beautiful property of exponential 

reduction of complexity upon decomposition, Lagrangian 

relaxation (LR) has also been widely used with major 

distinguishing features such as near-optimal solutions with 

quantifiable quality [3-5].  With separable structures, the 

problem was decomposed into part subproblems after relaxing 

machine capacity constraints in [3].  Subproblems were solved 

by dynamic programming, and solutions were coordinated by 

updating multipliers based on levels of constraint violations 

(subgradient directions).  There are few other research papers 

on job-shop scheduling using LR [4, 5].  However, standard LR 

suffers from major difficulties, e.g., high computational effort, 

significant multiplier zigzagging, and the requirement of 

optimal dual value for convergence proof and practical 

implementations.  As a result, the overall convergence may be 

very slow.  These difficulties have been overcome by our 

recent surrogate Lagrangian relaxation (SLR), where the 

solution of one or few subproblems is sufficient to update 

multipliers [17].  Moreover, convergence has been proved 

without requiring the optimal dual value.   

Inspired by fast convergence of Augmented Lagrangian 

relaxation, quadratic penalty terms with subsequent linear 

approximation was used to significantly improve the reduction 

of constraint violation [18].  Convergence was further 

improved by using “absolute-value” penalty functions [19].  

Although not differentiable, such penalties have advantage of 

being exactly linearizable through the introduction of a few 

extra variables and constraints.   

III. PROBLEM FORMULATION 

As reviewed in Section II, job-shop scheduling 

formulations with “separable structures” in [3] are nonlinear.  

To make effective use of powerful MILP solvers, an MILP 

formulation is established in this section.   

A. Machine capacity constraints   

Consider a job shop with M types of machines indexed by m.  

In the shop, I parts indexed by i need to be processed, and each 

part requires Ji operations indexed by j, where operation j of 

part i is denoted by (i, j).  Assuming that the time horizon is 

long enough to process all parts required, the horizon is 

discretized into T time slots indexed by t.  To capture whether 

an operation j for a part i is active or not at time t, a set of binary 

variables ijt with three indices is introduced as follows:  

1, if operation  of part  is active at time ;

0, otherwise.
ijt

j i t



 


 

For each machine type m, the total number of active parts 

cannot exceed its capacity Mij at any time slot, i.e.,  

( , )

, , .
m

ijt ij
i j O

M m t
 

                 (1) 

In the above, Om denotes the set of (i, j) that can be processed 

by machine type m.  

B. Processing time requirements  

Let bij and cij denote the beginning and completion time of 

operation (i, j).  They are integer decision variables linked 
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through processing time requirements.  Part processing is 

assumed to be “non-preemptive” so that a contiguous time 

block of length pij is needed to process operation (i, j), i.e.,   

1, , .ij ij ijc b p i j                    (2) 

Within [bij, cij], ijt must be 1, and 0 otherwise, i.e.,    

1, if  ;

0, otherwise.

ij ij

ijt

b t c


 
 


              (3) 

The above logical constraint can be linearized by the standard 

big-M method [20].  Since the pure big-M method may not be 

efficient, our idea is to linearize (3) as follows:  

   1 , 1 , , , ;ij ijt ij ijtt c T t b T i j t               (4) 

, , .ijt ij
t

p i j                     (5) 

The above constraints guarantee that ijt = 1 iff bij ≤ t ≤ cij; 

and ijt = 0 when t < bij or t > cij.  Therefore linear constraints (4) 

and (5) are equal to the logical constraint (3).   

C. Operation precedence constraints 

It is assumed there is a fixed sequence of operations for a 

particular part.  Operation precedence constraints require that 

operation (i, j+1) cannot start before (i, j) is completed, i.e., 

, 1 1, , .i j ijb c i j                     (6) 

Also, operation j cannot start before part i is arrived, i.e., 

, , .ij ijb a i j                     (7) 

In the above, aij is the arrival time of operation (i, j).   

D. Objective function 

The objective function is to minimize the total weighted 

tardiness as described below: 

 max( ,0) .
ii iJ i

i

c d                (8) 

Here, i
 
is a weight for part i, and di denotes its due date.  The 

tardiness function is modeled by a piecewise-linear function 

and linearized by special ordered set techniques [21].  The 

upper and lower bounds for ciJi - di are pij - di and T - di, with 

corresponding tardiness of 0 and T - di.  For this function, the 

three break points are pij - di, 0 and T - di (if pij - di < 0 < T - di).  

