
70 IEEE TRANSACTIONS ON ROBOTICS AND AUTOMATION, VOL. 17, NO. 1, FEBRUARY 2001

A Macro-Level Scheduling Method Using Lagrangian
Relaxation
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Abstract—In this paper, a macro-level scheduling method is
developed to provide high-level planning support for factories with
multiple coordinating cells. The key challenges are large problem
sizes, complicated product process plans, stringent cell coordi-
nation requirements, and possible resource overload. To model
the problem with manageable complexity, detailed operations of
a product within a cell are aggregated as a single operation whose
processing time is related to the amount of resources allocated.
“Overload variables” are introduced and penalized in the objec-
tive function. The goal is to properly allocate resources, efficiently
handle complicated process plans, and coordinate cells to ensure
on-time delivery, low working-in-process inventory, and small
resource overload. The formulation obtained is “separable” and
can be effectively decomposed by using Lagrangian relaxation. A
combined backward and forward dynamic programming (BFDP)
method is developed to solve a product subproblem after a novel
transformation of its process plan. The BFDP is further simplified
and solved approximately following the idea of the “surrogate
subgradient method” to reduce the computation requirements for
large problems. Numerical results show that near-optimal sched-
ules can be obtained for problems with up to 50 000 operations
within a reasonable amount of computation time.

Index Terms—Lagrangian relaxation, manufacturing planning
and scheduling, optimization.

I. NOMENCLATURE

Earliest beginning time of product;
Beginning time of operation ;
Earliest beginning time of operation ;
Latest beginning time of operation ;
Completion time of operation ;
Earliest completion of operation ;
Latest completion of operation ;
Due date of product;
Index of resource type from 1 to ;
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Total number of resource types;
A set of resources required simultaneously for the pro-

cessing operation ;
Index of product from 1 to ;
Total number of products;
The set of successor operations of operation ;
Number of operations in product;
Index of time unit from 1 to ;
Total number of time units within the time horizon;
Capacity of resource at time unit ;
The total “resource hours” of a particular resource type

required by operation ;
Resource overload of resourceat time unit ;
Processing time of operation ;
Lagrangian multiplier for resource capacity constraint of

type at time unit ;
Resource utilization of for operation

at time unit ;

II. I NTRODUCTION

M ANY manufacturing systems are organized in cells, and
products flow across cells for processing. Macro-level

scheduling is to provide high-level planning support to decide
when a product should be processed at which cell, and the
amount of cell resources to be allocated for the processing.
Effective scheduling is critical to improve on-time delivery,
reduce inventory, cut lead times, and level resource utiliza-
tion. Unlike cell-level scheduling, macro-level scheduling
emphasizes the smooth flow of products across cells and the
overall factory performance. Because of large problem sizes,
complicated product process plans, stringent cell coordination
requirements, and possible resource overload, it is very diffi-
cult to obtain good schedules within a reasonable amount of
computation time.

Literature Review: In a conventional material requirement
planning (MRP) system as described in [16], macro-level
scheduling is performed by modules such as master production
scheduling and rough-cut capacity planning. Material avail-
ability is the focus, and resource capacity is usually assumed to
be infinite resulting in infeasible schedules and large resource
overload. Moreover, several important issues such as product
routing are missing in rough-cut capacity planning as discussed
in [18]. There have been many efforts to improve MRP. A load
leveling method using integer programming was developed
in [1] to help human schedulers decide whether to increase
capacity or to delay the production of some products. A linear
programming model was constructed to seek the most profitable
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schedule subject to capacity constraints in [6]. A rule-based
framework for master scheduling considering both material
availability and resource capacity was presented in [17], and
a knowledge-based system was described in [20]. However,
in today’s time-based and customer-oriented competition and
the resulting low-volume and high-variety manufacturing,
MRP-based methods usually have major difficulties to meet the
important goals of on-time delivery and low working-in-process
(WIP) inventory because of their material centric nature. A
typical scenario is that products finished are not the ones
immediately needed, and the system has an excessive amount
of WIP inventory.

