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ABSTRACT This paper presents a supervisory control strategy for resilient chiller plants in the presence
of condenser fouling. Fouling results in off-nominal performance of chiller parameters, such as increased
refrigerant mass flow rate, compressor motor speed, discharge pressure, and discharge temperature. These
effects further lead to faster deterioration of condenser pipes and tubes, and increase the risk of early motor
failures. Thus, the main objective of this paper is to provide resilience, i.e., to bring the system parameters
back to normalcy, and thereby protect the system from the adverse effects of fouling and improve its life
expectancy while ensuring energy efficiency and meeting the desired cooling load. The supervisory control
strategy presented here incorporates fault detection and diagnosis (FDD) and resilient control for mitigating
the effects of condenser fouling. A computationally efficient and robust FDD scheme enables the estimation
of the condenser fouling level using optimal sensor selection and statistical classifiers, thus facilitating
condition-based maintenance. On the other hand, the resilient control scheme enables redistribution of load
between chillers in order to reduce the load on faulty equipment in an energy-efficient manner, while still
providing the required overall cooling load. The performance of this method is tested and validated using a
high-fidelity chiller plant model and the proposed strategy is shown to diagnose condenser fouling with a
high accuracy and effectively mitigate the effects of fouling at low computational cost. It is shown that the
supervisory controller is able to meet the desired building load requirements at lower energy consumption,
as compared with no supervisory control.

INDEX TERMS Resilient control, fouling diagnosis, sensor selection, chiller plants.

I. INTRODUCTION
Chiller plants are responsible for providing thermal comfort
and acceptable air quality in buildings and account for a sig-
nificant portion of world’s energy consumption [1], [2]. Fig 1
shows a schematic diagram of a chiller plant. A typical chiller
plant is a large, complex, and interconnected system that
consists of multiple chillers, cooling towers, water pumps,
and their associated components (e.g, a chiller consists of
a condenser, an evaporator, and a compressor, etc). Chiller
plants provide cooling to the buildings by means of efficient
vapor-compression refrigeration cycles. Furthermore, chiller
plants operate under time-varying cooling loads in response
to different weather conditions. Thus, the complexity of a
chiller plant makes it susceptible to the growth of faults
in its components, such as condenser and evaporator foul-
ing, compressor motor faults, refrigerant charge degradation,

sensor faults, etc. These faults gradually evolve over time and
lead to equipment degradation and inefficient plant operation
resulting in increased energy costs. Moreover, operating with
degraded equipment results in decreased component lifetime,
thus increasing the equipment maintenance and replacement
costs. In severe cases, the inability of the degraded compo-
nent to meet its performance causes occupant discomfort in
buildings.

A. MOTIVATION
This paper focuses on condenser fouling since it is one
of the most common faults in chiller plants [3]–[5].
Condenser fouling is caused by accumulation of foreign sub-
stances on the inner surface of the condenser, which decreases
the effective heat transfer area and increases the thermal
resistance. This diminishes the efficiency of heat transfer
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FIGURE 1. Schematic of an interconnected chiller plant.

TABLE 1. Effects of fouling on a chiller system.

between the two fluids of the condenser leading to chiller
inefficiency.

In order to compensate for this deficiency and to meet
the required cooling load, the chiller controller increases the
refrigerant pressure and mass flow rate through the condenser
by raising the compressor speed. This leads to higher power
consumption, reduced energy efficiency, and increased wear
of the chiller components (e.g., pipes, tubes, motors, etc.).
While high refrigerant mass flow rate and high pressure
lead to faster deterioration of condenser pipes and tubes,
a higher compressor speed increases the risk of early com-
pressor motor failures. In effect, the entire system operates
as a stressed congested system trying to meet the demand.
Table 1 summarizes the several adverse effects of fouling on
chiller health and performance [6]–[8]. Under severe fouling
conditions, the degraded chiller might not even be able to
meet its demanded cooling load despite overdriving the com-
pressor, resulting in thermal discomfort to building occupants

and significantly reducing the long-term reliability of chiller
components.

Therefore, this paper develops a supervisory control strat-
egywhosemain objective is to provide resilience to the chiller
plants by load reconfiguration i.e., redistributing the load of
the faulty chiller between the healthy chillers. It brings the
system parameters back to normalcy and results in mitigation
of the effects of condenser fouling, while maintaining energy
efficiency and meeting the desired cooling load performance.
The major challenges faced by the the proposed supervisory
control framework are summarized in Fig. 2.

FIGURE 2. Challenges and the proposed solution approaches.

Remark: The objectives of a resilient controller [9]–[12]
are far beyond a fault-tolerant controller. A fault-tolerant
controller strives tomeet the desired performance of an output
variable in the presence of faults. In this process, it can pos-
sibly drive the system more rigorously thus causing further
damage to the already faulty system. On the other hand,
a resilient controller strives to bring all the system parameters
back to normalcy to improve system reliability, thus miti-
gating the effects of faults and preventing further damage.
This however could be done with a graceful degradation of
performance if necessary.

B. LITERATURE REVIEW
Many researchers have developed optimization-based super-
visory control strategies with the main focus on improving
the energy-efficiency of chiller plants [13]–[18], however
these approaches did not consider faulty operating conditions.
On the other hand, some researchers have shown interest in
developing fault-tolerant control methodologies for variable
air volume (VAV) air conditioning systems. For example,
Wang and Chen [19] developed an energy efficient fault-
tolerant controller that addresses the air flow rate sensor
measurement faults using neural networks to estimate mea-
surement errors. Jin and Du [20] designed a fault tolerant
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TABLE 2. Literature review of the existing research for fault tolerant control of condenser fouling.

controller for controlling outdoor air and AHU supply air
temperature of VAV systems in case of sensor bias faults.
The proposed method uses PCA and joint angle method
for detection and isolation of fault and compensatory recon-
struction for fault reconstruction. Ji et al. [21] developed a
prognostics-enabled resilient controller for building climate
control systems in order to maintain an accepted level of ther-
mal comfort in the presence of component failures. Specifi-
cally, for condenser fouling, Table 2 discusses the existing
work in the area of fault-tolerant control to accommodate this
fault and also the current research gaps.

