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Abstract—Day-Ahead Unit Commitment (UC) is an important 

problem faced by Independent System Operators (ISOs). 

Midcontinent ISO as the largest ISO in US, solves a complicated 

UC problem involving over 45,000 buses and 1,400 generation 

resources. With the increasing number of combined cycle units 

(CCs) represented by configuration-based modeling, solving the 

problem becomes more challenging. The state-of-the-practice 

branch-and-cut method suffers from poor performance when 

there are a large number of CCs. The goal of this paper is to solve 

such large UC problems with near-optimal solutions within time 

limits. In this paper, our recently developed Surrogate 

Lagrangian Relaxation, which overcomes major difficulties of 

Lagrangian Relaxation by not requiring dual optimal costs, is 

significantly enhanced through adding quadratic penalties on 

constraint violations to accelerate convergence. Quadratic penalty 

terms are linearized through a novel use of absolute value 

functions. Therefore, resource-level subproblems can be 

formulated and solved by branch-and-cut. Complicated 

constraints within a CC unit are thus handled within a 

subproblem. Subproblem solutions are then effectively 

coordinated. Computational improvements on key aspects are 

also incorporated to fine tune the algorithm. As demonstrated by 

MISO cases, the method provides near-optimal solutions within a 

time limit, and significantly outperforms branch-and-cut.  

 
Index Terms--Branch-and-cut, combined cycle unit, mixed 

integer linear programming, linearization, Surrogate Augmented 

Lagrangian Relaxation, unit commitment 

I.  INTRODUCTION 

AY-AHEAD Unit Commitment (UC) is an important 

problem faced by Independent System Operators (ISOs). 

The UC problem is formulated as a Mixed Integer Linear 

Programming (MILP) problem, and has specified solving time 

limits and solution quality requirements. Midcontinent 
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Independent System Operator (MISO), as the largest ISO in 

US, manages a network with over 45,000 buses and 1,400 

internal generation resources. It also has a large number of 

(over 10,000) virtual trading undertaken by participants [1] in 

day-ahead market. Considering the extended network size and 

the increasing number of generation resources, solving the UC 

problem becomes challenging.  

Combined Cycle units (CCs), as in its name, combine 

Combustion Turbines (CTs) and Steam Turbines (ST) into one 

unit. Since high-temperature gas from CTs is not released into 

the atmosphere but is used by STs to generate extra power, a 

CC unit produces electricity at high efficiency and with low 

CO2 emissions. There is thus an upward trend of installing CC 

units worldwide [2]. However, CC units bring significant 

challenges to UC problems in view of their complicated 

operation characteristics. A CC unit can operate in different 

modes or configurations, each with a particular set of 

commitment states of CTs and STs. Switching commitment 

states among CTs and STs should follow pre-defined 

configurations and allowable transition paths. For example, a 

ST cannot generate electricity if there is not enough heat from 

CTs. In view of the complicated transitions among 

configurations, a CC unit is commonly modeled as an 

aggregated unit [3], which does not utilize possible transitions. 

Some ISOs, such as MISO and CAISO, are looking into 

configuration-based modeling to save energy costs and 

incentivize participants to offer true marginal costs [4]-[7].  

The current state-of-the-practice to solve large UC problems 

is using commercial MILP solvers, which are Branch-and-Cut 

(B&C) based and combined with heuristics. The B&C method 

attempts to obtain a convex hull of the entire problem by using 

valid cuts that gradually cut off areas outside the convex hull. 

The optimal solution can then be obtained at one of vertices by 

solving a linear programming problem. The B&C method 

explores problem linearity, but has no “local” concept. With 

the aggregated CC modeling, B&C generally performs well. 

However, when there are many CCs with configuration-based 

modeling, configuration transition constraints within a CC unit 

complicate the entire solution process. Significant 

computational efforts are required since cuts generated by 

B&C thus may not be tight and heuristics may not be effective. 

For a particular MISO case with 1,092 conventional units, 80 

CCs (as stress tests), and about 15,000 virtuals looking ahead 
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36 hours, the method could not obtain a feasible solution with 

MIP gap less than 3% in 3,600s. The goal of this paper is to 

solve such large and difficult problems for near-optimal 

solutions within time limits using MILP solvers.  

To solve such a large and difficult problem, a 

decomposition and coordination approach is preferred. 

Lagrangian Relaxation (LR) was traditionally used to solve 

UC to exploit problem separability [8]. However, standard LR 

suffers from major difficulties. Our recently developed 

Surrogate Lagrangian Relaxation (SLR) overcomes difficulties 

of LR by not requiring the optimal dual value and not fully 

optimizing the relaxed problem [9]. SLR is further combined 

with B&C to simultaneously exploit separability and linearity 

[10]. However, when there are a large number of CC units, 

levels of constraint violations may not be reduced sufficiently 

fast within a time limit.  

In this paper, SLR is significantly enhanced by adding 

quadratic penalties on constraint violations to accelerate the 

convergence for large and difficult UC problems. Surrogate 

Augmented Lagrangian Relaxation (SALR) is thus developed 

with subproblem formulations and effective coordination. Due 

to the introduction of quadratic penalties, the augmented 

relaxed problem is nonlinear, and existing Mixed Integer 

Quadratic Programming (MIQP) solvers are not efficient to 

solve large-scale problems. To linearize quadratic penalties, a 

novel use of absolute value functions is established by 

exploiting the fact that an absolute value function and a 

quadratic function have the same minimum. This linearization 

approach is much more accurate than other traditional 

linearization methods. The relaxed problem is then 

decomposed into individual resource subproblems solved by 

B&C. Subproblem solutions are then coordinated based on 

updating multipliers after solving one or multiple subproblems 

subject to surrogate optimality condition. For such a large 

problem, every aspect should be carefully handled to achieve 

an overall good performance. Several enhancements on key 

aspects including grouping resources in subproblem 

formulation, filtering out inactive transmission constraints, and 

developing effective heuristics to search feasible solutions are 

provided. Our work is timely and critical to solve large UC 

problems with increasing number of configuration-based CC 

units, and can be extended to other complicated large-scale 

MILP problems in power system and beyond.  

