
Architectural Design of Neural Network Hardware for Job Shop Scheduling

P.B. Luh, X. Zhao, L. S. Thakur

University of Connecticut, Storrs, CT 06269-2157, USA

K. H. Chen, T. D. Chiueh, S. C. Chang

National Taiwan University, Taiwan

Submitted by J. M. Shyu (1),

National Space Program Office, Hsin-Chu City, Taiwan

Abstract

By combining neural network optimization ideas with “Lagrangian relaxation” for constraint handling, a novel
Lagrangian relaxation neural network (LRNN) has recently been developed for job shop scheduling. This
paper is to explore architectural design issues for the hardware implementation of such neural networks. A
digital circuitry with a micro-controller and an optimization chip is designed, where a parallel architecture and
a pipeline architecture are explored for the optimization chip. Simulation results show that the LRNN
hardware will provide near-optimal solutions for practical job shop scheduling problems. It is estimated that
the parallel architecture will obtain one order of magnitude speed gain, and the pipeline architecture will
obtain two orders speed gain as compared with the currently used method.

Keywords: Job shop scheduling, neural network, hardware design

1 INTRODUCTION

Manufacturing scheduling is an important but difficult
task, and is often formulated as a combinatorial
optimization problem [1,4]. To effectively solve this class
of problems, a novel optimization method has recently
been developed by combining neural network
optimization ideas with “Lagrangian relaxation” for
constraint handling. This paper is to explore architectural
design issues for the hardware implementation of such
neural networks for job shop scheduling.

Historically, Hopfield-type neural networks were
developed for unconstrained optimization based on the
“Lyapunov stability theory” of dynamic systems: if a
network is “stable,” its “energy” will decrease to a
minimum as the system approaches its “equilibrium
state.” If one can properly set up a network that maps the
objective function of an optimization problem onto an
“energy function,” then the solution is a natural result of
network convergence, and can be obtained at a very fast
speed [3].

For constrained optimization, the Hopfield-type networks
convert a constrained problem to an unconstrained one
by having penalty terms on constraint violations [3]. A
tradeoff between solution optimality and constraint
satisfaction has to be made through the fine tuning of
penalty coefficients. The tradeoff, however, is generally
difficult to make. In addition, Hopfield-type networks may
possess many local minima. Since escaping from local
minima is not an easy task [9], the solution quality
depends highly on initial conditions.

Hopfield-type networks and its variations have been
developed for job shop scheduling [2, 10]. Although
these models demonstrate the possibility of using neural
networks for solving small scheduling problems, they
suffer from the above-mentioned difficulties. It is not easy
to scale up these methods to solve practical problems.
Heuristics have also been used to modify neuron
dynamics to induce constraint satisfaction within the job
shop context [8]. The results, however, may be far from
optimal.

Recently we have developed a novel Lagrangian
relaxation neural network (LRNN) method by combining
neural network optimization ideas with “Lagrangian
relaxation” for constraint handling [5]. This paper is to
explore architectural design issues for the hardware
implementation of such networks for job shop scheduling.
Our goal is to implement LRNN in hardware to drastically
reduce the computation time for practical size problems,
and to provide an on-line near-optimal scheduling
system. In Section 2, LRNN for job shop scheduling is
presented. In section 3, a digital circuitry with a micro-
controller and an optimization chip is designed to
implement LRNN, were a parallel architecture and a
pipeline architecture are explored for the optimization
chip. Simulation results in Section 4 show that the LRNN
hardware will provide near-optimal solutions for practical
job shop scheduling problems. It is estimated that the
parallel architecture will obtain one order of magnitude
speed gain, and the pipeline architecture will obtain two
orders speed gain as compared with the currently used
method.