One major limitation of the aforementioned approaches is
that they used simplified chiller plant models to determine the
optimal set points for the plant. The use of simplified models
limits the availability of critical variables, such as the com-
pressor speed, thus making it difficult to directly study the
system-wide impact of faults. In addition, the fault tolerant
controllers are primarily focused on meeting the performance
and energy requirements; however they did not touch upon
the essence of resilience, i.e., to bring the system back to
normalcy, in presence of faults. In particular, there has not
been significant research on supervisory control to mitigate
the effects of condenser fouling, while meeting the neces-
sary trade-offs between energy-efficiency and resilience. This
paper addresses this gap by developing a supervisory control
strategy, that enables a resilient controller in presence of
condenser fouling, thereby redistributing the load between
chillers to protect the faulty chiller from the damaging effects
of fouling, while at the same time minimizing the power
consumption and meeting the overall cooling load demand.
The proposed strategy is validated on a physics-based high-
fidelity chiller plant model that utilizes the real cooling load
and historical weather data with uncertainties as inputs and
includes the necessary performance and control variables.

In order for the supervisory controller to be effective,
a robust fault detection and diagnosis (FDD) approach is
necessary to maintain state awareness of the system and to
accurately determine the fault severity. Early detection of
condenser fouling is challenging since it is a soft fault that
develops slowly over time and often goes unnoticed, causing
gradual degradation in the performance of the chiller [4].
There are several existing methods in literature for detecting
HVAC system faults and an elaborate review of these meth-
ods is presented in [25]–[27]. In general, FDD approaches
consist primarily of (1) model-based, (2) knowledge-based
and (3) data-driven methods. Existing FDD approaches

for common HVAC faults including condenser fouling
comprise rule-based methods [28], estimation of residue
and thresholding methods [29]–[31], and more sophisticated
machine learning based methods, such as principal compo-
nent analysis (PCA) [32], wavelet transforms [33] and neural
networks [34].

Most of the existing FDD approaches rely on human
expertise to select the sensors for decision making. However,
different sensors have different sensitivities towards
faults under time-varying operating conditions. Therefore,
the selected sensors are not guaranteed to provide the best
FDD performance and classification accuracy. This paper
also addresses this shortcoming by performing optimal sensor
selection to pick the smallest sensor set that gives the highest
classification accuracy. Additionally, instead of binary clas-
sification of fouling, the proposed FDD strategy classifies it
into multiple categories to provide a better estimate of the
severity.

C. CONTRIBUTIONS
The main contributions of the proposed supervisory control
framework are summarized as follows:

• Development of a supervisory control strategy that
enables a resilient controller for the faulty chiller,
to bring its parameters back to normalcy, while mini-
mizing power consumption and providing the desired
cooling load.

• Identification of the smallest optimal sensor set for foul-
ing detection and diagnosis in order to reduce the com-
putational complexity of the classifier while maintaining
high classification accuracy and low false alarm rate.

• Validation on a high fidelity chiller plant model that
takes real building cooling load and weather data with
uncertainties as inputs for simulation of faults and data
generation.

The rest of the paper is organized as follows. Section II
formulates the supervisory control problem for chiller con-
denser fouling. Section III presents the details of the chiller
plant simulation model and describes the effects of condenser
fouling. Section IV presents the solution methodology that
diagnoses and mitigates the effects of condenser fouling
in a robust and energy-efficient manner. Section V shows
the results achieved by the proposed methodology. Finally,
section VI concludes the paper with recommendations for
future work.
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FIGURE 3. Proposed supervisory control scheme: (a) supervisory control architecture (b) switching commands and control actions for different
diagnostic events (c) illustration of switching for a chiller.

II. PROBLEM FORMULATION
Traditionally, fouling is treated by periodic maintenance of
the chiller plants. However, frequent scheduling for mainte-
nance is expensive and turning off a chiller in summer months
is undesirable. Alternatively, if the mean time between suc-
cessive maintenance routines is large, the growth of con-
denser fouling can lead to inefficient plant operation. Thus,
it is desired to shift from this static time-based maintenance
paradigm to a dynamic condition-based maintenance (CBM)
strategy for achieving cost efficient operation. The goals of
the supervisory control are thus clear; in order to overcome
the effects of condenser fouling, the proposed strategy must:
• Detect and diagnose condenser fouling to facilitate
timely resilient control action to mitigate its adverse
effects,

• Provide the desired chilled water supply temperature,
• Reduce the load on the faulty chiller to prevent further
degradation of its components due to the effects of foul-
ing, and

• Minimize the chiller plant energy consumption in the
presence of condenser fouling.

The following assumptions are made to achieve the desired
control action:

• The chiller plant always runs in the safe operating range.
• The plant has redundancy in terms of chillers which are
sized such that their maximum cooling load supply is
higher than the demand.

A supervisory control architecture designed to meet the
above goals is shown in Fig. 3(a). As seen on the right,
each chiller is a closed loop system with its own local
controller. The supervisory controller consists of a bank of
high-level controllers which act on top of these local chiller
controllers. Corresponding to each chiller there are two high-
level controllers, which are the Nominal Controller (NC)
and the Resilient Controller (RC). The nominal controllers
for the healthy chillers focus on performance and ensure
that the desired overall chilled water supply temperature is
met. Simultaneously, the resilient controller for the faulty
chiller focuses on resilience by reducing the load on the
faulty chiller by reducing its compressor speed. Thus, the load
on faulty chiller is automatically redistributed to the healthy
chillers to meet the overall cooling demand. This supervisory
control action brings the system back to normalcy as much
as possible, such that the total energy consumption of the
plant decreases. The supervisor performs switching between
these two controllers for each chiller based on the feedback
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on fault classification from FDD. Thus the supervisor has the
mapping σ = S(θ), where θ = {θ1, θ2, . . . θn} and σ =
{σ1, σ2, . . . σn} are the vectors that correspond to the diag-
nostic events and the switching commands for all n chillers,
respectively. Here, each θi ∈ θ carries a decision from the
diagnostic decision set {Healthy, Cautionary, Critical}. Also,
each σi ∈ σ carries a command from the command set {0, 1},
where 0 corresponds to NC and 1 corresponds to RC. The
mapping is based on a simple logic as shown in the table
in Fig. 3(b). Fig. 3(c) illustrates the switching command of
the supervisor for the ith chiller based on the FDD feedback.
When fouling is detected, the chiller control is switched to
RC and after a maintenance action, the supervisor switches
it back to NC. The switching can happen at most once in
every 12 hour interval after the arrival of diagnostic decision.
Details are in Section IV-B.