The rest of the paper is organized as follows. Section II 

reviews the CC modeling and solution methodologies for UC 

problems with CC units. In Section III, the UC formulation 

with configuration-based CC modeling is summarized. In 

Section IV, the solution methodology including linearization 

scheme, subproblem formulation, subproblem solution 

coordination, and convergence proof is presented. In Section 

V, computational improvements on key aspects are introduced 

to enhance the overall performance. In Section VI, numerical 

testing results of one simple example and two MISO datasets 

are presented to demonstrate the efficiency and robustness of 

our method.  

II.  LITERATURE REVIEW 

Subsection II-A reviews the modelling of CCs. Subsection 

II-B reviews solution methodologies for UC with CCs.  

A.  Combined cycle unit modeling  

A CC unit typically consists of one to four CTs and one or 

two STs, and may operate in different modes/configurations 

based on combinations of commitment states of CTs and STs. 

Considering the widely used linear solvers to solve UC 

problems, CC units are typically modeled within MILP 

framework in three different representations. The simplest one 

is the aggregated modeling, which represents a CC unit as a 

conventional unit, ignoring all possible transitions among 

different modes.  

A second CC representation is the component-based 

modeling, which represents CTs and STs as individual 

components with its own unit parameters, such as ramping rate 

limits, minimum up/down time limits, and startup/shutdown 

costs. Transitions within a CC unit are specified based on 

specific characteristics of the unit [11]. This model describes 

operating constraints for each component but requires 

modeling coupling steam constraints and may incur significant 

computational complexity especially when the number of CCs 

is large.  

Configuration 1 

All Off 

Configuration 2 

1 CT 

Configuration 3 

2 CTs 

Configuration 4 

1 CT + 1 ST 

Configuration 5 

2 CTs + 1 ST 

 

 
Fig. 1. Allowable transitions in a CC unit with 2 CTs and 1 ST. 

 

Another CC representation is the configuration-based 

modeling, which captures CC unit operational characteristics 

by using multiple configurations with possible transitions. 

Figure 1 shows allowable transitions among five 

configurations within a CC unit containing two CTs and one 

ST [12]. In this modeling [5], [10], [12] each configuration 

was modeled as a conventional unit and had its own operating 

characteristics. Constraints such as generation limits and 

ramping rates of a CC configuration were formulated 

following those of a conventional unit. There are several ways 

to model transitions. In [10], startup/shutdown variables and 

big “M” operations were used to indicate a transition among 

configurations. However, it led to major computational efforts. 

In [5] and [12], transition variables were used such that 

transition constraints can be directly captured in linear forms.  

B.  Methodologies for UC with CC units 

The B&C-based MILP solvers are widely used to explore 

problem linearity with the above CC presentations [5], [12]. 

The B&C method attempts to obtain a convex hull of the 

problem by using valid cuts that gradually cut off areas outside 

the convex hull. The optimal solution can then be obtained at 
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one of vertices by solving a linear programming problem. 

However, strongest possible cuts that define facets of the 

convex hull are problem-dependent and may not be easily 

obtained. In the absence of these facet-defining cuts, branching 

operations and heuristics are required. MILP solvers typically 

work well for UC problems with the aggregated CC modeling. 

However, when there are many CC units with configuration-

based modeling, transitions among commitment states 

significantly complicate the problem convex hull. Cuts 

generated may not be effective, and time-consuming branching 

operation or heuristics are typically required.  

Lagrangian Relaxation (LR) with subgradient methods to 

update multipliers was traditionally used to solve UC problems 

without CC units by exploiting separability [8]. After relaxing 

system-coupling constraints and decomposing the relaxed 

problem into subproblems, subproblem solutions are 

coordinated based on subgradient directions, which are 

obtained after solving all subproblems with given multipliers. 

However, standard LR requires the knowledge of the optimal 

dual value or its estimates.  

Major difficulties of LR has been overcome by our recently 

developed surrogate Lagrangian relaxation (SLR) [9], in which 

surrogate subgradient directions are obtained after solving one 

or a few subproblems at a time subject to the simple surrogate 

optimality condition to ensure surrogate subgradient directions 

form acute angles with the direction toward optimal 

multipliers. Computational effort and multiplier zigzagging are 

much reduced. More importantly, convergence to the optimal 

multipliers has been proved based on contraction mapping and 

does not require the knowledge of the optimal dual value. 

Reference [9] is mainly on the theory with no large and 

difficult MILP problems tested. 

The SLR has been further synergistically combined with 

B&C to simultaneously exploit separability and linearity. The 

SLR+B&C had been applied to a particular UC example with 

300 conventional and 40 CC units – the latter modeled by 

using logical expressions [10]. Transmission capacity 

constraints are ignored, and each unit has a single-block cost 

function. Computational time was significantly reduced 

compared with that of B&C. However, for MISO’s cases with 

many transmission constraints, conventional and CC units with 

multiple-block cost functions, and virtual variables, levels of 

constraint violations are not reduced sufficiently fast to obtain 

near-optimal solutions within a limited solving time.  

Augmented Lagrangian Relaxation (ALR) has a fast 

convergence by penalizing violations of coupling constraints 

[13]. Due to the introduction of quadratic terms, the relaxed 

problem becomes nonlinear and non-separable. The presence 

of quadratic terms can cause significant computational 

difficulties. Performance of existing MIQP solvers are often 

dramatically worse than that of linear cases. To address this 

issue, traditional way of linearization based on Taylor series 

expansion [14] was widely used. However, the approach is not 

effective since solution values tend to jump from one vertex to 

another as slopes of linear functions change. Adding proximal 

terms can alleviate this issue, and the proximal terms can be 

linearized following the way provided in PySP [15] by a 

simple interpolation. Our conference paper [16] summarized 

our working progress on linearization of ALR. It presented our 

investigation on maintaining the fast convergence of ALR by 

rewriting the entire Lagrangian function as summation of 

square functions with respect to each variable. However, due 

to the mathematical difficulties in completing squares and 

proof of preserving minima for practical problems as well as 

the implementation complexity, the method proposed in [16] is 

not applicable for large and practical UC problems.  