To improve the situation, job shop scheduling methods for
on-time delivery and low WIP inventory were developed in [15]
and [14] using Lagrangian relaxation. The goal of this paper is
to extend the methods to the macro level, addressing many of the
practical issues such as complicated process plans, simultaneous
and partial resource utilization, and coordination across cells. In
the literature dealing with complicated process plans, the com-
ponents for final assemblies were scheduled via a combined se-
quencing and dynamic programming procedure so that the mean
completion time is minimized in [3]. Assembly scheduling was
formulated as a mixed integer linear programming problem in
[8], and a heuristic approach was developed. In view of the com-
plexity involved, research addressing complicated process plans
with coordination requirements has been very limited. As for re-
source utilization, the simultaneous usage of multiple resources
was formulated as an integer programming problem and solved
by Lagrangian relaxation in [9] and [6]. In this paper, an opera-
tion may simultaneously require multiple resources and the uti-
lization of the resources can be fractional. In addition, resource
overload, which captures overtime and reserved resources, is al-
lowed if deemed necessary. The key challenges are to model the
problem with manageable complexity, to properly allocate re-
sources, to efficiently handle complicated process plans, and to
smoothly coordinate operations across cells. In view of the in-
herent complexity and the largeness of the problems, the aim
here is to develop a near-optimal scheduling methodology with
quantifiable quality in a computationally efficient manner.

Overview of the Paper:In the formulation to be presented
in Section III, detailed operations of a product within a cell are
aggregated as a single operation on key resources with bills of
materials provided by MRP. An operation may simultaneously
require multiple resources and the utilization of the resources
can be fractional. Small resource overload is allowed in view
of the aggregation, reserved resources, and possible overtime.
The limited resource capacities are explicitly formulated, and
the lead-time of a product within a cell or the processing time
of an aggregated operation is flexible and related to the amount
of resources allocated. The objective is to minimize a weighted
sum of penalties on product tardiness, earliness, lead-time, and
resource overload.

In Section IV, a solution methodology based on Lagrangian
relaxation is developed. A combined backward and forward dy-
namic programming (BFDP) method is established to solve a
product subproblem involving assembly (fan-in) and fan-out (an
operation with multiple successors) after a novel transformation
of its process plan. This approach results in a smaller number

Fig. 1. A sample process plan.

of multipliers, faster algorithm convergence, and better solution
quality than further decomposing the subproblem through re-
laxation as in [23]. The part subproblem is then simplified and
approximately solved following the idea of the “surrogate sub-
gradient method” in [21] to reduce the computation require-
ments for large problems, and the coordination requirements
across cells are explicitly considered within the dynamic pro-
gramming (DP) context. Numerical results in Section V show
that near-optimal schedules are obtained for large problems with
up to 50 000 operations within a reasonable amount of compu-
tation time.

III. PROBLEM FORMULATION

The formulation presented in this section is built on our pre-
vious work on job shop scheduling [15], [14] with the following
new features: flexible resource utilization, resource overload,
and complicated process plans.

A. General Description

The scheduling time horizon is divided into discrete time
units, with index ranging from 0 to –1. There are re-
source types, each consisting of a set of identical machines. The
number of type resources at time is given
and denoted as . There are products to be scheduled, and
Product has a given earliest beginning time
(arrival time of raw materials) and a due date. It has to go
through multiple cells according to a specified process plan, and
the processing at each cell is treated as an aggregated operation.
Product has a total of operations, and theth operation is
denoted as . Complicated process structures such as as-
sembly (fan-in) and fan-out (an operation with multiple succes-
sors) may exist as shown in Fig. 1. In the figure, Operation 00
fans out Operations 10 and 20, which can be processed in par-
allel. Operation 30 is an assembly operation, and can only be
started after the completion of both Operations 10 and 20. When
this process plan is seen as an undirected graph, Operations 00,
10, 20, and 30 form a cycle, which will require additional relax-
ation to be presented in Section IV. Without loss of generality,
it is assumed that a process plan starts with a single node and
ends with a single node.

In view of the aggregation of detailed operations in a cell and
other factors such as reserved resources and possible overtime,
small resource overload is permitted and resource capacities can
be slightly violated. A nonnegativeresource overload variable

is introduced for each resource type at each time unit, rep-
resenting the level of overload. It is then penalized in the objec-
tive function. In this paper, takes fractional and quantized
values.