Based on special ordered set techniques, three continuous 

variables w1, w2, and w3 are used for each i to denote weights of 

these three points and three binary variables Y1, Y2 and Y3 to 

restrict the upper bound of these weights.  After the conversion, 

the above formulation is purely linear.  Here and later in the 

paper, the max function is kept for compactness of notation.   

IV. FORMULATION TIGHTENING 

In this section, a systematic formulation tightening 

approach is developed through a novel integration of 

“constraint-and-vertex conversion” and “vertex projection” 

processes based on our previous work on unit commitment 

problems in power systems [22].  The linearity of the objective 

function is important, but irrelevant for formulation tightening.  

The goal is to tighten a single part formulation as system-wide 

machine capacity constraints will be relaxed in Section V.   

Given part parameters (processing time p and arrival time 

a) in numerical values, the idea is to relax integrality 

requirements on discrete decision variables, and generate 

vertices from constraints of the resulting LP-relaxed problem 

in numerical values by using linear algebra with algorithms 

well established and software available [23].  If all integer 

decision variables are integers at all vertices, then the 

formulation is tight.  If not, those non-integer values are 

rounded up or down to nearest feasible integers - essentially 

projecting vertices onto the original convex hull.  These 

projected vertices are converted back to constraints, again by 

using software, and the resulting formulation should be tight.   

If there are too many non-integer vertices, the process can 

be carried out in an iterative manner, with a few vertices 

projected onto the original convex hull at each iteration.  The 

process terminates when all vertices are feasible, i.e., integer 

decision variables are integers for all vertices.  If the process is 

stopped before termination, the formulation is not tight, but 

should be tighter as compared to the original one.   

For illustration purposes, consider a problem with one part, 

one operation and a scheduling horizon of 7 (T = 7), subject to 

processing time requirements (2), (4) and (5) only.  Decision 

variables are processing status of part t (binary), beginning 

time b (integer), and completion time c (integer).  For this 

problem with p = 3 and a = 1, after relaxing integrality 

requirements, the constraints are shown in Fig. 1 (a) (x1: b; x2: 

c; x3 - x9: 1 - 7).  By constraint-to-vertex conversion, 529 

vertices are obtained with some of them shown in Fig. 1 (b), 

and there are only 5 integer vertices out of 529.   

 
Figure 1 (a): Original constraints                        Figure 1 (b): Vertices  

 

New vertices are obtained by projection as shown in Fig. 2 

(a), and constraints are generated through “vertex-to-constraint 

conversion,” as shown in Fig. 2 (b) below. 

 
Figure 2 (a): Projected vertices              Figure 2 (b): Tightened constraints  

 

Equality constraints (2), (3) and (5) in Fig. 2(b) can be 

converted to a set of tightened constraints as follows,   
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1 4 7 2 5 3 6
1.                        (9) 

Since the processing time is 3, three consecutive  must be 1.  

Therefore, one of  from time slots 1, 4, and 7 has to be 1 as 

implied in Eq. (9), same for time slots 2 and 5, and 3 and 6.   

Inequality constraint (4) in Fig. 2(b) can be converted to 

another set of tightened constraints is obtained as follows,   

   2 3 1 4 3 4 2 5
2 , 2 ,              

   4 5 3 6 5 6 4 7
2 , 2 .                   (10) 

The first inequality implies that if 2 and 3 are both 1, either 1 

or 4 must be 1, similar for the other three constraints.   

The above tightened constraints directly constrain variables 

1 - 7 and tighten the formulation, but can hardly be obtained 

manually without going through this tightening process.  With 

those constraints, the total number of vertices is dramatically 

reduced from 529 to 60, and the resulting formulation is much 

tighter than the original one (not tight yet).  The above 

tightened constraints can be extended to other parts/operations 

whose processing time is not 3.   

Coefficients of these tightened constraints, however, are in 

numerical values, not generic in terms of part parameters (i.e., 

p and a).  To overcome this issue, the idea is to analyze physical 

meanings of constraints under possible part statuses (i.e., active 

or not), and convert constraints back to generic forms while 

remaining meaningful under all possible part statuses.   