III.  PROBLEM FORMULATION 

Subsection III-A summarizes the UC problem formulation 

with constraints of configuration-based CC modeling descried 

in subsection III-B.  

A.  Unit commitment formulation 

The goal is to commit and dispatch conventional units, CC 

units, as well as dispatchable variables including virtuals, 

dispatchable demands, and dispatchable transactions to 

minimize energy supply and reserve costs while satisfying 

individual resource-level constraints, power balance, reserve 

requirements, and transmission capacity constraints for all 

looking ahead hours. The formulation presented in this section 

is based on MISO UC with configuration-based CC modeling 

[1], [12]. For CC units, each configuration is treated as a 

conventional unit with its own operating constraints. 

Transitions among configurations are developed by using 

transition variables and constraints. For presentation brevity, 

linear production costs are used and reserve is not considered. 

However, these features can be easily incorporated following 

[17], [18], and are considered in Examples 1-3 in Section VI.  

For each conventional unit i at time t, decision variables 

include binary on/off status xi,t, binary startup decision ui,t, 

binary shutdown decision yi,t, and continuous generation level 

pi,t. For each configuration f of a CC unit j, decision variables 

include binary on/off status xj,f,t, binary transition variable vj,ff’t 

indicating a transition is made from configuration f to 

configuration f’ following the allowable path, and continuous 

generation level pj,f,t. Virtual, dispatchable demand, and 

dispatchable transaction variables pn,t are continuous and 

integer-independent. 
 

Objective function 

The objective of UC is to minimize total operating costs of 

all resources including conventional units (no-load cost 

titiNL
xC

,,
, energy cost Ci,tpi,t, and startup cost 

titiSU
uC

,,
), CC 

units (no-load and energy costs for each configuration f, and 

transition cost Cj,f’f,tvj,f’f,t for each allowable transition) and 

virtuals, dispatchable demands, and dispatchable transactions 

(energy cost Cn,tpn,t):  

 
 

,
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,
,, tn

n t
tn
pC  (1) 

where Fj denotes a set of configurations within CC unit j, and 
,from f

j
F denotes a set of configurations f’ (f’ ≠ f) that have an 

allowable transition to configuration f within CC unit j. 

Similarly, ,f to

j
F  denotes a set of configurations f’ (f’ ≠ f) that 

have an allowable transition from configuration f . 
 

Individual conventional unit constraints  

Conventional unit-level constraints include 

startup/shutdown, minimum up/down time, generator limits, 

and ramping up/down constraints [19].  
 

Individual CC unit constraints  

Constraints for a CC unit are summarized in Subsection III-B. 
 

Individual virtual transaction, dispatchable demand, and 

dispatchable interchange transaction constraints 

Virtual trading is undertaken by participants that do not 

necessarily have physical loads to serve or physical resources 

to offer. Participants submit bids, either loads or supplies, for 

the financial purchase or sale of energy in the day-ahead 

market. Together with dispatchable demands and dispatchable 

transactions, these are associated with continuous variable pn,t 

only. Unlike generation resources, there is no integer variables 

and no other constraints except the MW limit constraint:  

,,,max

,,

min

,
tnppp

tntntn
  (2) 

where 
m in

,tnp and 
max

,tnp are limits with either m in

,tnp = 0 or 
max

,tnp = 

0. For a virtual supply offer, m in

,tnp is 0, and 
max

,tnp is a positive 

value. For a virtual demand bid, m ax

,tnp is 0, and 
m in

,tnp is a 

negative value. Dispatch demand is always a negative value 

leading to m ax

,tnp = 0 and 
m in

,tnp as a negative limit. Dispatchable 

transactions could be either purchases or sales as similar to 

virtuals.  
 

System-coupling power balance constraints  

, , , ,
, ,

j

t i t j f t n t
i j f F n

P p p p t


        (3) 

where P is the sum of fixed demand bids at all nodes. At time t, 

Pt is equal to the total power generated by all generation 

resources and all other dispatchable variables.  
 

System-coupling DC transmission capacity constraints 

,, ,max

,,

min

,
tlfff

tltltl


 
,, , , , , , , , ,

where .
l t

j

l t i l i t j f l j f t n l n t F
i j f F n

f p p p P  


       (4) 

Power flow fl,t of transmission line l at time t is modeled as a 

linear function of injections from all nodes weighted by 

generation shift factors  plus a fixed demand 
,l tF

P , and 

restricted by power flow limits.  

B.  Constraints of CC units with configuration-based model 

Within the configuration-based CC modeling, each 

configuration is treated as a conventional unit. Since 

,
, ' ,

'
from f

j

j f f t
f F

v


  and 
,

, ',
'

f to
j

j ff t
f F

v


 can be viewed as startup and 

shutdown variable for configuration f, respectively, 

conventional unit-level constraints are applied to each 

configuration by using transition variables. The following are 

additional constraints defined to restrict configuration 

commitment states and transitions within a CC unit.  
 

Configuration transition constraints  

A CC unit can only have one configuration committed at t: 

, ,
1, , .

j

j f t
f F

x j t


   (5) 

Configuration startup/shutdown, minimum up/down time, 

and (5) guarantee vj,f’f,t = 1 when there is a transition from 

configuration f’ to f, and vj,f’f,t = 0 otherwise [12]. 
 

Unique commitment constraints 

These constraints have demonstrated strong ability in 

improving the computational performance [5] by defining that 

at most one transition is allowed at time t for a CC unit:  

,
, ' ,

'

1, , .
from f

j j

j f f t
f F f F

v j t
 

    (6) 

IV.  SOLUTION METHODOLOGY 

This section presents the solution methodology. Subsection 

IV-A presents Surrogate Augmented Lagrangian Relaxation 

with a novel linearization scheme. Subsection IV-B provides 

the convergence proof.  

A.  Surrogate Augmented Lagrangian Relaxation with 

absolute value function linearization 

As reviewed in subsection II-B, our recently developed 

Surrogate Lagrangian Relaxation (SLR) overcomes major 

difficulties of LR. However, when there are many CC units, 

levels of violation of coupling constraints are still large when 

reaching solving time limits. This brings difficulty in searching 

feasible solutions. In addition, lower bounds may not provide a 

sufficiently good measure of solutions quality.  