2 LRNN FOR JOB SHOP SCHEDULING

2.1 Problem Formulation

In a job shop, there are H machine types, and each
machine type may consist of a few identical machines [6].
There are I parts to be scheduled over a horizon of K time
units, and part i has its due date iD , weight (or priority)

iW , and requires iJ sequential operations for its

completion. Each operation is to be performed on a
machine of a specified type for a period of time, satisfying
the processing time requirements. The processing may
start only after its preceding operation has been
completed, satisfying the operation precedence
constraints. Furthermore, the number of operations
assigned to machine type h at time k should be less than
or equal to khM , the number of machines available at

that time, satisfying the machine capacity constraints:

Mkhij ijkh ≤∑ , k = 1, ..., K; .Hh ∈ (1)

Here ijkhδ is a 0-1 “operation-level” variable. It equals 1

if operation j of part i is being performed by machine
type h at time k, and 0 otherwise.

The time-based competition goal of on-time delivery is
modeled as a penalty on delivery tardiness iT = max [0,

iC – iD], where iC is the completion time for part i. The

objective function is the total weighted part tardiness

∑
−

=

1

0

2I

i
iiTW , and the problem is to determine operation

beginning times ijb (or completion time ijc) for individual

operations to minimize the objective function. With linear
constraints and additive objective function, the key
feature of this formulation is its separability [6].

2.2 Solution Methodology

We have applied Lagrangian relaxation to the above
problems, and developed an efficient near-optimization
method for job shop scheduling [6]. Within the LR
framework, machine capacity constraints are relaxed by
using Lagrange multipliers kh , and the “relaxed

problem” is given by

L
bij }{

min , with MTWL kh
kh

kh
ij

c

bk
kh

i
ii

ij

ji

∑−∑ ∑+∑≡
=

2 , (2)

subject to individual part constraints. Since the
formulation is separable, the relaxed problem can be
decomposed into the following decoupled part
subproblems for a given set of multipliers:

Li
bij }{

min , with ∑ ∑+≡
= =

J

j

c

bk
khiii

i ij

ij

TWL
1

2 , i =1, …, I. (3)

1

Stage 2S tage 1

2

3

4

1

Stage 2Stage 1

2

3

4

(a) (b)

Figure 1: DP and NBDP.

Each part subproblem can be efficiently solved by using
dynamic programming (DP) [6], with its structure shown in
Figure 1 (a). With stages corresponding to operations
and states corresponding to operation beginning times,
the backward DP algorithm starts with the last stage, and
computes the tardiness penalties and machine utilization
costs. The stage-wise machine utilization cost is the
summation of ijP related multipliers, where ijP is the

operation processing time. As the algorithm moves
backwards, cumulative costs are computed based on the
stage-wise costs and the minimum of the cumulative
costs for the succeeding stage, subject to allowable state
transitions as delineated by operation precedence
constraints. This minimization can be efficiently
implemented by pair-wise comparisons, starting from the
last state of the succeeding stages. The optimal
subproblem cost is then obtained as the minimum of the
cumulative costs at the first stage, and the optimal
beginning times for individual operations can be obtained

by the “forward sweep” which traces the optimal
beginning times forward in stages.

Let *
iL denote the minimal subproblem cost of part i with

given multipliers, the high level Lagrangian dual problem
is then obtained as follows:

D
kh }{

max , with MLD kh
hk

kh
i

i ∑−∑≡
,

* . (4)

It can be shown that the dual function is always concave,
and provides a lower bound to the original problem. With
the minimum subproblem solutions for given multipliers

kh , the subgradient g of the dual function D is

calculated by

.Mg kh
i j

ijkhkh ∑ ∑ −= (5)

Iterative adjustment of multipliers along the subgradient
directions with proper step sizes, repeated resolution of
subproblems, and the final heuristic adjustment of
subproblem solutions lead to a near-optimal feasible
solution of the original problem. The quality of the
schedule can be quantitatively evaluated by the duality
gap, which is the relative difference between the feasible
cost and the maximum dual cost [6].