The FDD methodology classifies fouling into one of the
three classes with different fouling severities defined as:

• Healthy (H): Fouling severity < 20%
• Cautionary (Ca): 20% ≤ Fouling severity < 60%
• Critical (Cr): Fouling severity ≥ 60%.

The critical class, as the name suggests, refers to instances
of very high fouling, which results in serious performance
degradation and large energy losses. The cautionary class
refers to a more frequent minor blockage which often goes
unnoticed because the local controllers overdrive the chillers
to meet the cooling load demand. In general, the number of
classes can be set according to the user requirement. In this
work, three classes are chosen as they are able to capture the
different fouling severities successfully and the control gains
do not vary significantly between the two faulty classes. The
chillers in cautionary and critical conditions need a resilient
control action as although the cooling load demand might be
met in these cases, but the system parameters still perform
off-nominally. Aside from minimizing the false alarm and
missed detection rates, the FDD approach must:

• Be robust to uncertainties,
• Account for time-varying operating conditions,
• Utilize a minimal amount of sensor data, and
• Perform on low-cost computational platforms.

These requirements are met by using simple but efficient
machine learning approaches including a combination of
optimal sensor selection techniques, and computationally
efficient statistical classifiers. Lastly, a high-fidelity chiller
plant model is used for this study as the platform for vali-
dating the supervisory control methodology. This simulation
model has three centrifugal chillers and takes in real data as
its inputs, namely, the time-varying building cooling load, and
the weather data, as described in the next section.

III. HIGH FIDELITY CHILLER PLANT MODEL
Simulation models of chillers and other HVAC system com-
ponents have long been used as tools for making informed
plant design decisions and for the development of optimal
control strategies [35]–[37]. The models most commonly

used in these efforts are highly abstracted and represent
chiller performance through relatively simple empirical cor-
relations [38]–[40]. The level of abstraction of these models
is such that the entire refrigerant side of chiller, including the
compressor, is fully abstracted and replaced with simplified
performance curves. These models are useful for describing
system behavior at nominal conditions but lack the fidelity
necessary for the representation of faults or other system
states beyond nominal operation and for the assessment of
operating conditions within the chillers. Therefore, the devel-
opment of a resilient supervisory controller requires a more
detailed model.

The models used in this work are developed in
Modelica [41] using component models from the Modelon
ThermalPower, VaporCycle, and ThermoFluid commercial
libraries as well as the Modelica Buildings Library and
the ThermoCycle open source library [42]–[44]. The chiller
plant model integrates submodels representing each of the
major components of the chiller plant. Models for the pumps,
pipes, cooling towers, and building-side heat exchangers are
included. A number of assumptions are made regarding the
operation of the plant. Water flow rates for both the chilled
and cooling water loops are kept constant and all components
of the plant are always active rather than staging tomatch load
conditions.

FIGURE 4. Modelon-library based centrifugal chiller model.

The centrifugal chiller model used here includes compo-
nent models representing the compressor, condenser, expan-
sion device, and evaporator of a typical vapor-compression
chiller, as shown in Fig. 4. The condenser and evaporator
are counter-flow heat exchangers with a finite-volume for-
mulation. This formulation divides the heat exchanger into
a number of subunits along its length and considers tem-
peratures, heat transfer rates, and fluid properties separately
for each subunit. The compressor and expansion devices are
represented by static models, with compressor performance
defined by a centrifugal compressor characteristic map and
valve behavior defined by a direct linear relationship between
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mass flow, pressure drop, and opening position. A two-phase
fluid media model for R134a refrigerant from the Modelon
library [45] is used to determine fluid properties within the
chiller subcomponents. These detailed component and fluid
propertymodels provide additional information and insight as
to the conditions within the chiller over the range of operation
as compared to the simplified empirical models frequently
used in other work.

The control scheme in the chiller model uses a pair of
decoupled PI controllers. The opening position of the expan-
sion valve is manipulated to maintain refrigerant superheat
at the compressor inlet, and the operating speed of the com-
pressor is manipulated to maintain the chilled water supply
temperature set point. These controllers cannot be modified
by the supervisory controller, however their setpoints could
be adjusted.

System performance at nominal or faulty conditions can
be predicted over a wide range of operating states through
dynamic simulation. Historical weather [46] and correspond-
ing cooling load data from the University of Connecticut
Central Utilities Plant (UConn CUP) are used as inputs to
the model for simulation of a large set of realistic conditions.
The chiller plant model was validated through comparison of
the simulation results to those of existing validated models
and to additional operating data from the UConn CUP. These
comparison results are summarized in the Appendix, thus
validating that the outputs generated by the simulated model
closely follow the trend of the real plant outputs. Further
details on the model, plant data, and the simulations executed
for verification of model accuracy and significance are pre-
sented in [47].

A. MODELING CONDENSER FOULING
For each pair of finite volumes considered in the con-
denser, the flow of energy from the refrigerant to the cool-
ing water is defined by the simple heat transfer equation as
follows:

dQ
dt
= UA1T (1)

where the rate of heat transferred over time is the product
of the temperature difference between the two fluids (1T ),
the contact surface area (A), and the overall heat transfer
coefficient (U ). The primary observed effect of condenser
fouling is a reduction in the rate of heat transfer. Water-side
fouling of the condenser is injected in the model by adding
a fouling coefficient to the right hand side of Eq. 1 equal to
one minus the percentage of fouling, representing a decrease
in heat transfer coefficient and effective area of the water
pipes, thus changing the combined UA value to reduce heat
transfer effectiveness in a manner equivalent to that used in
Zhao et al. [48]. This increased heat transfer resistance creates
a need for either higher temperature or mass flow rate on
refrigerant side in order to provide the same cooling. This
requires the controller to run the compressor at a higher speed,
thus drawing more power and accelerating wear and tear.

TABLE 3. Typical sensors available in a chiller plant.