Motivated by the fast convergence of Augmented 

Lagrangian Relaxation, a novel approach Surrogate 

Augmented Lagrangian Relaxation (SALR) is developed by 

incorporating the idea of using quadratic penalties into SLR. 

Subproblems can then be extracted by fixing variables in other 

subproblems at values obtained from the previous iteration. 

Subproblem solutions are coordinated through updating 

multipliers subject to surrogate optimality condition. In the 

end, a near-optimal solution is obtained using heuristics.  

After relaxing system-coupling constraints and penalizing 

violations, the augmented relaxed problem of UC at iteration k 

becomes:  

 

 

,

, , , , ,

, , , , , , , ,

, , , , , , , , , ' , , ' ,
'

min : with 
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j j
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max

, ,
,k

l t l t
f w   (7) 

subject to individual resource-level constraints. In (7), λk and 

µk are Lagrangian multipliers (left-hand side of transmission 

constraints (4) are ignored in the presentation), ck (>0) is a 

penalty coefficient, and {wl,t} are non-negative slack variables 

converting inequality constraints to equalities.  

The augmented relaxed problem is nonlinear and non-

separable because of the introduction of quadratic penalties. 

The presence of quadratic terms can cause significant 

computational difficulties. For large-scale problems, 

performance of existing Mixed Integer Quadratic Programing 

(MIQP) solvers is dramatically worse than that of linear cases. 

To maintain the linearity so as to exploit MILP solvers, our 

idea is to linearize quadratic terms by a novel use of absolute 

value functions. Conceptually, a quadratic function can be 

replaced by a V-shape absolute value function with the 

minimum preserved as shown in Figure 2 for a simple 

quadratic function y = x2. Although not differentiable, absolute 

value functions have the advantage of being exactly 

linearizable through extra variables and constraints.  

 

 

Fig. 2. Absolute value function linearization. 
 

Linearization 

A simple MILP problem (8) is used to illustrate the 

linearization scheme.  

)(min xf
x

, s.t. g(x) = 0, where f and g are linear. (8)  

After relaxing the constraint, penalizing the violation, the 

augmented relaxed problem at iteration k becomes  

.)(5.0)()(min 2kkkkk

x

xgcxgxf
k

   (9) 

During the iterative process, replace
2)( kxg with an absolute 

value function:  

,)(5.0)()(min kkkkkk

x

xgacxgxf
k

   (10) 

where ak is the slope of the absolute value function determined 

by the value of variable obtained from the previous iteration. 

At the beginning iterations,  1,)(max 1 kk xga  is used in 

case )( 1kxg  becomes zero, and the constraint violation is not 

penalized. After a few iterations, the slope is fixed at a certain 

constant a  to ensure the convergence. 

The absolute value function is then linearized following a 

standard procedure [20] by introducing two non-negative 

variables (z1, z2) and one additional constraint. Equation (10) 

can be equivalently rewritten in a linear form as:  

 
 kkkkkkk

zzx

zzacxgxf
kkk 21

,,

5.0)()(min
21

   (11) 

.0;0;)( s.t.
2121
 kkkkk zzzzxg  (12) 

 

Following the above linearization scheme, the augmented 

relaxed problem at iteration k for UC can be linearized as:  
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 (13) 

subject to individual resource-level constraints and additional 

constraints to linearize absolute value functions:  

1, 2, , , , ,
, ,

j

k k k k k

t t t i t j f t n t
i j f F n

z z P p p p t


          (14) 

,

max

3, , 4, , , , , , , , , , ,l t
j

k k k k k

l t l t i l i t j f l j f t n l n t F l t
i j f F n

z z p p p P f  
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k

t

k

t
  (16) 

In (13), 
k

t
a and k

tl
b

,
are slopes of absolute value functions 

defined as 

1 1 1

, , , ,
max ,1 , ,

j

k k k k

t t i t j f t n t
i j f F n

a P p p p t  



 
     

 
     (17) 

,
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, , , , , , , , ,
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l t
j

k k k k

l t i l i t j f l j f t n l n t F
i j f F n
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max 1

, ,
,1 , , .k

l t l t
f w l t    (18) 

 

Decomposition 

Eq. (13) is now linear, and variables coupled in the original 

quadratic terms are now coupled through (14) and (15). 

Subproblems can still be extracted by fixing decision variables 
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of other resources at values obtained from the previous 

iteration. The augmented relaxed problem is thus 

“decomposed” into individual resource-level subproblems. A 

subproblem for CC unit j at iteration k is formulated as:  

 

,

, , , ,

, , , , , , , , , ' , , ' ,
'

min ' : with '

from f
j j

CC CC
x v p w z

k k k

NL j f t j f t j f t j f t j f f t j f f t
f F t f F

L L

C x C p C v
 



 
  

 
  

 

, , , , , , , ,

j j

k k k k k

t j f t l t j f l j f t l t
t f F l t f F

p p w  
 

   
      

   
     

   ,
22

,,4,,3,2,1  
l t

k

tl

k

tl

k

k

t

k

t

k

t

k

k

zzb
c

zza
c

 (19) 

subject to individual CC unit constraints and constraints to 

linearize absolute value functions:  

1 1 1

1, 2, , , , , , ,
'

, ,
j j

k k k k k k

t t t i t j f t n t j f t
i j j f F n f F

z z P p p p p t  

  

           (20) 
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i j j f F n

z z p p p    

 

       

,

max

, , , , , ,
, , ,
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Complicated transitions within a CC unit are now handled 

within a CC unit subproblem, and do not complicate the entire 

solving process. Note that for a subproblem, when solving 

from one iteration to the next, only coefficients (λk, µk, ck, ak, 

bk) and values of variables from other subproblems are 

changed.  

