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Abstract. The subgradient method is used frequently to optimize dual
functions in Lagrangian relaxation for separable integer programming
problems. In the method, all subproblems must be solved optimally to
obtain a subgradient direction. In this paper, the surrogate subgradient
method is developed, where a proper direction can be obtained without
solving optimally all the subproblems. In fact, only an approximate
optimization of one subproblem is needed to get a proper surrogate
subgradient direction, and the directions are smooth for problems of
large size. The convergence of the algorithm is proved. Compared with
methods that take effort to find better directions, this method can obtain
good directions with much less effort and provides a new approach that
is especially powerful for problems of very large size.
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1. Introduction

Playing a fundamental role in constrained optimization in economics
and mathematics over the decades, Lagrangian relaxation is particularly
powerful for the optimization of separable nonlinear programming problems
or integer programming problems. In a nutshell, the key idea of the approach
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is decomposition and coordination, where decomposition is based on the
separability of models, and coordination based on the pricing concept of a
market economy. In this method, coupling constraints are first relaxed
through the introduction of Lagrange multipliers, and the relaxed problem
can be decomposed into many smaller subproblems. Given the set of multi-
pliers, these subproblems are easier than the original problem, and can be
solved efficiently. Multipliers are then adjusted iteratively based on the levels
of constraint violation. The resolution of the original problem is thus done
through a two-level iterative approach, where the low level consists of solving
individual subproblems. Coordination of the subproblem solutions is per-
formed through the updating of the Lagrange multipliers at the high level.
In the optimization terminology, the concave dual function is maximized
iteratively. In this process, the subproblem solutions will tend to an optimal
feasible solution, while the dual function itself provides a lower bound to
the optimal primal cost (Ref. 1).

When applying Lagrangian relaxation to integer programming, tech-
niques such as the subgradient, bundle, and cutting plane methods are used
often to maximize the dual function, since the dual function is polyhedral
concave and nondifferentiable. The subgradient method is the most widely
used method, where the subgradient direction is obtained after all the sub-
problems are solved and the multipliers are updated along this subgradient
direction. The bundle method can provide better directions than the subgrad-
ient method. However, to obtain each direction, it may require solving all
the subproblems many times (Ref. 2). For problems of large size, the solution
of the subproblems can be complicated and takes the majority of the compu-
tation time. For example, it has been reported that more than 70% of the
total CPU time is spent on solving subproblems for job shop scheduling
problems (Ref. 3). Therefore, it is desirable to obtain a good direction with
less effort than solving all the subproblems many times to obtain an optim-
ized direction.

Based on this idea, the interleaved subgradient method solves only one
subproblem per iteration to obtain a direction and then updates the multi-
pliers (Ref. 4). Numerical results show that the method converges faster
than the subgradient method, although the algorithm convergence was not
established.

In this paper, the surrogate subgradient method is developed, and a
proper surrogate subgradient direction to update the multipliers can be
obtained without solving all the subproblems. In fact, only an approximate
solution of one subproblem is needed to obtain a surrogate subgradient
direction. The convergence of the algorithm is proved in Section 4 for separ-
able nonlinear programming or integer programming problems. This method
includes the interleaved subgradient method as a special case and provides
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a framework allowing creative variations. Compared with methods such as
the conjugate method (Ref. 5) or the bundle method, that take effort to find
a better direction, this method saves much effort in obtaining a direction.
It is also shown that, for large problems, the surrogate gradient directions
are smooth from one iteration to the next; therefore, this method can avoid
the notorious zigzagging difficulties associated with the subgradient method
and leads to fast convergence. The modified surrogate gradient method is
developed in Section 5, and it can provide better directions than the surrogate
gradient method for problem of small size. Testing results on a simple non-
linear programming problem and several realistic job shop scheduling prob-
lems, provided in Section 6, show that the surrogate methods present
significant improvements over the frequently used subgradient method.

2. Problem Description and Formulation

2.1. Integer Programming Problem. The separable integer program-
ming problem under consideration can be described as follows:

Here, x = [ x 1 , x2,. . . , x I]
T is an n X 1 decision variable with n = ZI

i=1; ni; x'
and x" are the lower and upper bounds of x; and Z is the set of integers.
The m X n matrix A is of the form [ a 1 , a2, ..., a I ] , where ai is an m x ni

matrix, b is an m x 1 vector, and the objectives {Ji(xi)} are possibly nonlinear
functions.

2.2. Lagrangian Relaxation. The m constraints Ax<b couple the deci-
sion variables xi, thus making (IP) difficult to solve. The Lagrangian relaxa-
tion of (IP) is given by

Here, A is an m x l vector of Lagrangian multipliers and the function L(L)
is the Lagrangian dual. Since the decision variables are decoupled through
the introduction of the multipliers A, (3) can be written in terms of individual
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subproblems as follows:

The minimization in (3) is easier than in (IP), since each subproblem can
be solved independently.