B. FAULT DATA GENERATION USING REAL COOLING LOAD
AND HISTORICAL WEATHER DATA AS MODEL INPUTS
The high fidelity chiller plant model described above is used
for generating data for classifier training for fault diagno-
sis. In order to simulate realistic and uncertain plant oper-
ating conditions, cooling load data for the months of June,
July and August from the years 2013 and 2014 were taken
from UConn CUP and given as inputs to the plant model.
Historical weather data [46] including ambient temperature,
relative humidity, and sea level pressure for the same days
were also used as model inputs to calculate the wet-bulb
temperature [43]. The variations in these input parameters
for the first five days of July 2013 are shown in Fig. 5.
Furthermore, in order to account for sensor uncertainties,
30 dB of additive white Gaussian noise (AWGN) is added
to the sensor data as suggested by our industry partner.

Sensor data are collected by simulating the model under
these operating conditions at a sampling rate of 1

60 Hz which
is in accordancewith the limitations discussedwith our indus-
try partner. Table 3 lists the most important sensors available
in the plant. For brevity, the variables derived from measured
values are also referred to as ‘sensors’, such as the chiller
coefficient of performance (COP). COP is used to report the
efficiency of refrigerant based systems. It is the ratio of the
amount of cooling supplied by the evaporator compared to
the energy consumed by the compressor.
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FIGURE 5. FDD structure that utilizes sensor data generated from a high-fidelity chiller plant model using inputs of i) real cooling load data
from UConn CUP and ii) historical weather data, for optimal sensor selection and classifier training.

Condenser fouling is simulated in the model as described
in the previous section, where the percent decrease in heat
transfer coefficient and the surface area is approximated as
the fouling severity. The sensor data are generated for a total
17 different fouling severity levels which range from 0 to 80%
in steps of 5%. Fig. 6 shows the effects of condenser fouling
on different sensors during the first five days of July’13.
Fig. 6(a) shows the variation of wet bulb temperature during
this duration. The most direct impact of fouling is a reduction
in the heat transfer efficiency of the condenser. In order to
make up for this reduced efficiency, the controller pushes a
higher mass flow rate of the refrigerant (Fig. 6(b)). To achieve
this high mass flow rate, the compressor must operate at an
increased speed (Fig. 6(c)). The speed increases dramatically
as degradation becomes more severe and ultimately saturates.
The rise in compressor speed causes an increase in chiller
power consumption (Fig. 6(d), 6(e)) by several percent and a
decrease in chiller COP (Fig. 6(f)). The increased work done
by the compressor leads to heat buildup in the condenser,
raising temperature of the refrigerant entering and leaving
the condenser (Fig. 6(g), 6(h)). Above 60% fouling sever-
ity, the compressor speed saturates, when the heavily fouled
chiller cannot transfer any more heat through the condenser
to meet the water temperature set point, which is fixed at
6.5 ◦C for each chiller (Fig. 6(i)). As such, the cooling load
demand is not met (Fig. 6(j)), indicating severe degradation
in chiller performance. Fig. 6(e) shows lower power con-
sumption of the faulty chiller in this case because of the
reduced heat transfer in the refrigerant states in the chiller.

In addition to accelerated compressor wear, the heat buildup
in the condenser shifts the operating refrigerant states on
the phase diagram, and the resulting change in pressures
(discharge and suction pressure, Fig. 6(k) and 6(l), respec-
tively) significantly changes the operating point on the com-
pressor map.

IV. SUPERVISORY CONTROL DESIGN
The supervisory control architecture shown earlier in Fig. 3(a)
maintains state awareness by employing an FDD scheme
to detect condenser fouling. Based on the FDD results,
a resilient control strategy is employed to bring the faulty
chiller parameters back to near-normal and enable smooth
operation while minimizing energy consumption.

A. FAULT DETECTION AND DIAGNOSIS
Effective implementation of the supervisory controller
requires an accurate FDD method for the correct classifi-
cation of the health of the system. This paper uses an inte-
grated model-based and data-driven approach which utilizes
a physics-basedmodel to generate sensor data and a statistical
classifier to perform fault classification.While rule-based and
thresholding FDDmethods are simple to implement, they are
not scalable and tend to perform poorly in the presence of
uncertainty. Alternatively, neural networks give good diag-
nosis but at the expense of significant parameter tuning and
computational complexity. Therefore, the k-Nearest Neigh-
bor (k-NN) classifier [49] is chosen in this paper to perform
fault diagnosis due to its simplicity, computational efficiency,
and high classification accuracy. A k-NN classifier classifies
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FIGURE 6. Effects of condenser fouling on different sensors (including physically available sensors and the derived ones). Sensor data is shown
for the first five days of July 2013.

test data based on the majority vote of its neighbors by
assigning the test data to the most common class label among
its k nearest neighbors. The training phase of k-NN classifier
includes storing all the training data points and their corre-
sponding class labels. The testing phase involves computing
the distance between the test data and all the training points to
determine the nearest neighbors of the test data and assigning
it to the majority class label of the computed neighbors.

Fig. 5 shows the overall FDD architecture. The diagnosis
process is comprised of two different phases: (a) training
of the classifier for accurate classification of fouling and
(b) testing of the trained classifier for performance evaluation.

1) TRAINING
As shown in Fig. 5, the training phase consists of model
simulations for data generation, data pre-processing for noise

removal, selection of optimal sensors and developing a classi-
fication model using the optimal sensors. A detailed descrip-
tion of these steps is presented below.

Sensor data for the months of June, July and August’13
are generated for different fouling severities using the pro-
cess described in Section III-B. The noisy sensor data is
pre-processed by first partitioning the data into blocks of
length 720, where each block corresponds to a time dura-
tion of 12 hours based on a sampling rate of 1

60Hz. The
data blocks are de-noised by passing through a standard
wavelet-based filter [50], [51] and rejecting the end points
of the de-noised block by keeping only the mid region
of 360 points. The proposed classifier provides a deci-
sion for each data point of the de-noised block and the
majority vote over all these points is taken as the block
decision.
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a: SENSOR SELECTION
The filtered data as described above is generated for the
different sensors shown in Table 3. To get the best classifica-
tion accuracy with reduced complexity, optimal sensor selec-
tion is important. Several methods exist in the literature for
performing optimal sensors selection. Kohavi and John [52]
proposed the wrapper method, which is a performance based
incremental sensor selection technique, that iteratively adds
the sensor that gives the best classification performance to
the optimal sensor set. The performance metric used in the
wrapper method is the correct classification rate (CCR) of
the classifier. It is a classifier-based sensor selection approach
that becomes computationally expensive if the number of
available sensors is large (of the order of 100 sensors).
For sensor data sets with a large number of sensors, fil-
ter methods (e.g., maximum Relevance Minimum Redun-
dancy (mRMR) [53]) can be used. These approaches first
filter the sensor data set to get a smaller sensor subset by
using the mutual information between the sensors and the
target classes. The wrapper technique is then applied on
this filtered sensor subset to get the final optimal sensor
data set. Applying a filter method along with the wrapper
causes significant reduction in computational complexity for
large data sets as only a small subset of sensors is used
with the wrapper selection method. In this work, because
the number of sensors is small, the wrapper technique is
directly applied to the sensor data set to get the optimal
sensors.