A conventional unit subproblem can be similarly 

formulated. Other dispatchable resources including virtuals, 

dispatchable demands, and dispatchable transactions are 

integer-independent and only with simple bounds. Due to the 

simplicity, the original quadratic forms of these individual 

resource subproblems can be taken to derive analytical 

solutions based on unconstrained minima and bounds with 

slack variables fixed. Ideally, individual resource-level 

subproblems can be solved iteratively. For MISO UC with a 

large number of conventional units (more than 1,000), CC 

units (about 50), and virtuals (more than 10,000), slow 

convergence would be expected when solving individual 

resource subproblem. In the Subsection V-A, a grouping 

strategy to create subproblems will be discussed to improve 

the convergence.  
 

Coordination 

To update multipliers, subproblem solutions are coordinated 

subject to the surrogate optimality condition to ensure that 

multiplier directions form acute angles with directions toward 

optimal multipliers:  

),,,,,,,,('
~ kkkkkkkkk

c
zwpvyuxL k   

),,,,,,,,,('
~ 1111111 kkkkkkkkk

c
zwpvyuxL k 

 (23) 

where ),,,,,,,,('
~ kkkkkkkkk

c
zwpvyuxL k  is the surrogate 

augmented dual value of (13). After satisfying (23), multipliers 

are updated using stepsizes sk as:  

,~,
~

,

1

,

1
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1 k

tl

k

tl

k

tl

k

t

kk

t

k

t
eshsλ     (24) 

where k

t
h
~

 and k

tl
e

,

~  are components of surrogate subgradients 

),(~ kk wpg . The stepsizing formula developed in SLR [9, (14)-

(15), (20)] is used: 

,
),(~

),(~ 11

1

kk

kkk

kk

wpg
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    (25) 

where  

10,1,
1

1,
1

1  rM
k

d
Mk rd

k  (26) 

Penalty coefficient is increased as:  

.1  ,1  βcβc kk  (27) 

If surrogate optimality condition (23) is not satisfied after 

solving all subproblems, penalty coefficients will be reduced 

to enforce the satisfaction of the surrogate optimality condition 

as: 

.1 ,/1  ββcc kk  (28) 

 

SALR with the absolute value function linearization is 

named SALRL for short. When synergistically combined with 

B&C to solve subproblems, SALRL+B&C is defined. The key 

steps of SALRL+B&C are summarized as follows:  
 

Step 0 Initialize 0, µ0, s0, c0, a0, and b0. Multipliers are 

initialized as 0.  

Step 1 For given k and µk, create a subproblem and solve it 

by B&C. If (23) is satisfied, go to next step. If the 

surrogate optimality condition is not satisfied, skip 

this iteration and solve the next subproblem. If the 

surrogate optimality condition is not satisfied after 

solving all subproblems, update penalty coefficients 

ck+1 per (28). 

Step 2 Update γk and sk per (25)-(26), update k+1 and µk+1 

per (24) and update ck+1 per (27).  

Step 3 If a stopping criteria (a time limit is used for MISO 

UC problem) is satisfied, go to the next step. 

Otherwise, go back to Step 1.  

Step 4 Search for feasible solutions. 

Step 5 Calculate the duality gap by using the feasible 

solution and the dual value. 
 

B.  Convergence proof 

This subsection presents the convergence proof of SALR 

and SALRL+B&C methods.  

Proposition 1: The SALR method converges if surrogate 

optimality condition 

),,,,,,,(
~ kkkkkkkk

c
wpvyuxL k   

),,,,,,,,(
~ 111111 kkkkkkkk

c
wpvyuxL k 

 (29) 

in which ),,,,,,,(
~ kkkkkkkk

c
wpvyuxL k   is the surrogate 

augmented dual value of the augmented relaxed problem, is 

satisfied after solving all subproblems once, and penalty 

coefficient approaches a finite constant.  
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Proof: Within SALR, the augmented Lagrangian function (7) 

can be viewed as the Lagrangian function associated with 

Problem A:  

,),(5.0),,,,(min 2

},,,,,{
wpgcpvyuxf

wpvyux
  (30) 

s.t. all system-coupling and resource-level constraints. 

This problem is equivalent to the original UC problem when 

c approaches a finite constant ensuring no change in the 

objective function. Moreover, Problem A satisfies all 

assumptions listed in SLR (linearity of constraints [9, p. 178] 

and boundedness of constraint norms [9, p. 176]; but linearity 

of the objective function is not required). Therefore, the 

surrogate Lagrangian relaxation framework can be used 

whereby multipliers and stepsizes are updated in the same way 

as within the SLR method subject to the surrogate optimality 

condition, and the convergence proof in Theorem 2.1 of SLR 

[9, pp. 180-186] can be applied to SALR. If the surrogate 

optimality condition is not satisfied after solving all 

subproblems, penalty coefficients will be reduced to enforce 

the satisfaction of the surrogate optimality condition and the 

updating of multipliers. Multipliers thus converge to 
** , which maximize the dual function:  

),,,,,,,,(min),(
},,,,,{

 wpvyuxLq kk cwpvyuxc
  (31) 

corresponding to the augmented relaxed problem.  

 

Proposition 2: SALRL+B&C converges if the surrogate 

optimality condition (23) is satisfied after solving all 

subproblems once, penalty coefficient approaches a finite 

constant, and the slopes of absolute value functions are fixed at 

constant values.  

Proof: Within SALRL+B&C, the linearized surrogate 

augmented Lagrangian function (13) can be viewed as the 

Lagrangian function associated with Problem B defined as 

follows: 

  ,,5.0),,,,(min
},,,,,{

wpgacpvyuxf
wpvyux

  (32) 

s.t. all system-coupling and resource-level constraints. The 

objective of Problem 2 is the objective of the original UC 

problem plus the absolute value function terms.  

At the beginning of the iterative process, slopes 

 1,),(max 11  kk wpga  would accelerate the reduction of 

g(p,w). After several iterations, a would be fixed at a , and the 

penalty coefficient c approaches c , the problem (32) would be 

equivalent to the original problem. Moreover, (32) satisfies all 

assumptions listed in SLR. Therefore, following Proposition 1, 

convergence of SALRL+B&C can be guaranteed.  

V.  COMPUTATIONAL IMPROVEMENTS 

This section presents improvements on key aspects of the 

algorithm. It includes a grouping strategy to improve the 

convergence in Subsection V-A, a method to filter out inactive 

transmission constraints in Subsection V-B, and an effective 

heuristic to search feasible solutions in Subsection V-C.  