Resource Utilization Requirements:An aggregated opera-
tion can be performed by several alternative resource sets in a
cell, and each possible set includes multiple resource types
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simultaneously required by the operation. The total “resource
hours” for a particular resource type is given and de-
noted as . The processing time required then depends on
the amount of resource allocation, and a large amount often
leads to a short time. Without loss of generality, an operation’s
processing time is assumed to be inversely proportional to the
amount of resource allocated. This modeling has the flexibility
to achieve various production speeds with different levels of re-
source allocation. For simplicity, the processing time of an oper-
ation can only take several discrete values. An equivalent view-
point is that the resource utilization by an operation, denoted as

, is inversely proportional to its processing timewithin
its processing period, and zero outside, i.e.,

if is assigned to resource type

and
otherwise.

(1)

B. Modeling of Constraints

Resource Capacity Constraints:The resource capacity con-
straints require that the total utilization of a resource should be
less than or equal to the amount of available resource plus pos-
sible overload , i.e.,

(2)

where takes nonnegative fractional and quantized values if
overload is deemed appropriate.

Operation Precedence Constraints:Given a product’s
process plan, the set of subsequent operations of is
denoted by . If , is a successorof ,
and is a predecessorof . Operation precedence
constraints state that the processing of an operation may start
only after the completion of all its predecessors plus a possible
required “timeout” , i.e.,

(3)

Arrival Time Constraints:As a special case of (3), the pro-
cessing of a product cannot be started before the arrival of the
required raw materials, i.e.,

(4)

where is the beginning time of the first operation of product
.

Processing Time Requirements:The completion time of an
operation equals the beginning time plus the required processing
time, i.e.,

(5)

where and are the beginning and completion times of
operation , respectively. Since the beginning time refers to
the start of a discrete time unit, and completion time the end a
discrete time unit, the term1 is required in (5). Similar is the

1 in (3).

Cell Coordination Constraints:To coordinate across cells,
an operation may be required to start and finish within a speci-
fied time window, i.e.,

and (6)

where , , , and are the operation’s earliest and latest
beginning and completion times, respectively. If or

, the beginning or completion time of the operation
is fixed. In addition, some consecutive operations may require
“no wait” in between because of stringent physical constraints
or coordination requirements. In this case, the processing of an
operation must start immediately after the completion of its pre-
ceding operation, i.e.,

(7)

C. Objective Function

A good macroscheduler should achieve on-time delivery, low
WIP inventory, and small resource overload. Inventory can be
reduced by cutting short product lead-time, i.e., the time be-
tween the start of the first operation and the completion of its last
operation. Similarly, short cell lead-times (or processing times)
of aggregated operations will help reduce inventory within a
cell. The objective function is therefore the weighted sum of
penalties on product tardiness, earliness, production/operation
lead-times, and resource overload, i.e.,

(8)

In theabove, is theproduct tardiness, i.e., ,with
being the completion time of product. Earliness

is the amount of time that product begins earlier than the de-
siredbeginning time , i.e., ,with being
the beginning time of product. The second and third term in (8)
penalize longproductandoperation lead-times, respectively.The
last term is the cost of resource overload. Parameters , ,

, and are weights associated with those penalty terms.

D. The Overall Problem

The overall problem is to minimize the above objective func-
tion subject to resource capacity, operation precedence, and cell
coordination constraints. Key decision variables are operation
beginning times, the type and amount of resources to be allo-
cated, and resource overload required. Among the constraints,
resource capacities are “coupling constraints” as they couple to-
gether decision variables belonging to different products. Since
the objective function and coupling constraints are additive, the
problem formulation is “separable,” and Lagrangian relaxation
can be effectively applied.