2.3 Lagrangian Relaxation Neural Networks

Lagrangian relaxation has recently been combined with
neural networks to solve constrained optimization
problems [5]. Since the dual function is always concave,
the key idea of LRNN is to create a network to let the
negative dual be the energy function. If this can be done,
then the negative dual will naturally approach its minimum
(or the dual will approach its maximum) as the network
converges. However, since the negative dual is not
explicitly available but must be obtained through the
resolution of the relaxed problem for various multipliers,
the construction of the network is a bit complicated. The
crux of LRNN is to merge these two constructs, one for
the negative dual and the other for the relaxed problem,
and let them feed each other and converge
simultaneously. In LRNN, the network elements that
update multipliers will be referred to as the “Lagrangian
neurons.” In contrast, neurons minimizing the
subproblems will be called “decision neurons.” At any
instant of time, however, decision neurons may not
provide minimum solutions of the relaxed subproblems for
the current kh . In spite of this, a direction is calculated

according to (5) based on these subproblem solutions,
and Lagrangian neurons kh are updated along the

“surrogate subgradient direction” obtained.

Neuron-based dynamic programming (NBDP) is
developed to solve part subproblems, and can effectively
handle the local constraints as well as the integer
variables involved [5]. The key idea is to make the best
use of the DP structure that already exists, and
implement the DP functions by neurons. In doing this,
the DP structure illustrated in Figure 1 (a) is utilized,
where each state is represented by a neuron to obtain the
cumulative cost by adding up two values: the stage-wise
cost derived from multipliers and the minimum cumulative
costs of the succeeding stage. The pair-wise comparison
to obtain the minimum cumulative costs of the
succeeding stage is carried out through the introduction
of another layer of “comparison neurons.” The
connections of comparison neurons and “state neurons”
are subject to state transitions as shown in Figure 1 (b),
where comparison neurons are represented by gray
circles. The traditional backward DP algorithm is thus

mapped onto a neural network with simple topology and
elementary functional requirements that can be
implemented in hardware.

The structure of LRNN consists of Lagrangian neuron
updating and NBDP for subproblem solving as shown in
Figure 2 (only one NBDP is shown here). Within each
NBDP, signals propagate from the last stage to the first
stage, and forward sweep is then used to obtain
subproblem solutions. Unlike the traditional LR method,
multiplier updating in LRNN does not wait for all
subproblems to be solved. Instead, updating directions
are calculated after only one of the subproblems is
solved, and Lagrangian neurons are updated accordingly.
The convergence of LRNN has been proved in [5].

Forward
sweep

N euron-Based D ynam ic P rogram m ing

Lagrangian N eurons

S tage 1 S tage 2

C a lcu late
D irections

Figure 2: Structure of LRNN.

3 ARCHITECTURAL DESIGN

3.1 Hardware Architecture

A digital circuitry will be used to implement the above
LRNN to be embedded within a personal computer. In
hardware design, key considerations include speed,
hardware complexity, accuracy, chip area, I/O
requirements, and the flexibility for different problem sizes
[7]. By trading off hardware complexity vs. numerical
accuracy, 16-bit integer instead of floating point
calculation is used. Since general multiplication
consumes chip area, only multiplication by power of two
is considered and implemented by simple bit shifting. In
view that NBDP is a common module for solving
individual subproblems and is quite complicate to
implement, a chip contains one NBDP to allow flexibility
regarding the number of parts to be scheduled.
Furthermore, multiplier updating is built within this chip to
avoid large amount of I/Os that would be required
otherwise. The resulting hardware architecture consists
of two components: a micro-controller and an optimization
chip as shown in Figure 3.

Micro-Controller

Optimization
Chip

Input from PC Output to PC

Data and Sequence
Control Signals

Subproblem Solutions

Figure 3: Digital hardware architecture.

The micro-controller feeds job shop input data from PC to
the optimization chip, controls its processing sequence,
and returns its solutions to PC. The optimization chip is
used to perform NBDP and multiplier updating. After

completing NBDP for one subproblem, multiplier updating
directions are calculated based on the new subproblem
solution to update the multipliers. Another subproblem is
then loaded. Since the optimization chip is the key part of
the hardware, a parallel architecture and a pipeline
architecture are designed as presented next.