A.  Grouping resources within the same type 

As discussed in Subsection IV-A, a subproblem can be 

extracted by fixing values of coupled resources in other 

subproblems in (14)-(15). Ideally, individual resource-level 

subproblems can be formulated and then solved iteratively. 

However, for large MISO UC problem, there are more than 

1,000 unit-wise subproblems, and over 10,000 virtual 

subproblems. The enormous number of subproblems and less 

information in each small subproblem bring difficulty in 

satisfying the surrogate optimality condition and result in slow 

convergence. Take a conventional unit as an example, if all 

other resources are fixed and the penalty coefficient is large, 

absolute value terms become dominant. Solution then tends to 

be “feasible” to satisfy the current constraint violation rather 

than “optimal” to the original primal problem. There may not 

exist solutions that can satisfy the surrogate optimality 

condition. The wasted efforts on solving these individual unit-

wise subproblems make the algorithm inefficient or does not 

converge within a time limit. Moreover, due to the inefficiency 

in most commercial optimization packages, the total time of 

solving 1,000 subproblems is typically much longer than that 

of solving 10 subproblems in which each contains 100 units.   

In view of a large amount of resources in MISO system and 

the difficulty of satisfying surrogate optimality condition in 

solving individual resource subproblems, the relaxed problem 

is decomposed into limited number of subproblems. In each 

subproblem, certain resources within the same type are solved 

together to improve the convergence and reduce the 

computational time. Conventional units are divided into ten 

subproblems, each containing about 120 units. Decision 

variables of these coupled units are now solved together within  

120
1 1 1

1, 2, , , , , ,
1 121

, .
j

I
k k k k k k

t t t i t i t j f t n t
i i j f F n

z z P p p p p t  

  

            (33) 

Solving such a subproblem could have more chances to satisfy 

surrogate optimal condition because the solution k

ti
p

,
for these 

units could likely move from the previous iteration 1

,

k

ti
p . 

Improvements on grouping resources within the same type will 

be demonstrated in Case 1 of Example 2 in Section VI.  

In view of the complicated transitions within a CC unit, the 

number of CC units in one subproblem should be limited (10 is 

used for MISO UC cases) to avoid the potential increased 

complexity. Virtuals, dispatchable demands, and dispatchable 

transactions are only associated with continuous variables and 

simple MW limit constraints. In view of these features, all 

these variables are solved together in one subproblem.  
 

B.  Identification of inactive transmission constraints 

Within SALRL+B&C, since all transmission constraints are 

relaxed and violations are penalized, a large number of such 

constraints would result in a large number of multipliers and 

absolute value functions. To overcome these difficulties, 

inactive transmission constraints are identified and removed 

following [21]. An analytical estimate of the worst-case power 

flow through each line is obtained. If it is within the 

transmission capacity, the corresponding transmission 

constraint is removed. This method is extended to CCs by only 

considering the worst-case configuration (all components “on” 

when the generation shift factor is positive, and all components 

“off” when the generation shift factor is negative). Virtuals, 

dispatchable demands, and dispatchable transactions are 

treated similarly to conventional units since they have MW 



0885-8950 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPWRS.2018.2808272, IEEE
Transactions on Power Systems

 

 
8 

limits. This process reduces solving time for subproblems and 

computational time of surrogate subgradients and multipliers.  

C.  Obtaining feasible solutions 

Solutions to subproblems are typically feasible with respect 

to each subproblem, but these solutions may not satisfy relaxed 

constraints. To obtain a feasible solution to the original 

problem, heuristics are used to free certain discrete variables 

to solve a smaller MILP problem by B&C.  

Considering the complexity associated with CC units, 

binary variables of CC units are fixed at values obtained from 

the iterative process. Level of violation for each transmission 

constraint at each time interval can be calculated as:  

,

max

, , , , , , , , , ,
.

l t
j

l t i l i t j f l j f t n l n t F l t
i j f F n

g p p p P f  


        (34)
 

For example, if gl,t > 0, it indicates that extra power is 

generated. Commitment variables of online units with positive 

i,l and off-line units with negative i,l are set free and will be 

resolved to potentially reduce the power flow. Number of 

selected units and magnitude thresholds of αi,l can be tuned 

based on testing cases. Additional out-of-money units are 

identified if their subproblem costs are positive based on 

MISO’s heuristics [1] to ensure that sufficient units are 

resolved in the small MILP problem. Since levels of constraint 

violations are penalized, SALRL+B&C provides better 

commitment decisions, and fewer units are freed as compared 

with those from SLR+B&C as demonstrated in Section VI.  

VI.  NUMERICAL TESTING 

The method has been implemented on an Intel Core i7-

6700K 4.0GHz 16 GB server with AIMMS 4.2 and CPLEX 

12.6. Three examples are presented. In Example 1, a 5-bus 

system is tested to demonstrate the efficiency of the 

configuration-based CC modeling and the convergence of 

SALRL+B&C. In examples 2 and 3, two different MISO 

datasets are tested to demonstrate near-optimal solutions are 

effectively obtained within a time limit.  

Example 1: 5-Bus system 

A 5-bus system with eight conventional units, one combined 

cycle unit, and 224 virtuals looking ahead 36 hours is tested. 

After relaxing system coupling constraints, the relaxed 

problems are decomposed into nine unit subproblems and one 

virtual subproblem. Iterative process stops when the number of 

iterations (solving one subproblem is defined as one iteration) 

reaches 200, feasible solution search is then started based on 

heuristics. The following two cases are studied to demonstrate 

the efficiency of configuration-based CC modeling and the 

convergence of our solution methodology.  
 

Case1: This case compares the performance of 

configuration-based CC modeling and the aggregated CC 

modeling. In the former, the CC unit contains two CTs and one 

ST, and allows five configurations as shown in Figure 1. The 

feasible solution of configuration-based CC modeling is 0.54% 

less than that of the aggregated modeling. Comparisons of 

commitment states and generation levels are shown in Figure 

3. As can be seen, in the aggregated modeling, the CC unit is 

committed in the last eight intervals with a high generation 

level. In the configuration-based modeling, the CC unit is 

committed four hours earlier and the generation level is 

reduced by switching to configurations with smaller minimum 

generation requirement. This is because in the aggregated 

modeling, high capacity, high startup/energy cost, and long 

minimum run time are used to ensure that the operating costs 

can be recovered. The configuration-based model introduces 

flexibility because different operational configurations can be 

selected and the energy costs and minimum up/down time are 

more accurate for each configuration than the simplified 

aggregated model.  