IV. SOLUTION METHODOLOGY

Similar to the pricing concept of a market economy, La-
grangian relaxation replaces coupling resource capacity con-
straints by the payment of certain prices (i.e., Lagrange mul-
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Fig. 2. The Lagrangian relaxation framework.

tipliers) for the use of resources at each time unit. The “re-
laxed problem” can then be decomposed into smaller subprob-
lems. These subproblems are much easier to solve as com-
pared to the original problem, and solutions can be efficiently
obtained by using dynamic programming. The prices or mul-
tipliers are then iteratively adjusted based on the degrees of
constraint violation following again the market economy prin-
ciple (i.e., increase prices for over-utilized time units and re-
duce prices for under-utilized time units), while subproblems
are resolved based on the new set of multipliers. In mathe-
matical terms, a “dual function” is maximized in the multiplier
updating process, and values of the dual function serve as lower
bounds to the optimal feasible cost. At the termination of such
price updating iterations, a few capacity constraints may still
be violated. Simple heuristics are then applied to adjust sub-
problem solutions to form a feasible schedule satisfying all
constraints. Heuristics can also be run after selected optimiza-
tion iterations to check convergence or to generate candidate
feasible schedules. Optimization and heuristics thus operate in
a synergistic fashion, and quality of schedules can be quanti-
tatively evaluated by comparing their costs to the largest lower
bound obtained. The decomposition and coordination frame-
work is illustrated in Fig. 2. The above approach has been suc-
cessfully used to schedule job shops in [15] and [14]. The spe-
cial features of flexible resource utilization, resource overload,
and complicated process plans lead to new challenges in the
formation and resolution of subproblems.

A. Lagrangian Relaxation

Resource capacity constraints are first “relaxed” by using
Lagrange multipliers , and the Lagrangian is formed as

(9)

After regrouping relevant terms in, the problem is decom-
posed into product subproblems and overload subproblems,
which can be solved separately.

Fig. 3. Regular and “no wait” DP transitions.

B. Product Subproblems

Collecting terms in (9) related to Productleads to the fol-
lowing product subproblem:

with

(10)

subject to constraints (3)–(7). In the above

(11)

It representsoperation-wise costs. The multipliers can
be interpreted as prices for using resources. The subproblem
objective thus reflects the balance among on-time delivery,
low WIP inventory, and the costs for utilizing resources. The
resolution of the subproblems using DP is elaborated next.

1) DP for Product Subproblems:Similar to [14], a product’s
process plan can be mapped onto a DP diagram, with DP stages
corresponding to operations and states corresponding to pos-
sible operation beginning times. Within a stage, each resource
set with a particular level of resource allocation results in
one column of DP states. As shown in Fig. 3, the “no wait”
processing requirement and operation beginning and comple-
tion windows can be embedded within DP by restricting state
transitions according to (6).

To solve the subproblem, backward DP (BDP) was developed
in [14] by starting from the last operation and moving backward
through the process plan. BDP can be extended to handle un-
certainties as presented in [12]. It, however,cannotsolve a sub-
problem with assembly because of possible decision conflicts as
illustrated in Fig. 4. In the figure, the sequence of cost computa-
tion is from Operation 4 to Operation 3, and then to Operations
1 and 2. After obtaining the minimum costs for Operations 1
and 2, the subproblem solution is attained by forward tracing
the stages. There may be a conflict if Operations 1 and 2 select
different Operation 3 beginning times. Forward DP (FDP) pre-
sented in [5] has been used to solve deterministic product sub-
problems with assemblies. Similar to the shortcoming of BDP
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Fig. 4. BDP for a subproblem with assembly.

Fig. 5. Solving subproblem with BFDP.

Fig. 6. Cost computation of BFDP.

for the assembly case, FDP cannot solve a subproblem when an
operation has multiple successors.

To overcome the above difficulties, complicated process
plans are decomposed into multiple simple plans by relaxing
assembly precedence constraints in [23]. The additional relax-
ation, however, increases the number of multipliers, and the
approach suffers from slow convergence.

2) Backward/Forward DP: In this paper, BDP and FDP are
combined to solve a product subproblem after a novel transfor-
mation of the process plan. For the example in Fig. 4, Operation
2 is flipped to the right-hand side of Operation 3, and atree
structureis formed as shown in Fig. 5. This tree has a single
root node Operation 1, and operation precedence relations are
not changed as indicated by solid arrows. The tree is then solved
from right to left, with Operations 4 and 2 in the first step. The
key is that the beginning time of an operation is decided by at
most one but not two operations. The detailed cost computa-
tion for Operation 3 is illustrated in Fig. 6. Since Operation 4
is a successor of Operation 3, possible transitions should satisfy

. The cost comparison is the same as that in BDP.
For Operation 2, possible transitions should satisfy .
The cost comparison for Operation 2 is thus the same as that in
FDP. Since this cost computation is similar to that of FDP, BFDP
cannot handle uncertainties.