3.2 Parallel Architecture

In the parallel architecture, the calculations for one stage
of NBDP as illustrated in Figure 2 are implemented by K
“state cells” in parallel as shown in Figure 4. State cell k
has one adder and one comparator to implement the
“state neuron” and the “comparison neuron” for state k. It
also stores multipliers and directions for all machine types
at time k in its local memory, and updates these
directions and multipliers. All state cells calculate their
stage-wise costs and cumulative costs in parallel, and
this takes ijP +1 clock cycles. The pair-wise comparison

is then performed sequentially from the last cell to the first
cell, and a 0-1 “minimum-indicating” bit is stored in each
cell’s local memory to be used in the forward sweep (J
bits are required for all stages). This sequential
comparison takes k clock cycles. Therefore, one-stage
NBDP will take a total of ijP +K+1 clock cycles. Under

the control of an internal sequence controller, various
stages of NBDP for a subproblem are sequentially
performed from the last stage to the first. A simple circuit
then carries out the forward sweep function by tracing
through the minimum-indicating bits from the first stage to
the last. This takes αKxJ clock cycles, where α can be
easily made smaller than 0.05 by a specific “tracing
circuit.” With the new subproblem solution available,
directions are adjusted and multipliers are updated by
state cells in parallel. This process is controlled by the
sequence controller and requires only a few clock cycles.
The total time required to complete one subproblem is
approximately K×J clock cycles, with the sequential pair-
wise comparison as the bottleneck.

Internal
sequence
controller

Forward
Sweep

State 1 NBDP +

h1 updating

Global memory: part &
schedule information

To/from micro-controller

State K NBDP +

Kh updating

Figure 4: Parallel architecture with K state cells.

3.3 Pipeline Architecture

The heart of the pipeline architecture is J “stage cells”
each with three adders and one comparator as depicted
in Figure 5. The calculation for stage cell j starts from the
bottom state with the largest beginning time. For state k
of stage cell j, two adders (SC) are first used to obtain the
stage-wise cost based on the stage-wise cost from state
k+1. One adder (CC) then gets the cumulative cost using
the corresponding minimal cost from stage j+1, and the
comparator (MC) finally finds the minimum. As shown in
Figure 5, the calculations for neighboring states within
one stage are properly pipelined. The processing of a
subproblem starting from stage cell J to stage cell 1 is
also properly pipelined. In this way, the calculations for

all stages can be finished within approximately K clock
cycles. The forward sweep is then similarly implemented
as that of the parallel architecture except that the
minimum-indicating bits are stored in the forward sweep
circuit. Since every stage cell needs multipliers of all time
indices, global memory is needed to store all multipliers.
This implies that a “multi-reading” capability has to be
designed to facilitate concurrent access of multipliers by
different cells. A multiplier updating circuit separated
from the stage cells is also required to update multipliers
in parallel. The total time required for solving one
subproblem is approximately K clock cycles as compared
to K×J for the parallel architecture.

clock cycles

state K MC CC SC SC

MC CC SC SC

MC CC SC SC

state K-1

state K-2
Stage cell J

Stage cell J-1

7 6 5 4 3 2 1

state K-1 MC CC SC SC

MC CC SC SC

MC CC SC SC

state K-2

state K-3

Figure 5: Pipeline architecture with J stage cells.

4 SIMULATION AND PERFORMANCE ANALYSIS

The above hardware design has been simulated on a
Pentium II 400 MHz PC. The simulation is to evaluate the
performance of LRNN under 16-bit integer calculation and

fixed step size (n−2) multiplier updating. Initial testing

showed that 2
iT in the objective function frequently

caused overflows. Thus iT is used instead of 2
iT in the

following simulations. Results of three problems after 600
iterations are presented in Table 1. The small duality
gaps imply that near-optimal solutions are obtained, and
the solution quality of LRNN is similar to those obtained
by a currently used LR method [6].