V. SOLUTION METHODOLOGY 

This section is on the solution methodology based on our 

recent Surrogate Absolute-Value Lagrangian Relaxation 

(SAVLR) with accelerated convergence [19].    

A. Standard Lagrangian Relaxation   

In standard Lagrangian Relaxation, after relaxing 

system-wide machine capacity coupling constraints (1) by 

using Lagrangian multipliers λ, the relaxed problem becomes:  

  
 , , ,

min max ,0 .
i

m

k

i iJ i tm ijt ij
c i t m i j O

c d M


  
 

  
       

  
  (11) 

With system-wide constraints relaxed, the relaxed problem can 

be decomposed into individual part subproblems:  

 
, , ( , )

min max ,0 .
i

m

k

i iJ i tm ijt
c t m i j O

c d


  


       
  

      (12) 

Complexity of each subproblem (12) is drastically reduced as 

compared to that of the original problem.  Multipliers are 

updated based on appropriately chosen stepsizes and constraint 

violations (subgradient directions) as:  

 

1

,

,
m

k k k k

tm tm ijt ij
i j O

s M  



 
   

 
          (13) 

where ijt
k
 is latest available value of decision variable ijt.  

However, in order to obtain subgradient directions, all 

subproblems need to be solved to optimality.  Because of this, 

as explained in Section II, standard LR suffers from high 

computational effort, and multipliers may suffer from 

zigzagging, resulting in slow convergence.   

B. Surrogate Lagrangian Relaxation (SLR) [17]   

In the method, computational effort is reduced by solving 

one or few subproblems at a time before updating multipliers.  

Within the multiplier-updating formula (13), instead of 

subgradient directions, surrogate subgradient directions are 

used and defined as: 

 ,

( ) .
m

k k

ijt ij
i j O

g M 
 

               (14) 

Since not all subproblems are solved at a time, surrogate 

directions do not change drastically from one iteration to the 

next and zigzagging difficulties are thus alleviated.   

Within SLR, convergence is guaranteed without using the 

optimal dual value by using the following stepsizes:  

 

 

1 1

2

2

, 0 1,

k k

k

k kk

s g
s

g


 



 

            (15) 

where  represents all the decision variables ijt, and 

1 1
1 , 1 , 1, 0 1.

k r
M r

Mk k
             (16) 

C. Surrogate Absolute-Value Lagrangian Relaxation (SAVLR) 

[19] 

To accelerate reduction of constraint violations and 

improve convergence of SLR, violations of relaxed machine 

capacity constraints (1) are penalized by using “absolute- 

value” penalty terms with positive penalty coefficients v
k
.  The 

“absolute-value” relaxed problem is formulated:  

  
 

 

,

, ,

,

max ,0

min .

2

i

m

m

k

i iJ i tm ijt ij ij
i i j O

kc z

ijt ij ij
i j O

c d z M

v
z M



  



 

 

  
          

 
       

     (17) 

where zij are real-valued non-negative slack variables.  

Subproblems can be formed based on (17) by selecting 

variables associated with one part i as decision variables and 

fixing decision variables associated with other subproblems at 

previously obtained values as: 

 

 

, ( , )

, ,

'
, ' , ( , )

max ,0

min .

2

i

m

m m

k

i iJ i tm ijt ij
t m i j O

kc z
k

i jt ijt ij ij
t m i i j O i j O

c d z

v
z M



  

 



  

           
 

          

    (18) 

Following standard practice
1
, subproblems are linearized 

exactly and subproblem i can be written in MILP form after 

introducing continuous decision variables qtm as:  

 
,

2

0,max

min

,, ),(

,,




























 
 mt

tm

k

mt Oji
ijijt

k

tm

iiJi

zc q
v

z

dc

m

i

ii 




        (19) 

 
'

' , ( , )

. .(2), (4) (7), .
m m

k

tm i jt ijt ij ij tm
i i j O i j O

s t q z M q 
  

          (20) 

Subproblems (19)-(20) are linear and combinatorial, and 

are solved by using branch-and-cut.  Since complexity of 

subproblems is significantly reduced upon decomposition, 

obtaining subproblem solutions is much easier as compared to 

 
1
 The linearization of absolute-value functions is performed in a standard way.  

Consider a simple problem:  

  y

yx
ayx 

,
min .   