BFDP for the example in Fig. 5 is illustrated below. For sim-
plicity, only operation-wise costs of (11) are considered, and de-
cision variables are operation beginning times. The subproblem
is

with

(12)

with

(12)

From (12), it can be seen that a beginning time is directly de-
cided by at most one but not two operations, there is no conflict
in the process, and the subproblem can be optimally solved.

If cycles exist in a process plan, a tree cannot be formed,
and relaxation of certain precedence constraints is needed be-
fore BFDP can be applied. Consider an operationin a cycle
having multiple successors, e.g., Operation 00 in Fig. 1. All but
one precedence constraints between this stage and its succes-
sors are relaxed. Without loss of generality, the precedence be-
tween such a stage and its successor is relaxed by
using multipliers if is not the first successor of
(“first” is defined in a very loose sense). The set of such
operations form a set . With this relaxation, (9) becomes

(13)

and in (11) becomes

(14)

3) Specific Steps for BFDP:Using the transformation de-
scribed above, the complicated process plan in Fig. 1 can be
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Fig. 7. A sample converted process plan.

converted to a tree structure with a single root node as shown in
Fig. 7. In such a tree, the root node is at the left. Nodes having
same number of hops from the root belong to the same “layer.”
Operation is theparentof if has precedence
relationship with and is to the left of . If is the
parentof operation , then is achild of . All the
children of operation form a set . Since an operation’s
beginning time is determined only by its parent operation, con-
flict does not exist. Further, since (10) is stage-wise separable,
the subproblem can be optimally solved by dynamic program-
ming according to [12].

The BFDP starts from computing terminal costs of tree
leaves, i.e.,

(15)

where equals 1 if is the last operation of product
and 0 otherwise, and is the set of operations at theth layer
counting from tree leaves.

The cumulative cost when moving from children to a parent
is obtained by combining the minimum costs of children

and stage-wise costs of the parent, i.e.,

(16)

In the above, the second term on the right-hand side is associated
with ’s successors, and the third term is associated with

’s predecessors.
For operation ’s child , costs associated with all

possible beginning times , processing times , and eli-
gible resource sets are computed and compared, and the
one with the lowest cost subject to precedence constraints is se-
lected. Finally, the optimal subproblem cost is obtained as the
minimum cumulative cost at the root. The optimal beginning
times, processing times, and resource sets can then be attained
by tracing the optimal path from root to leaves.

The minimization with respect to on the right-hand side
of (16) can be efficiently carried following [5]. For the second
term on the right-hand side of (16) associated with successors,
cost computation at includes the minimization of for all

. If cost computation is carried out from bottom
to top of a DP column, the minimization of will only require
one comparison between the previously obtained minimum
and the cost at . Similarly, for the third term of

Fig. 8. Simplified dynamic programming.

(16) associated with predecessors, cost computation can be ef-
ficiently carried out from top to bottom. The complexity for the
above is , where is the largest number of pos-
sible combinations of discrete processing times and operation
resource sets.

For a practical problem, the number of DP states can be large.
To reduce the computational requirements, BFDP is simplified
and solved approximately by computing and comparing the
costs of selected DP states only. An adjustable parameter “DP
simplification factor,” denoted , is used, and only the costs
associated with one out of every states are computed and
compared as shown in Fig. 8. This simplified BFDP is valuable
for solving large problems as will be shown in Section V.

C. Overload Subproblems

Collecting all the terms in (9) related to resource overload
leads to the following overload subproblem:

with

(17)

The solution of the above is

where is the smallest unit to adjust , and the floor
function.