The Lagrangian dual problem is (Ref. 6)

and the optimal solution is denoted as L* = L(L*).

3. Subgradient and Surrogate Subgradient

Since problem (LD) in (6) is polyhedron concave and nondifferentiable,
the Subgradient method is commonly used to maximize the dual function.
In the Subgradient method, the multipliers are updated by

Here, g k = g ( L k ) is the Subgradient of L(L) at Lk and is given by

where

The stepsize Sk satisfies

Although the Subgradient method is not an ascending algorithm, the sub-
gradient satisfies (Ref. 7)

Thus, the subgradient direction is in acute angle with the direction toward
L*, and the distance between the current multipliers and the optimal A* can
be decreased step by step.

According to (8) and (9), the subgradient method requires the solution
of all the subproblems to obtain a search direction, and this can be very
time consuming especially for problems of large size. Therefore, it is desirable
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to obtain a proper direction with less effort. The main idea of the surrogate
subgradient method is to obtain a proper surrogate subgradient direction
without solving all the subproblems.

As an extension of the dual in (3), the surrogate dual is introduced,6

Compared with the dual, the surrogate dual does not require the solution
of all subproblems. The corresponding surrogate subgradient is defined as

It will be shown in the following proposition that, when the surrogate dual
is less than the optimal dual L*, the surrogate subgradient is in acute angle
with the direction toward L*; therefore it is a proper direction.

Proposition 3.1. Given the current point (Lk, xk), if the surrogate dual
is less than the optimal dual, i.e.,

then the surrogate subgradient satisfies

Proof. From the definition of the surrogate dual in (12),

Since minimization is performed in deriving L(L) in (3), the surrogate dual
is always greater than or equal to the dual,

The above is also true at (L*, xk), i.e.,

From (16), this can be written as

6This is different from the surrogate dual used in branch-and-bound methods (Ref. 8).



704 JOTA: VOL. 100, NO. 3, MARCH 1999

Given (14) and (13), this yields

and (15) is proved.

4. Surrogate Subgradient Method

Based on Proposition 3.1, if an appropriate optimization is performed
so that (14) is satisfied from one iteration to the next, then (15) is guaranteed.
This implies that the algorithm can find a proper direction, and the distance
between the current multipliers and the optimal A* can be decreased step
by step. This idea leads to the following surrogate subgradient method where
only an approximate optimization is required for subproblems to obtain a
surrogate subgradient. The basic steps in the surrogate subgradient method
are described below.

Step 0. Initialize. Assume L0 and solve the subproblems to obtain x0,
i.e.,

Thus, the surrogate dual is set to the dual and the surrogate
subgradient is the subgradient, i.e.,

Step 1. Update the Multipliers. Given the current point (Lk, xk) at
the kth iteration, the surrogate dual is

with

The Lagrangian multipliers are updated according to

where gk is the surrogate subgradient given by
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with stepsize Sk satisfying

Step 2. Perform an Approximate Optimization. Given LK+1, perform
an approximate optimization to obtain xk + 1 such that xK+1

satisfies

If such an xk + 1 cannot be obtained, set xk + 1 = xk.

Step 3. Check the Stopping Criteria. If the criteria given by

are met, then stop; otherwise, go to Step 1. Stopping criteria
can also be based on CPU time, number of iterations, and so
on.

It will be shown next that (14) is always satisfied for the surrogate
subgradient method.

Proposition 4.1. For the surrogate subgradient method, the surrogate
dual is always less than the optimal dual, i.e.,

Proof. This proposition is proved by induction. For iteration 0, the
surrogate dual is initialized to be the dual, and (14) holds. For iteration k,
if (14) holds, then (28) and (23) yield

According to (25) and (26), the right-hand side of (32) can be rewritten as

Considering the range of stepsize in (27), the right side of (33) satisfies

Thus, one can see that (14) holds at iteration k+ 1, and (31) is proved. D

Based on Proposition 3.1 and 4.1, the surrogate subgradient is always
a proper direction. Therefore, we have the following theorem.
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Theorem 4.1. In the surrogate subgradient method, the multipliers
move closer to A* step by step, i.e.,

Proof. From (25),

From (15), this yields

which can be written as

For the range of stepsizes in (27), the bracket term in (38) is greater than
zero. Thus, (35) is proved. D

It can be easily shown that, if Lk = Lk+1 and xk = xk+1, then

and xk is the minimum solution of the subproblems given Lk. Thus, (Lk, xk)
is the optimal solution of the dual problem.