 

 
Fig. 3. Generation level and configuration transitions of the CC unit.  

 
Table 1. Performance comparisons of SALRL+B&C, SALR+MIQP, 

SLR+B&C, and ALR+MIQP. 

 

SALRL

+ B&C 

SALR 

+ MIQP 

SLR 

+ B&C 

ALR 

+ MIQP 

Feasible solution ($) 604,903 604,903 604,903 604,903 

CPU time (s) 40 53 39 258 

 

 
Fig. 4. Convergence of SALRL+B&C compared with SALR+MIQP, 

SLR+B&C, and ALR+MIQP. 

 

Case 2: This case compares the performance of 

SALRL+B&C, SALR+MIQP (with MIQP solver to solve 

subproblems), SLR+B&C, and ALR+MIQP (with MIQP 

solver to solve the full augmented relaxed problem). Feasible 

solutions and computational time of these four approaches are 

summarized in Table 1. All approaches obtain the same 

optimal solution $604,903. Among them, ALR+MIQP 

requires the longest time since the problem is more complex 

than other decomposition approaches during each iteration. 

The computational time of SALRL+B&C is similar to that of 

SLR+B&C demonstrating the efficiency of our linearization 

approach. SALR+MIQP requires longer computational time 

than SALRL+B&C because of the complexity to solve a 
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quadratic problem. For this simple example with only a few 

units, MIQP works with acceptable performance. When 

solving large-scale MIQP problems, the complexity would 

increase exponentially.  

Levels of constraints violations in squared L2-norm are 

depicted in Figure 4 to illustrate the convergence of all 

approaches. The two SALR-based approaches accelerate the 

reduction of levels of constraint violations compared with 

SLR. Constraint violations of SALRL+B&C are slightly 

higher than that of SALR+MIQP because of the linear 

approximation. ALR approach reduces the constraint violation 

fast at the beginning because it fully optimizes the augmented 

relaxed problem. However, the level of constraint violations is 

still high at convergence due to the major issues as discussed 

in LR method.  

Example 2 

One MISO dataset containing 1,143 conventional units, 20 

CC units converted from aggregated modeling to 

configuration-based modeling, and 14,955 virtuals with 36 

looking ahead hours is tested. The case is also extended to 40 

and 80 CC units with configuration-based modeling. All 

system-coupling constraints including power balance, 

transmission, and reserve are relaxed. Among them, power 

balance and transmission constraints are penalized with 

quadratic terms.  

 
(a) 80 CCs case 

 
(b) 20 CCs case 

Fig. 5. Comparison of SALRL+B&C and B&C for (a) 80 CCs, and (b) 20 

CCs in Example 2. 

 

Performance of SALRL+B&C and comparison with B&C 

are depicted in Figure 5. For 80 CCs as a stress test, at the time 

limit 1,800s, B&C cannot reach a feasible solution with a 

reasonable MIP gap. It requires 3,600s to first obtain a good 

feasible solution. The SALRL+B&C method provides a near-

optimal solution with an acceptable duality gap 5.5% within 

1,800s. Along the solution process, it achieves feasible 

solution much faster than B&C. Although the feasible 

objective cost obtained from B&C at 3,600s is slightly less 

than that of SALRL+B&C at 1,800s, the 3,600s solving time is 

too long for MISO to accept. For less complicated 20 CC case, 

B&C obtains a good feasible solution with a very small MIP 

gap 0.8%, which is hard for SALRL+B&C to outperform. This 

demonstrates that SALRL+B&C is powerful to provide good-

quality feasible solutions within limited time and significantly 

outperforms B&C for difficult cases. 

The following cases 1-3 are conducted for 80 CCs to 

demonstrate the efficiency of our approach on grouping 

strategy, filtering out inactive transmission constraints, and 

searching for feasible solutions, respectively. In Case 4, our 

method is compared with B&C for 20, 40 and 80 CCs.  
 

Case 1: This case shows the performance of grouping 

resources in subproblems. The nominal grouping strategy is 

defined as follows: 120 conventional units are grouped into 

one subproblem, 10 CCs are grouped into a CC unit 

subproblem, and all virtuals, dispatchable demands, and 

dispatchable transactions are grouped together into one 

subproblem. Therefore, totally 19 subproblems are created and 

solved iteratively. Comparisons of nominal grouping and 

solving individual unit-wise subproblems are presented in 

Table 2. Due to the large number of virtual variables, all 

virtuals and other dispatchable variables are solved together in 

both scenarios, and we only compare for generation units.  

With the nominal grouping strategy, the initial model 

generation time and solving time for completing 19 

subproblems once are 71s and 75s, respectively. The total time 

164s also includes computational efforts on multiplier 

updating, data transfer, surrogate subgradient calculation, etc. 

When solving individual unit-wise subproblems, solving all 

1,173 subproblems once requires more than 1,000s. The large 

computation time of solving individual unit-wise subproblems 

mainly results from the large overhead in AIMMS. Moreover, 

at the targeted 1,800s, levels of constraint violations with the 

nominal grouping strategy are small, and a near-optimal 

feasible solution is obtained. However, when solving 

individual unit-wise subproblems, since less information is 

used in each small subproblem, levels of constraint violations 

are not much reduced leading to a very slow convergence.  

 
Table 2. Comparison of nominal grouping with solving individual unit-wise 

subproblem. 

 

  Solving all subproblems once 
At 

1,800s 

 
# of sub-

problems 

Generation 

Time 

(s) 

Solving 

Time 

(s) 

Total 

Time 

(s) 

MIP 

gap 

(%) 

Nominal 

grouping 
19 71 75 161 5.5 

Individual 

unit-wise 

subproblem 

1,173 312 392 1,042 >100 
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Case 2: This case compares the performance of 

SALRL+B&C with and without filtering inactive transmission 

constraints (TCs). Numbers of original and remaining TCs 

after filtering are shown in Table 3. Performance of 

SALRL+B&C with and without filering out inactive TCs are 

compared in Table 4. This process reduces computational time 

and improves the feasible solution.  