D. Dual Problem and Lagrange Multiplier Updating

Let denote the minimum subproblem cost for product,
and the minimum overload cost for resource typeat time

. The high level dual problem is obtained as

with

(18)
Note that since capacity and precedence constraints are relaxed
at the same level in (13), these two sets of multipliers are updated
together. This dual function is concave, piecewise linear, and
consists of many facets. Thesubgradient methodis commonly
used for this kind of nondifferentiable optimization. It requires
the minimization of all subproblems to obtain a subgradient
direction to update multipliers. For large problems with many



76 IEEE TRANSACTIONS ON ROBOTICS AND AUTOMATION, VOL. 17, NO. 1, FEBRUARY 2001

Fig. 9. Surrogate subgradient method and multiplier initialization.

subproblems and each subproblem requiring a large amount of
computation, solving all subproblems is very time consuming.
To overcome this, the recently developed “surrogate subgra-
dient method” [21] is used to update the multipliers. In this
method, onlyapproximateoptimization of several subproblems
is needed to obtain a proper “surrogate” subgradient direction
to update multipliers, as opposed to solving all the subproblems
precisely (Fig. 9).

In our work, only one subproblem is approximately solved
by using simplified BFDP before updating multipliers. If theDP
simplification factorequals one, subproblems are solved exactly
and the convergence condition in [21] holds. If theDP simpli-
fication factor is greater than one, subproblems are not opti-
mally solved. However, the dual problem can still converge by
adaptively adjusting and reducing it if necessary to satisfy the
convergence condition.

E. Constructing Feasible Schedules

The updating of multipliers is stopped after a fixed amount
of computation time or a fixed number of iterations have been
executed. Since resource capacity and certain precedence
constraints have been relaxed, subproblem solutions generally
do not constitute a feasible schedule. Greedy heuristics based
on the list scheduling concept were developed in [14] to
quickly construct a feasible schedule by delaying some of
the operations causing capacity violation. In our work, two
heuristic methods were developed in view of the existence
of resource overload. The first method extends the approach
of [14] by first adding overload subproblem solutions to the
original resource capacities. The adjusted capacities are then
satisfied by delaying operations as needed to satisfy the relaxed
precedence and capacity constraints. The second method uses
product subproblems solutions as a basis, and delays certain
operations as needed to satisfy precedence constraints. The re-
quired capacities and consequently overload are then obtained.
In view of the “list scheduling” nature of both methods, cell
coordination constraints (6) are only approximately satisfied
in either method, although they are exactly satisfied within the
BFDP process. These two methods are carried out alternatively
during the multiplier updating iterations, and the schedule with
the lowest feasible cost is recorded. The relative difference

TABLE I
INPUT DATA OF EXAMPLE 1

between this feasible costand the maximum dual value is
the relativeduality gap , and it quantifies
the quality of the schedule obtained.

F. Initialization of Multipliers for Rescheduling

Scheduling is usually performed periodically at the beginning
of a shift based on a “snapshot” of the factory. Scheduling might
also be needed after the arrival of major orders or the break-
down of critical resources. How to speed up rescheduling is an
important issue. As mentioned, the values of capacity multi-
pliers reflect the demand on resources. Since the status of the
factory may not change significantly from one scheduling in-
stant to the next, these multipliers may not change drastically.
Rescheduling can thus be initialized by using multipliers ob-
tained from the previous schedule. This initialization provides
a better starting point for the optimization process, and signifi-
cantly reduces the computational requirements as will be illus-
trated in the next section.

V. NUMERICAL RESULTS

The algorithm has been implemented using the object-ori-
ented language C and tested on a Pentium III 500-MHz PC
running the Windows NT operating system. The following ex-
amples demonstrate the key features of the method and testing
results for large problems.

Example 1: This example is to demonstrate the value of re-
source overload, and to see that low overload can be achieved by
properly selecting the overload penalty coefficients. There are
three cells each with one unit of a key resource. Twelve prod-
ucts each with three operations are to be scheduled, and the pro-
cessing is required to be finished before time unit 30. For all the
products, due dates and weights are1 and 5, respectively, and
there is no earliness or lead-time penalty. Operation processing
times and the required resource types/amount are provided in
Table I.

There is no feasible schedule if resource overload is not al-
lowed. By allowing overload, feasible schedules are generated
in 30 s for different values of overload penalty coefficients.
The feasible costs and overload of the schedules are shown in
Fig. 10. Very large penalty coefficients, which are similar to the
no overload allowed case, result in small overload but large tar-
diness. If coefficients are very small, the schedule is similar to
that in MRP with infinite capacity, resulting in large overload
and small feasible cost. It can be seen that resource overload
can be controlled through the proper selection of penalty coef-
ficients.
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Fig. 10. Feasible costs and overload for Example 1.