This problem is linearized by introducing a continuous decision variable qy, 
and two constraints.  The linearized problem can be equivalently written as: 

 
 

  ...,min
,,

yyyy

yqyx

qayqtsqx    
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that of the original problem (1), (2), (4)-(8).  After one or 

several subproblems are solved, multipliers are updated as in 

(13), where stepsizes are defined in (15) and (16) and surrogate 

subgradient directions are:  

 ,

( ) .
m

k k k

ijt ij ij
i j O

g z M 
 

              (21) 

Job-shop scheduling are dynamic and schedules have to be 

executed in a stochastic environment.  With our decomposition 

and coordination approach, the schedule can be regenerated 

fast with multipliers from the previous scheduling results.   

VI. NUMERICAL RESULTS 

The above tightening approach is implemented by using 

software Porta [23], and the decomposition and coordination 

method is implemented by using CPLEX 12.7.1.0 [24].  Two 

examples are tested on a laptop with the processor Intel® 

Xeon® CPU E3-1535M v6 @ 3.1-GHz and 32.00 GB of RAM.  

The first example demonstrates the effectiveness of 

formulation tightening.  The second shows the computational 

efficiency and scalability of SAVLR with branch-and-cut.    

Example 1: Medium-size problems   

This example is to demonstrate the effectiveness of the 

formulation tightening.  Two medium-size problem instances 

are considered.  For the first one, data is taken from Pratt & 

Whitney’s Development Operation shop [3] and the first 89 

parts are considered.  There are 19 machine types characterized 

by parts/operations they can process, and each type consists of 

1 to 6 machines.  For simplicity, it is assumed that all machines 

are available during all 200 time slots and the tardiness weights 

are 1 for all parts.  With and without tightened constraints (9) 

and (10), the problem is solved by using branch-and-cut (B&C) 

with stopping criteria as 120 seconds (s) and 1% MIP gap.  

Results are shown in Table I.  CPU time includes data and 

model loading, solving and solution outputting time.   
 

TABLE I COMPARISON OF DIFFERENT FORMULATIONS: 19 MACHINE TYPES 

AND 89 PARTS 

Formulation Total weighted 
tardiness 

MIP gap 
(%) 

CPU 
time (s) 

Solving 
time (s) 

Branching 
time (s) 

(1): Original  1793 1.03 80 72 58 

(2): (1) + (9) 1793 1.06 67 60 34 

(3): (2) + (10) 1792 1.01 40 34 0.5 
 

Results show that CPU time is reduced by tightening and 

the solution quality is still high.  In addition, branching time is 

dramatically reduced by adding both tightened constraints.   

The second instance with 20 machines and 100 parts is 

taken from the standard OR-library [25], and the total number 

of time slots is 300.  With different linearization methods and 

tightening constraints, the problem is solved by using B&C.  

The stopping criteria are 1200 s and 1% MIP gap.  Testing 

results are shown in Table II.   
 

TABLE II COMPARISON OF DIFFERENT FORMULATIONS: 20 MACHINES AND 

100 PARTS 

Formulation Total weighted 

tardiness 

MIP 

gap (%) 

CPU 

time (s) 

Solving 

time (s) 

Branching 

time (s) 

(1) If-then in CPLEX / / 1446 1200 / 

(2) Standard Big-M  1504 2.86 1213 1201 1019 

(3): Our original  1471 0.85 609 602 469 

(4): (3) + (9) 1466 0.51 162 153 63 

(5): (4) + (10) 1463 0.31 108 99 28 

 

Results show that the CPU and branching time is much 

reduced by our linearization and tightening.  The results are 

also compared with other recent results in the literature.  In [26], 

it takes roughly 10,000 s to solve the 20-mahcine and 100-job 

problem on a workstation equipped with an Intel Core i5-4570 

CPU @3.2GHz and 16 GB RAM in.  Our results are obtained 

on a workstation equipped an Intel Xeon CPU E3-1535M v6 @ 

3.1-GHz and 32 GB RAM.  According to [27], the multi-core 

integer speed of our CPU is 40% faster than the one in [26], 

therefore, it would take roughly 7143 s to solve the problem by 

using the approach in [26] with our CPU.  Although the testing 

data may not be exactly the same, it can still demonstrate 

computational efficiency of our approach.  The above results 

on two instances demonstrate the great potential of formulation 

tightening for complicated MILP problems.   