The steps involved are listed below:

• Initially, set the optimal sensor set as empty, S∗ = ∅, and
the available sensor set as S. Sensor data for the months
June-Aug’13 is given as input.

• While the total number of optimal sensors is less than
N (N = 4 here):
i) Get a reduced sensor set S̄ = S − S∗.
ii) Evaluate the performance of each sensor subset

obtained by adding one sensor at a time from S̄ to S∗.
The feature space of the k-NN classifier consists
of the obtained sensor subset along with the wet
bulb temperature (Twb). This is done because even
though the sensors have high sensitivity towards foul-
ing severity, they do not have information about the
operating conditions. As can be seen in Fig. 6(b),
the change in compressor speed for different foul-
ing levels is relative with respect to the magnitude
of speed, which is governed by the operating con-
ditions. Thus, in order to add information about the
operating conditions, Twb is appended to the feature
space comprising the sensor subset. The performance
of each feature space is evaluated by using 10-fold
cross validation [54] with the k-NN classifier. Var-
ious performance metrics like correct classification
rate (CCR) and false alarm rate (FAR) can be used.
In this paper, CCR is used to rank the sensor sub-
sets. The confusion matrix used for computing these

TABLE 4. Confusion matrix where cij represents the number of data
points belonging to class i and classified as class j .

metrics is shown in Table 4. These metrics are defined
in Eqs. (2) and (3), respectively.

CCR =
6icii
6i6icij

∗ 100% (2)

FAR =

∑3
j=2 c1j

63
j=1c1j

∗ 100% (3)

iii) Set the optimal sensor set S∗ as the subset with the
highest CCR.

The optimal sensors selected by using the incremental
wrapper selection method are ranked as follows:
1) Discharge Temperature
2) Power Consumption of all Chillers
3) Power Consumption of Faulty Chiller
4) Chilled Water Supply Temperature
Initially, the top four optimal sensors are selected, but the

number of optimal sensors is a tuning parameter, selected
based on classifier performance. To select the best feature
space, four different classifiers are trained using different
feature spaces. The feature space for the first classifier con-
sists of Twb and the top optimal sensor. Similarly, the feature
spaces of second, third and fourth classifiers consist of the
top two, top three and top four optimal sensors, respec-
tively, along with Twb. Thus, four different k-NN classifiers
are trained to classify the chiller state as healthy, caution-
ary or critical.

2) TESTING
After training the classifiers with the summer months of
the year 2013, their performance is tested on the months of
June, July and August of year 2014. Input data from these
months is used for model simulations and data generation for
known fouling severities. The noisy data set is pre-processed
by partitioning the data into blocks of length 720 and
de-noising each block. The data from the optimal sensors are
then given as input to the trained classifiers. The predicted
fouling classes are compared with the original classes and the
classification results are presented in Section V-A.

B. SUPERVISORY CONTROLLER
During the nominal operation of chiller plant without imple-
menting the supervisory control, each of the n chillers receive
the same set point T dchws,p for the desired chilled water supply
temperature. As shown on the right side of Fig. 7, each
chiller has a closed loop controller that regulates the water
temperature locally by selecting an appropriate compressor
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FIGURE 7. Supervisory controllers acting on the healthy and faulty closed-loop chiller systems.

speed ωj(t), j = 1 . . . n. The chilled water leaving from the
jth chiller with temperature Tchws,j(t) mixes with the chilled
water from other chillers, thus resulting in the average chilled
water supply temperature Tchws,p(t), which is then used to
cool the buildings. When all chillers are healthy, the desired
cooling load is met, such that

Tchws,j(t) = Tchws,p(t) = T dchws,p (4)

Now suppose that there is fouling in the condenser of the
ith chiller, then the amount of heat transfer from this faulty
chiller reduces. In order to overcome this deficiency, the local
controller of this faulty chiller increases the compressor speed
in order to increase the mass flow rate and pressure of the
refrigerant at the condenser inlet. However, this leads to
increased power consumption and increased stress not only
on the compressor but also on the other components of the
chiller, hence causing accelerated wear. Thus, under these
conditions, although the desired cooling load might be met,
i.e. Tchws,i = T dchws,p, the chiller parameters such as refrig-
erant mass flow rate, compressor motor speed, discharge
pressure, and discharge temperature go off-nominal which
is undesirable. Furthermore, in critical cases, that is under
severe levels of fouling, the compressor speed saturates,
resulting in the inability of the faulty chiller to even maintain
the cooling load. As such, Tchws,i > T dchws,p, which in turn
results in the chiller plant not meeting the desired cooling
load, i.e. Tchws,p > T dchws,p. In these critical cases, since there
is no feedback that monitors Tchws,p, even the controllers of
the healthy chillers cannot take any corrective actions to meet
the desired chilled water supply temperature T dchws,p.

Fig. 7 shows the details of supervisory controller which
consists of two high-level controllers, the Nominal Con-
troller (NC) and the Resilient Controller (RC) for each chiller.
As shown in Fig. 3 earlier, the supervisor switches the
control of the faulty chiller from the nominal mode to the
resilient mode in presence of condenser fouling. Hence these

high-level controllers, i.e. RC on the faulty chiller and NC’s
on the healthy chillers, operate together such that the load
on the faulty chiller is redistributed to the healthy chillers,
albeit in an energy-efficient manner. The NC’s acting on the
healthy chillers focus on performance and ensure that the
desired chilled water supply temperature of the plant is met;
however, these NC’s alone do not make the system resilient to
the effects of condenser fouling. In contrast, the RC acting on
the faulty chiller focuses on resilience, i.e. bringing the faulty
chiller parameters back to normalcy, to prevent accelerated
wear of its components. Table 5 lists some useful variables.