The major difference between the surrogate subgradient method and
the subgradient method is that all subproblems are solved in the subgradient
method. In the surrogate subgradient method, however, only an approximate
optimization of the subproblems is needed according to (28). Since there
are many ways to implement an approximate optimization, this method
provides a framework allowing creative variations. In fact, the interleaved
subgradient method that solves one subproblem at a time satisfies (28) and
is a special case of the surrogate subgradient method. Thus, we have the
following theorem.

Theorem 4.2. The interleaved subgradient method is a special case of
the surrogate subgradient method.

Compared with solving all the subproblems, the computational require-
ments for the approximate optimization to satisfy (28) are much smaller.
For example, if there are I subproblems, the effort to obtain a direction for
the interleaved subgradient method is only 1/I of that required for the
subgradient method. The effort will be even less than 1/I if an approximate
optimization is performed for only one subproblem at a time. This is a major
computational saving for problems with many complicated subproblems.
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The effort to obtain a direction is one thing; the quality of the direction
obtained is another thing. Although it is difficult to quantify the quality of
the surrogate subgradient directions, it can be shown that the surrogate
subgradient directions tend to be smooth when there are many subproblems.
Since only one subproblem is solved and all the other solutions are kept the
same, the new direction is changed only partially as compared to the previous
direction. Thus, the surrogate subgradient directions are smooth from one
iteration to the next when I is large, and can avoid the notorious zigzagging
difficulties associated with the subgradient method. For small problem, the
surrogate directions can be improved by using the modified surrogate
subgradient method to be developed next.

5. Modified Surrogate Subgradient Method

The modified gradient method was developed to improve the directions
of the gradient method. In the modified gradient method, a direction is a
linear combination of the current gradient and the direction used at the
previous iteration (Ref. 9). It is proved that the modified direction forms a
smaller (or equal) angle with the direction toward the optimal L* than does
the gradient direction. Based on this idea, the modified surrogate subgradient
method is developed to improve the directions of the surrogate subgradient
method. It is a variation of the surrogate subgradient method with Step 1
changed to the following Step 1'.

Step 1'. Update Multipliers. In the modified surrogate subgradient
method, the multipliers are updated by

where Sk is the stepsize and dk the modified surrogate sub-
gradient. The stepsize satisfies

The modified surrogate subgradient is given by

In (42), gk is the current surrogate subgradient, y is given by

and 3k-1 is the direction applied at the previous iteration.



708 JOTA: VOL. 100, NO. 3, MARCH 1999

For the above modified surrogate subgradient method, Proposition 4.1
and Theorem 4.1 still hold. In addition to convergence, it can be proved that
the modified surrogate subgradient directions are better than the surrogate
subgradient directions.

Theorem 5.1. The modified surrogate subgradient direction dk satisfies

Proof. The proof is similar to the proof presented in Camerini et al.
Ref. 9 and is, therefore, omitted. D

Theorem 5.1 states that the modified surrogate subgradient direction
forms a smaller or equal angle with the direction toward the optimal A*
than does the surrogate subgradient direction.

6. Numerical Testing

Since no special features of integer programming are used in establishing
the surrogate subgradient method and the modified surrogate subgradient
method, these methods can be used to solve general separable linear or
nonlinear programming problems. In this section, a small nonlinear pro-
gramming problem is tested first. The convergence speed and the quality of
the directions of the surrogate methods are compared with those of the
gradient method. These methods are then used to solve several job shop
scheduling problems.

6.1. Nonlinear Programming Example. Consider the following non-
linear programming problem:

This separable problem is solved by Lagrangian relaxation with two multi-
pliers and two subproblems (one decision variable for each subproblem). The
gradient method, the surrogate gradient method, and the modified surrogate
gradient method are used to maximize the Lagrangian dual. In the surrogate
methods, only one decision variable is optimized to obtain a direction. The
multipliers L1 and L2 are updated 15 iterations in the gradient method and
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Fig. 1. Trajectories of multipliers by using the gradient method.

30 iterations in the surrogate methods (each subproblem is solved 15 times
as in the gradient method). The trajectories of L1 and L2 for the three methods
are shown in Figs. 1-3.

Since not all the subproblems are solved in the surrogate methods,
surrogate directions are easier to obtain than gradient directions. In addition,
as shown in the above figures, the gradient directions often zigzag from one
iteration to the next. In this case, the surrogate gradient directions may in
fact be better directions with less zigzagging, and the modified surrogate
gradient directions may even further reduce zigzagging.