Example 2: Large-size problems   

This example is to show computational efficiency and 

scalability of SAVLR +with B&C.  The first problem instance 

is taken from [3] with 127 parts, and the total number of time 

slots is 300.  Other settings are the same as in Example 1.  With 

and without tightening, the problem is solved by B&C with 

stopping criteria as3600 s and 1 % MIP gap.  With the 

tightened formulation, the problem is also solved by SAVLR 

with B&C, and the stopping criterion is 2 for the norm of 

constraint violations.  The CPU time includes data and model 

loading, subproblem solving, surrogate subgradient and 

multiplier updating, feasible solution searching and solution 

outputting time, and solving time excludes loading and 

outputting time.  Results are shown in Table III and Fig. 3 

below. 
 

TABLE III COMPARISON OF DIFFERENT FORMULATIONS AND METHOD: 19 

MACHINE TYPES AND 127 PARTS 

Formulation Original Tightened 

Approach B&C B&C SAVLR + B&C 

Total weighted tardiness 2059 1962 1961 

Lower bound 1855.4 1843.2 1958.2 
Gap (%) 9.89 (MIP) 6.05 (MIP) 0.14 (Duality) 

CPU time (s) 3699.1 3690.4 1260.4 

Solving time (s) 3612.2 3600.2 636.9 

Cutting time (s) 52.4 88.9 / 

Branching time(s) 3545.8 3522.7 160.8  
 

 
Figure. 3. Comparison of different formulations and methods: 19 machine 

types and 127 parts 
 

As seen from the results, with our formulation tightening, 

B&C obtains a feasible solution with a gap of 6% in 3699 s, 

with 3546 s on branching.  Within the same CPU time, the gap 

is 9% without formulation tightening.  SAVLR with B&C 
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obtains a feasible solution with a gap of 0.14% in 1260 s, with 

161 s on branching when finding feasible solutions.   

To test scalability, a problem instance with 20 machines and 

200 parts is taken from the OR-library [25], with 400 time 

slots.  Results by SAVLR with B&C are shown in Table IV 

below.  With formulation tightening, a feasible solution with a 

gap of 10.79% is obtained after 1500 s with solving time of 600 

s.  With systematic quality improvement, the method obtains 

another solution with a gap of 2.81% in 3000 s with solving 

time of 1200 s.  Comparison with pure B&C is not included 

since it cannot obtain any feasible solution in 2 hours. 
 

TABLE IV PERFORMANCE OF SAVLR FOR THE PROBLEM WITH 20 MACHINES 

AND 200 PARTS 

CPU time (s) 1500 3000 

Solving Time (s) 600 1200 

Feasible cost 3642 3343 

Duality gap (%) 10.79 2.81 
 

All the results are obtained with initial multipliers as 0, and 

re-optimization with latest multipliers should be much faster.  

They demonstrate great potential of our formulation tightening 

and decomposition and coordination approach for complicated 

MILP problems.  

VII. CONCLUSION 

This paper is a pioneering effort toward obtaining 

near-optimal solutions with quantifiable quality fast for 

job-shop scheduling by: (1) reformulating the problems in an 

MILP form to make effective use of popular MILP methods 

such as branch-and-cut; (2) establishing a decomposition and 

coordination framework based on the problem reformulated in 

(1) with exponential reduction of complexity and accelerated 

convergence; (3) and developing a novel systematic approach 

to tighten subproblem MILP formulations in (2) for the first 

time.  Testing results demonstrate that formulation tightening 

leads to significant computational improvement, and 

decomposition and coordination is efficient.  For dynamic 

job-shop scheduling, the schedule can be regenerated fast 

based on the previous scheduling results.  In the future work, 

more features such as energy efficiency will be considered with 

subsequent tightening.  Moreover, motivated by Industry 4.0 

and smart manufacturing, a distributed and asynchronous 

implementation of the approach will be investigated.  We 

believe that this paper opens up new directions for more 

exploration to efficiently solve MILP problems. 
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