Case 3: Performance of heuristics to search feasible 

solutions is shown in Table 5. The number of commitment 

variables selected based on generation shift factor is reduced 

by 21.9% from SLR, and the number of out-of-money units 

identified by SALRL+B&C is reduced from 136 to 112 as 

compared with SLR. Feasible solution is also improved.  

Case 4: This case shows the scalability of SALRL+B&C 

with 20, 40 and 80 CC units as depicted in Figure 6. 

SALRL+B&C obtains near-optimal solutions for all scenarios 

within the targeted time. For 20 CCs and 40 CCs, 

SALRL+B&C provides good-quality feasible costs within 

1,200s. When the number of CC units increases, the total cost 

is reduced because of the energy efficiency of configuration-

based modeling. Meanwhile, computational time increases 

because more CC subproblems need to be solved and the 

feasible solution search becomes complicated. SALRL+B&C 

thus requires a longer time to obtain a small duality gap. As it 

can be seen, B&C is powerful to provide a good lower bound 

while our method provides a high-quality feasible solution. To 

take advantages of the two methods, we may run 

SALRL+B&C and B&C in a parallel manner. Along the 

iterative process, the lower bound from B&C can be taken and 

compared with our feasible solution to calculate the MIP gap. 

 
Table 3. Numbers of original and remaining TCs. 

Original TCs Remaining TCs Filtered 

Right side Left side Right side Left side 
48.8% 

8,347 7,032 5,503 2,372 

 
Table 4. Comparison of filtering and not filtering inactive TCs. 

 UB* ($) LB** ($) 
Gap 

(%) 

Total time 

(s) 

SALRL+B&C1 10,064,124 9,525,597 5.5 1,896 

SALRL+B&C2 10,082,321 9,517,789 5.6 1,995 
1: w/ filtering inactive TCs; 2: w/o filtering inactive TCs. 

*: upper bound, the feasible solution. 

**: lower bound. 

 
Table 5. Comparison of UB search between SALRL and SLR. 

 

# of 

binary 

freed1 

# of 

units 

freed2 

Feasible cost 

($) w/ 1 

Feasible cost 

($) w/ 1 and 2 

SALRL+B&C 1,683 112 10,075,603 10,064,124 

SLR+B&C 2,155 136 10,124,712 10,084,577 
1: binary variables freed based on violations of transmission constraints; 
2: number of out-of-money units freed based on MISO heuristic.  

 

 
Fig. 6. SALRL+B&C for 20, 40 and 80 CC units in Example 2. 

Example 3  

To test the robustness of our method, another MISO case 

containing 1,129 conventional units and 15,843 virtuals with 

36 looking ahead hours is tested. Performance of 

SALRL+B&C for 20, 40, and 80 CC units is compared with 

B&C, SLR+B&C as in Figure 7. With 20 and 40 CC units, 

both SALRL+B&C and B&C methods obtain near-optimal 

solution within 1,800s. However, when the number of CC units 

increases to 80, the complexity increases exponentially and 

hits the bottom of B&C method. Therefore, B&C cannot 

obtain a feasible solution with a small MIP gap within limited 

time. Even after 3,600s, it is still difficult for B&C to find a 

feasible solution with an acceptable MIP gap. For 80 CC 

cases, SALRL+B&C is powerful to obtain a near-optimal 

solution at targeted 1,800s by fully exploiting exponential 

reduction of complexity. Our SALRL+B&C method also 

outperforms SLR+B&C in terms of lower bound, feasible 

solution, and computational time as shown in Table 6. It 

converges fast and reduces the duality gap along the iterative 

process. These improvements could result in significant annual 

savings for ISOs considering that such a large UC problem 

involves millions of dollars each day.  

 

 
(a) 20 CCs case 

 
(b) 40 CCs case 
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(c) 80 CCs case 

Fig. 7. Comparison of SALRL+B&C and B&C for (a) 20 CCs, (b) 40 CCs 

and (c) 80 CCs in Example 3. 

 
Table 6. Results of SALRL+B&C, SLR, and B&C for 80 CCs in Example 3. 

 UB ($) LB ($) 
Gap 

(%) 

Total time 

(s) 

SALRL+B&C 3,308,783 3,172,256 4.3 1843 

SLR+B&C 3,329,845 3,151,576 5.6 1859 

B&C 14,947,775 3,204,067 >100 1902 

 

VII.  CONCLUSION 

This paper targets to solve a large and difficult UC problem 

which contains over 1,000 units and 10,000 virtuals looking 

ahead 36 hours. With an increasing number of combined cycle 

units represented by configuration-based modeling, current 

state-of-the-practice B&C cannot solve the problem with 

targeted MIP gap or within a time limit. Decomposition and 

coordination is a must for such large-scale complicated 

problems. Our recently developed surrogate Lagrangian 

relaxation is thus significantly enhanced through adding 

quadratic penalties on constraint violations to fully exploit 

exponential reduction of complexity with fast convergence. 

Quadratic terms are innovatively linearized through a novel 

use of absolute value functions. Enhancements on certain key 

aspects are also incorporated to fine tune the algorithm and 

improve the overall performance. As demonstrated by MISO 

cases, the method provides near-optimal solutions within a 

time limit, and significantly outperforms B&C.  

Our work is timely and critical to solve large UC problems, 

and can be extended to other complicated MILP problems in 

power systems and beyond. There is still room to improve the 

method, and we propose two directions as in future work: 1) 

Formulation tightening and 2) Distributed and asynchronous 

implementation. Tightening subproblem formulation is 

important since if constraints directly delineate a problem 

convex hull, the MILP problem can be directly solved by 

linear programming. Distributed and asynchronous 

implementation of SALRL+B&C will also be investigated thus 

that subproblems will be solved in a distributed way and 

multipliers will be updated asynchronously to improve the 

efficiency.  
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