6.2. Job Shop Scheduling Example. The following integer program-
ming example demonstrates how the surrogate subgradient method can be
used to solve a job shop scheduling problem. In the basic job shop formula-
tion, each part has its due date, priority (reflected by a weighting factor),

Fig. 2. Trajectories or multipliers by using the surrogate gradient method.
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Fig. 3. Trajectories of multipliers by using the modified surrogate gradient method.

and requires a series of operations for completion. Each operation is to be
performed on a machine of a specified type for a given period of time. The
processing may start only after its preceding operations have been com-
pleted, satisfying the operation precedence constraint. Furthermore, the
number of operations on a machine type at any time may not exceed the
number of machines available, satisfying the machine capacity constraints.
Through appropriate selection of decision variables, these constraints are
formulated in separable forms (Refs. 4 and 10). The goals of on-time deliver-
ies and low inventory are modeled as penalties on delivery tardiness and on
releasing raw materials too early. The problem is to determine the operation
beginning times so that the objective function is minimized. The key feature
of this formulation is its separability.

For this NP-hard problem, that has prohibitive computational require-
ments to obtain an optimal solution, a combined Lagrangian relaxation
and heuristic approach is used here to obtain near-optimal solutions with
quantifiable quality. In the method, hard machine capacity constraints are
first relaxed by introduction of a cost for using a machine. The cost at a
particular time slot is the Lagrange multiplier, or the shadow price of the
machine type in the economics literature. Since the original problem is separ-
able, the relaxed problem can be decomposed into many smaller subprob-
lems, one for each part. Given the set of multipliers or prices, each part is
scheduled on the required machine so as to minimize its cost under opera-
tions precedence constraints. These subproblems are not NP-hard and can
be solved efficiently by using dynamic programming. The multipliers are
then adjusted iteratively, and the dual function is maximized. At the termina-
tion of such updating iterations, simple heuristics are applied to adjust the
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subproblem solutions to remove any infeasibility and form a feasible sched-
ule satisfying all the constraints. Furthermore, the dual cost is a lower bound
on the optimal cost; therefore, the quality of the solutions can be evaluated
by comparing its cost with the maximum of the dual costs obtained.

For practical job shop scheduling problems, the size can be very large,
and the solution of the subproblems by dynamic programming takes the
majority of the computation time. For example, it takes more than 70% of
the total CPU time to solve the subproblems by using dynamic programming
for a problem with 82 parts (Ref. 4). It is also reported that the subgradient
method tends to zigzag and leads to slow convergence. Thus, it takes a long
time to solve a large problem by using the subgradient method, and a better
algorithm is required to improve the overall performance.

Both the subgradient method (SG) and the surrogate subgradient
method (SSG) are used here to maximize the dual function. In the surrogate
subgradient method, the interleaved idea is used and only one subproblem
is solved in each iteration to obtain the surrogate subgradient direction. The
algorithm is stopped if the CPU time is more than 20 min or the duality
gap is less than 10%. Testing results are presented in Table 1.

The testing results show a significant performance gain by using the
surrogate subgradient method. This is because a surrogate subgradient
direction can be obtained without solving all the subproblems; thus, much
effort is saved to get a direction for problems of large size. Furthermore,
when the subgradient direction is zigzagging, the surrogate subgradient
direction is smoother and may yield a better result.

Table 1 . Comparison of SSG and SG algorithms for job shop scheduling problems.

Primal dimensions
MT/M/P/O/Da

11/16/18/159/1287

8/14/82/752/1480

22/87/100/633/1628

Optimization
method

SSG
SG

SSG
SG

SSG
SG

Dual
cost*

12895
12929

33375
31118

106147
102525

Primal
cost

14236
14222

37413
37653

117081
117768

Duality
gap (%)

10.4
10.0

12.1
21.0

10.3
14.9

CPU
timec

89
321

1200
1200

667
1200

aThe notation MT/M/P/O/D provides the number of machine types (MT), number of
machines (M), number of parts (P), number of operations (O), and number of Lagrangian
multipliers (D).

bIn order to compare with SG, all the subproblems are solved optimally and a true dual is
obtained at the last iteration of SSG. Based on the testing results, the surrogate dual is not
far from the dual.

cCPU time is in seconds on a SUN Ultral workstation.



7. Conclusions

The key idea of the surrogate gradient method is that an approximate
optimization can be used to obtain a proper surrogate gradient direction.
This method includes the interleaved subgradient method as a special case
and provides a framework allowing creative variations. Compared with
methods such as the conjugate method or bundle method, which take much
effort to find a better direction, the surrogate gradient method saves effort
in obtaining a direction and provides a new approach for speeding up com-
putation. The directions obtained are also smooth for large problems, lead-
ing to significant performance gain.
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