As discussed earlier, an immediate effect of fouling is
an increase in the compressor speed of the faulty chiller,
due to the action of its local controller to maintain the
cooling load requirement. Thus it is desired to reduce the
compressor speed of the faulty chiller and increase it for
the healthy chillers such that the desired temperature T dchws,p
is met, while energy is minimized. However, as per the
requirements of our industry partner, the supervisory con-
troller cannot bypass the local controllers, thus the chiller
compressor speeds ωj(t), j = 1, . . . n, cannot be directly
changed. Therefore, ωj(t)′s are controlled indirectly by
adjusting the set points of individual chillers, i.e. T spchws,j(t),
∀j = 1, . . . n. Since the overall energy consumption has
a nonlinear profile with respect to the compressor speeds,
the faulty chiller speed could only be reduced until it hits
the minimum energy point. This optimization problem is
described in Section IV-B2.
Notation: In the remaining paper, the subscript f is used

to denote the index of the faulty chiller, and the subscript h,
h 6= f , is used to denote the indices of the healthy chillers.

1) NOMINAL CONTROLLERS FOR THE HEALTHY CHILLERS
The objective of this controller is to maintain

Tchws,p(t) = T dchws,p (5)
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TABLE 5. Variables used by the supervisory controller during runtime.

by adjusting the set points T spchws,h(t) of the healthy chillers via
monitoring Tchws,p(t) as feedback signal, as shown in Fig. 7.
Since in this paper all chillers are assumed to have the same
cooling capacity and power consumption, all healthy chillers
receive the same set point T spchws,h(t). This controller is imple-
mented as a Proportional-Integral (PI) controller with the
following transfer function

Gh(s) = Kh

(
1+

1
Th s

)
(6)

where Kh = 0.792 and Th = 6.64 seconds are the pro-
portional gain and integral time, respectively. The controller
was tuned using the Zeigler-Nichols method and was tested
to maintain performance under time-varying operating condi-
tions, such as the building cooling load BCL(t) and the wet-
bulb temperature Twb(t).

2) RESILIENT CONTROLLER FOR THE FAULTY CHILLER
The NC’s running on the healthy chillers always ensure that
the cooling load requirement is met, thus any reduction in the
cooling provided by the faulty chiller will be compensated
by the healthy chillers automatically. Since the faulty chiller
is less efficient and more prone to wear than the healthy
chillers, it should not work as hard as the healthy chillers
and hence ωf (t) should be reduced to below ωh(t). However,
the power profile is nonlinear with respect to compressor
speeds and thus ωf (t) cannot be arbitrarily reduced. Let pj(t)
be the power consumption of the jth chiller. Then the total
power consumption of all chillers is defined as Ptotal(t) =
n∑
j=1

pj(t). The RC acting on the faulty chiller reduces ωf (t)

until the optimal point ω∗f (t) is reached where Ptotal(t) is
minimum, thereby maximizing the energy efficiency of the
system. Thus, the optimization problem is defined as follows:

minimize
ωf (t)

Ptotal(t)

subject to ωf (t) ≤ ωh(t) (7)

Corresponding to ω∗f (t), the speed of the healthy chillers,
which meets the cooling load demand (i.e. Tchws,p(t) =
T dchws,p), is termed as ω∗h(t). Determining ω∗f (t) in real time,

FIGURE 8. k-means clustering of the operating space.

however, is challenging since it depends on the time-varying
input operating conditions such as the building cooling load
BCL(t) and the wet-bulb temperature Twb(t), and also the
fouling level θf (t) of the faulty chiller.

a: OFFLINE TRAINING
Since it is difficult to calculate all values of ω∗f for each
operating condition, only a finite number of operating points
are considered. These pre-computed values of ω∗f are later
used during runtime to approximate the optimal set points
for the chiller plant. In order to select these operating points,
the input operating space (BCL,Twb), consisting of the his-
torical cooling load and the weather data, is partitioned into
different regions using the k-means clustering algorithm [55].
The results with k = 8 for the data from the summer of
2013 are shown in Fig. 8. Then for each centroid and given
fouling level of the faulty chiller, the simulation model is
run for different values of ωf with the nominal controller for
healthy chillers running. Since the faulty class is either cau-
tionary (20% ≤ fouling severity < 60%) or critical (60% ≤
fouling severity), the middle points of 40% and 70%, respec-
tively, are chosen as the inputs for each class. Then the
outputs of simulation runs are used to generate the power
consumption profiles for various input conditions.
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FIGURE 9. Power profiles for four different fouling levels (FL), building cooling loads (BCL), and wet bulb temperatures (Twb):
(a) FL = 40%, BCL = 207.3 kW, Twb = 11.0 ◦C (b) FL = 40%, BCL = 865.3 kW, Twb = 18.8 ◦C (c) FL = 70%, BCL = 504.7 kW,
Twb = 15.6 ◦C (d) FL = 70%, BCL = 1331.6 kW, Twb = 23.7 ◦C.

These profiles show the relationship between Ptotal ,
ωf and ωh. Four example power profiles are shown in Fig. 9
for four different conditions. Ptotal is only plotted when the
required cooling load is met (e.g. Tchws,p = T dchws,p). There
is an oversupply of cooling in the green region above the
Ptotal curve (i.e., Tchws,p < T dchws,p), and an undersupply
of cooling in the red region below the Ptotal curve (i.e.,
Tchws,p > T dchws,p). These plots also illustrate the nonlinear
behavior of the chiller systems. Since there are two foul-
ing classes besides nominal and eight operating condition
as determined from the centroids of the clustering, a total
of 16 power profiles are constructed. Then, the values of
ωf and ωh that minimize Ptotal while supplying the required
cooling load are selected as the optimal chiller compressor
speeds ω∗f and ω∗h for each condition. This selection is thus
the most energy efficient setting for the chiller plant that
still satisfies the operational constraints in the presence of
faults.