TABLE II
TESTING RESULTS OFEXAMPLE 2

Example 2: This example is to show that solving product
subproblems by BFDP results in better algorithm convergence
as compared to decomposing a process plan into multiple BDP
subproblems through relaxation. There are 24 cells, each with
one unit of a key resource. Ten products each with ten oper-
ations and multilevel assemblies are to be scheduled within a
time horizon of 200 units.

The problem is first solved by using BDP after assembly
precedence constraints are relaxed following [23], and then
solved again using BFDP without relaxing such constraints.
From the results in Table II, it can be seen that the new ap-
proach improves algorithm convergence, and a better schedule
is obtained in a shorter amount of time. Although FDP can be
used to solve this example, the purpose here is to demonstrate
that reducing the number of relaxed constraints often leads to
faster convergence and better results.

Example 3: This example is to demonstrate that the method
can obtain near-optimal schedules for large problems within a
reasonable amount of computation time. Based on sample data
sets from Toshiba’s gas insulated switchgear factory, 25 data
sets were randomly generated and tested. For each data set, there
are a total of 2000 products for a total of 20 000 operations to
be scheduled on 24 cells each with 30 units of a key resource.
The time horizon is 600 h. For each data set, the operation pro-
cessing times, product due dates, and tardiness weights are de-
viated from the values of the previous data set by a random per-
centage uniformly distributed over [70%, 70%]. Some of the
products have “no wait” precedence relationships, or have fixed
operation beginning or completion times.

With all multipliers initialized at zero andDP simplification
factor , the average duality gap obtained in 10 min is
8.25%, implying that near-optimal schedules are obtained with
in a reasonable amount of computational time. The smallest,
largest, and standard deviation of duality gaps obtained are
7.37%, 9.4%, 0.55%, respectively, indicating that the method
can consistently generate good schedules. The resulting sched-
ules also satisfy most of the cell coordination requirements.

TABLE III
TESTING RESULTS FORSIMPLIFIED DP

TABLE IV
TESTING RESULTS FORRESCHEDULING

Fig. 11. Duality gap for different size problems.

To demonstrate the speedup obtained by using simplified
BFDP, testing results for one of the 25 data sets with different
values ofsimplification factor are summarized in Table III.
It can be seen that similar feasible costs can be obtained in a
much shorter time by using simplified DP.

To demonstrate the value of using the previous multipliers
in rescheduling, assume that 400 products are completed and
400 new products are added to the above data set. Rescheduling
is then performed by initializing multipliers from the previous
algorithm run. From the results in Table IV, it can be seen that
the CPU time can be drastically decreased with this multiplier
initialization process.

Example 4: This last example is to demonstrate the perfor-
mance of the method for even larger problems. There are 5000
products for a total of 50 000 operations to be scheduled on
24 cells each with 60 units of a key resource. A near-optimal
schedule with a duality gap of 13.21% is obtained in 40 min
with all multipliers initialized at zero. If 400 product are as-
sumed completed and 400 new products are added, the time for
rescheduling can be reduced to 10 min by initializing multipliers
from the previous algorithm run.

To highlight the convergence of the method, three data sets
with 200, 2000, and 5000 products are tested with multipliers
initialized at zero. The duality gaps at different iterations are
plotted in Fig. 11. It can be seen that the convergence is sim-
ilar for different sizes of problems although each iteration takes
longer for larger problems. Near-optimal schedules are obtained
within reasonable computation times for all the three data sets.
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VI. CONCLUSIONS

A mathematical model with manageable complexity and
an efficient solution methodology are critical for macro-level
scheduling. The model presented in this paper considers
practical issues such as flexible resource utilization, possible
resource overload, complicated process plans, and stringent
coordination requirements. In the solution process, the sep-
arable nature of problem formulation is fully exploited, and
BFDP provides a systematic and effective approach to handle
complicated process plans. The simplified DP and proper
multiplier initialization further speed up the computation.
Numerical results demonstrate that high quality schedules are
generated for very large problems with up to 50 000 operations
within reasonable amount of CPU times.
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