Data (I/J/K/H) Dual Feasible Gap
20/20/ 500/11 268 302 13%
40/20/1000/7 522 544 4%
80/20/2000/8 2650 2918 10%

Table 1: Simulation results for LRNN.

To compare the speed of LRNN with that of LR, a
problem with I/J/K/H = 500/20/5000/10 is considered.
This problem is first solved by LR, and it takes one hour
to run 600 iterations. Under the assumption of 100 MHz
operating frequency for hardware implementation, the
time required for the two LRNN architectures are
estimated in Table 2. The parallel architecture will cut the
computation time to be within 5 minutes, and the pipeline
architecture to only 15 seconds. It is thus expected that
at least one order of speed gain can be obtained by the
parallel architecture and two orders by the pipeline
architecture. Though the pipeline architecture is much
faster, it is more difficult to implement in view of the multi-
reading system, and the more complicated multiplier
updating mechanism and sequence control. The parallel
design stores multipliers locally, and requires simple

hardware to read and update multipliers. Further study is
underway to finalize the selection.

Parallel Pipeline LR
Clock cycle I×J×K I×KOne

iteration Second 0.5 0.025 6
600 iteration 5 min. 15 sec. 1 hour

Table 2: Speed comparison of LRNN with LR.

5 SUMMARY

A parallel architecture and a pipeline architecture are
designed to implement LRNN, with their performance
analyzed. Such hardware implementations are expected
to reduce the computation time by one to two orders of
magnitude, and to provide an on-line, near-optimal
scheduling system to be embedded within a PC.

6 ACKNOWLEDGMENT

This work was supported in part by the National Science
Foundation grant DMI-9813176 and by the National
Science Council of Taiwan, Republic of China, under
grant NSC-87-2622-E-002-011.

7 REFERENCES

[1] Zijm, W. H. M, Kals, H. J. J., 1995, Integration of
Process Planning and Shop Floor Scheduling in
Small Batch Part Manufacturing, Annals of the
CIRP, 44/1:429-432.

[2] Foo, Y. P. S., Takefuji, Y., 1988, Integer-linear
Programming Neural Networks for Job-shop
Scheduling, Proc. of the IEEE 2nd International
Conference on Neural Networks, pp. 341-348.

[3] Hopfield, J. J., Tank, D. W., 1985, Neural
Computation of Decisions in Optimization Problems,
Biological Cybernetics, 52:141-152.

[4] Luh, P. B., Wang, J. H., Wang, J. L., Tomastik, R.
N., 1997, Near Optimal Scheduling of Manufacturing
Systems with Presence of Batch Machines and
Setup Requirements, Annals of the CIRP, 46/1:397-
402.

[5] Luh, P. B., Zhao, X., Wang, Y., Thakur, L.S., 1998,
Lagrangian Relaxation Neural Network for Job Shop
Scheduling, Proc. of International Conference on
Robotics and Automation, Leuven, Belgium, pp.
1799-1804.

[6] Wang, J., Luh, P. B., Zhao, X., Wang, J., 1997, An
Optimization-Based Algorithm for Job Shop
Scheduling, SADHANA, 22/2:241-256.

[7] Weste, N. H. E., Eshraghian, K., 1993, Principles of
CMOS VLSI Design: a System Perspective,
Addison-Wesley, MA.

[8] Willems, T. M., Brandts, L. E. M. W., 1995,
Implementing Heuristics as an Optimization
Criterion in Neural Networks for Job-shop
Scheduling, Journal of Intelligent Manufacturing,
6/6:377-387.

[9] Wilson, V., Pawley, G. S., 1988, On the Stability of
the Traveling Salesman Problem Algorithm of
Hopfield and Tank, Biol. Cybernetics, 58:63-70.

[10] Zhou, D. N., Cherkassky, V., Baldwin T. R, Olson,
D. E., 1991, A Neural Network Approach to Job-
shop Scheduling, IEEE Trans. Neural Networks,
2/1:175-179.