Additionally, the reduction of ωf (t) to ω∗f (t) not only
reduces the power consumption but also reduces the mass
flow rate of the refrigerant in the chiller. This, in turn,
reduces the temperature of pressure inside the chiller and
therefore reduces the overall stress, thereby mitigating the
effects of condenser fouling until proper maintenance can be
performed.

b: RUNTIME
During runtime, the optimizer, as shown in Fig. 7, takes the
current BCL(t) and Twb(t) and finds the nearest centroid used
during offline training. This centroid and the health state θf (t)
provided by the FDD, are then used to select the correspond-
ing ω∗f (t). This compressor speed, however, is only optimal
for the centroid point, and hence it is slightly sub-optimal for
the actual operating point. Therefore, the estimate of near-
optimal faulty chiller compressor speed ω̂f (t), is obtained by
the following approximation:

ω̂f (t)
ωh(t)

≈
ω∗f

ω∗h
(8)

To ensure that the compressor speed constraint in Eq. (7) is
satisfied, ω̂f (t) is calculated as follows:

ω̂f (t) =


ω∗f

ω∗h
· ωh(t) if

ω∗f

ω∗h
≤ 1

ωh(t) otherwise
(9)

The application of a step change in ω̂f (t) causes a transient
behavior in the system. Thus to ensure a smooth transition
between set points, the speed set point for faulty chiller,
ω
sp
f (t) should be gradually changed. A first order low pass

filter is used to dampen the transient behavior, whose transfer
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function is given by:

LP(s) =
1

τ s+ 1
(10)

where τ = 300 seconds. Finally, as mentioned earlier,
the compressor speed ωf (t) cannot be changed directly, since
it is updated by the local controller which is not accessible.
Thus, as an intermediate step we add a PI controller which
determines the chilled water supply temperature set point
of the faulty chiller T spchws,f (t) by monitoring the compressor
speed sensor ωf (t) in order to track the desired compressor
speed ωspf (t). The transfer function of this controller is:

Gf (s) = Kf

(
1+

1
Tf s

)
(11)

where Kf = −10 and Tf = 1 second are the proportional
gain and integral time, respectively.

V. RESULTS AND DISCUSSION
The results of the proposed supervisory control strategy are
presented in this section. Inputs of weather and cooling load
data for summer 2014 are used for generating the test data.
The FDD module classifies each chiller as healthy, caution-
ary or critical. Based on the predicted fouling class, the super-
visory controller switches to the resilient controller for the
faulty chiller to mitigate the effects of fouling.

TABLE 6. Confusion matrices for classifier trained on summer 2013 using
4D feature space and tested on summer 2014.

A. FAULT DETECTION AND DIAGNOSIS
As discussed in Section IV-A1, different k-NN classification
models are trained using the feature spaces consisting of dif-
ferent numbers of optimal sensors and Twb, obtained from the
data of months June-Aug’13. These feature spaces are then
used for generating decisions for the test data from themonths
of June-Aug’14. It was observed that the feature space with
four sensors provides the best classification accuracy. Table 6
shows the confusion matrices for the test data using the
selected 4-D feature space. The numbers in the confusion
matrices sum to the total number of test data blocks which
is ∼ 1084 for each month.

TABLE 7. FDD performance for different months.

It is clear from Table 7 that the FDD scheme performs
fouling classification with an accuracy of ∼ 97%. The con-
fusion matrices in Table 6 show that the missed detection
rate is minimized by the proposed scheme, thus providing
good diagnosis. Importantly, any missed detections that do
occur are between adjacent classes, e.g., a chiller in critical
condition is never misclassified as healthy. The approach also
has a low false alarm rate of about ∼ 3%, which is essential
for a reliable FDD system. The robustness of the approach
can be seen from the use of training and testing data from
two different years. The classifier trained using data from the
year 2013 gives accurate predictions for the data from 2014.

B. SUPERVISORY CONTROLLER
The performance of supervisory controller (SC) was tested
for four different fouling levels, 25%, 40%, 55%, and 70%,
over the months of June, July, and August of 2014 and
compared against a chiller plant with no supervisory con-
trol (NoSC). Fig. 10 visualizes the results for a few snapshots
of data taken during the first three days of July 2014 for
40% (Fig. 10(a)) and 70% (Fig. 10(b)) fouling.

First, the plot in the first column and the top row of each
of the Figs. 10(a) and 10(b) shows the power savings which
is the difference in power when the supervisory controller
is not used with the one when it is used. As seen in these
plots, the power savings are realized in almost all instances
by up to about 20 kW. The corresponding plots below the
power savings plots show that the supervisory controller also
reliably tracks T dchws,p in all instances of fouling. It is also
noted that if the supervisory controller is not used for critical
fouling cases of 70%, then the chiller plant does not meet
the performance; however with the supervisory controller
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FIGURE 10. Supervisory control (SC) results compared with no supervisory control (NoSC) for the first three days of July 2014:
(a) Results for the cautionary class (40% fouling) (b) Results for the critical class (70% fouling).

enabled, it does. Also, it is clear that tracking is smooth
since there are no noticeable abrupt transient behaviors.
To the right of these plots, in the second column, are the
plots of compressor speeds ωf and ωh, with and without the

supervisory control, respectively. As seen, ωf is higher when
no supervisory control is used. Also, when supervisory con-
trol is used, ωf decreased by up to 500 RPM as the fouling
level increases. In all cases, there is only a mild increase inωh
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TABLE 8. Results of supervisory control when compared with no supervisory control during the summer months of 2014.

by up to 100 RPM, showing that the healthy chillers are not
significantly overdriven. This reduction in the faulty chiller
compressor speed, as expected, reduces the mass flow rate
of the refrigerant. This reduction in flow, in turn, reduces the
faulty chiller discharge temperature and pressure at the con-
denser inlet, which signifies a reduction of stress on the chiller
and its components. At the same time, there are only modest
increases in the mass flow rate, discharge temperature, and
discharge temperature of the healthy chillers, reinforcing the
notion that these chillers do not work much harder due to load
redistribution from the faulty chiller. Thus, the supervisory
controller clearly mitigates the adverse effects of condenser
fouling until maintenance can be performed.

Table 8 summarizes the results over the summer months
of 2014. The root mean squared error (RMSE) of the perfor-
mance variable Tchws,p was calculated as follows:

RMSE Tchws,p =

√
1
τ

∫ τ

0

(
Tchws,p(t)− T dchws,p(t)

)2
dt ◦C

where τ is the total time during the months June, July, and
August of 2014. The RMSEwas consistently lowwith a max-
imum observed value of 4.0E-3 ◦C during extreme fouling
condition. This shows that the supervisory controller reliably
meets the required cooling load performance. The effects of
supervisory control (SC) action are shown on different system
parameters in comparison to no supervisory control (NoSC).
For example, the average power reduction is defined as:

Avg 1Ptotal =
1
τ

∫ τ

0

(
PNoSCtotal (t)− P

SC
total(t)

PNoSCtotal (t)

)
dt × 100%

and the maximum power reduction is defined as:

Max 1Ptotal = max
t

PNoSCtotal (t)− P
SC
total(t)

PNoSCtotal (t)
× 100%

Except for low fouling levels, where its effects on the
chiller plant are small, the power consumption always
decreases with the supervisory controller active by up
to 3.05% on average and 7.26% maximum, yielding up
to 7585 kWh of energy savings, where the energy savings
are defined as:

1Etotal =

∫ τ
0 P

NoSC
total (t)− P

SC
total(t)dt

3.6× 106
kWh

The average and maximum changes for the healthy and faulty
chiller speeds, discharge temperatures, discharge pressures
and refrigerant mass flow rates, are calculated in the same
manner as for 1Ptotal . Overall, the faulty chiller sees signif-
icant speed reduction between 1.23% to 6.34% on average
for different fouling levels. Similarly, the maximum speed
reduction ranged from 3.20% to 14.31% depending on the
fouling severity. On the other hand, the speed increases for the
healthy chillers wereminimal ranging from 0.58% and 2.21%
on average. The discharge temperature Tdis,f , discharge pres-
sures Prdis,f , and refrigerant mass flow rate ṁr,f in the faulty
chiller show maximum reductions of up to 38.57%, 24.30%,
and 62.98%, respectively, thus showing a significant decrease
in the stress on different components of the chiller. The
healthy chillers see comparatively much smaller increases in
these parameters.

Overall, these results demonstrate that the supervisory
controller is able to meet the required performance for the
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customer under condenser fouling while providing resilience.
Notably, the main features of this supervisory controller for
the end user include:

• cost savings through reduced energy consumption,
• increased product lifespan through faulty chiller load
reduction,

• chiller plant performance guarantees through load redis-
tribution to health chillers, and

• conditioned-based maintenance to ensure fouling is
treated only when needed.

These features can collectively provide considerable cost
savings to end user over the life cycle of the chiller plant. The
proposed supervisory control strategy can be implemented
on a real chiller plant by integrating the supervisory control
framework with the Plant System Manager (PSM).

VI. CONCLUSIONS AND FUTURE WORK
This paper proposed a novel model-based supervisory control
framework that enables resilient operation of chiller plants
in the presence of condenser fouling. The supervisory con-
trol framework consists of an optimal sensor selection-based
fault detection and diagnosis scheme and a resilient control
strategy that effectively mitigates the effects of condenser
fouling by bringing the system parameters back to normalcy,
while meeting the cooling load demand. The methodology
is validated on a high-fidelity chiller plant model where it
is shown to meet all of its listed goals. The FDD approach
shows high classification accuracy with low missed detection
and false alarm rates, while the supervisory control results
demonstrate resilience, power savings, and cooling load per-
formance guarantees, for different fouling severities and for
operation during different months. Furthermore, these solu-
tions are shown to be robust by extensive testing on a large
and diverse data set and are computationally efficient due to
the simplicity of their designs.

For future work, the methodology needs to be extended to
provide a resilient control action against all the major faults
in chillers and chiller plants. However, to design a control
strategy to handle multiple faults, the fault detection and diag-
nosis strategy needs to be improved by incorporating system-
level fault detection and isolation, which monitors the entire
chiller plant and identifies exactly which component or sub-
component in a chiller plant is faulty. Other areas for improve-
ment are updating the control to handle chiller start-up and
shut-down times, chiller staging and asymmetric chiller con-
figurations. Comparison of the obtained results with real
experimental condenser fouling data if available or simulated
sensor data with more uncertainty in terms of bias and noise
values is another area of future work. Finally, improvements
to the proposed algorithms that minimize the amount of
required training data will increase the scalability of the
supervisory controller when dealing with larger problems.
The supervisory control framework presented here can be
extended and applied to other complex interconnected sys-
tems with load sharing subsystems such as airplanes, power

FIGURE 11. Thermodynamic cycle of the chiller model at nominal
conditions.

grids, smart buildings, etc. to achieve energy-efficient and
reliable operation.

APPENDIX
VALIDATION OF CHILLER PLANT MODEL
The high-fidelity chiller plant simulation model is imple-
mented in the Modelica modeling language using component
models from several commercial and open-source libraries.
The models used in this work are a high-fidelity model of
a water-cooled centrifugal chiller with local capacity control
and a scalable framework model of a chiller plant, which
uses the chiller model as a component. Local capacity control
of the chiller adjusts its compressor speed to maintain a
chilled water supply temperature setpoint, which is assigned
at the plant level. The chiller plant testbed model includes
component models representing the key components of a
closed loop chilled water plant. The chiller components in
the plant model are interchangeable, allowing for side-by-
side comparison between the high-fidelity chiller model and
existing alternatives.

Validation of the high fidelity chillermodel was undertaken
by first comparing its outputs to published standards for
chillers using the selected refrigerant at nominal operating
conditions, as enumerated in Table 9. With these values in
agreement the chiller model is a realistic representation of an
R134a refrigeration cycle. The thermodynamic cycle of the
chiller model at nominal conditions is illustrated in Fig. 11.

Validation of the chiller plant model was performed by
comparison of its outputs to operating data recorded from the
chiller plant in the University of Connecticut Central Utilities
Plant (UConn CUP) and corresponding weather data. Two
plant model configurations were evaluated, one using the
developed high-fidelity chiller model and the other using an
existing validated empirical chiller model from the LBNL
Buildings Library. Both model configurations were found to
suitably represent the behavior of a real chiller plant for the
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TABLE 9. High fidelity model nominal conditions.

FIGURE 12. Comparison of the heat transfer rates on the condenser and
evaporator sides of the chillers in the proposed model with real chiller
plant and empirical models.

studied range of input conditions, confirming the validity of
both the chiller and chiller plant models used in this work.
Fig. 12 shows a comparison of heat transfer rates on the
condenser and evaporator sides of the chillers in each of these
models and the real chiller plant.
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