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Abstract. Bundle methods have been used frequently to solve non-
smooth optimization problems. In these methods, subgradient direc-
tions from past iterations are accumulated in a bundle, and a trial
direction is obtained by performing quadratic programming based on
the information contained in the bundle. A line search is then performed
along the trial direction, generating a serious step if the function value
is improved by ( or a null step otherwise. Bundle methods have been
used to maximize the nonsmooth dual function in Lagrangian relax-
ation for integer optimization problems, where the subgradients are
obtained by minimizing the performance index of the relaxed problem.
This paper improves bundle methods by making good use of near-mini-
mum solutions that are obtained while solving the relaxed problem. The
bundle information is thus enriched, leading to better search directions
and less number of null steps. Furthermore, a simplified bundle method
is developed, where a fuzzy rule is used to combine linearly directions
from near-minimum solutions, replacing quadratic programming and
line search. When the simplified bundle method is specialized to an
important class of problems where the relaxed problem can be solved
by using dynamic programming, fuzzy dynamic programming is devel-
oped to obtain efficiently near-optimal solutions and their weights for
the linear combination. This method is then applied to job shop sched-
uling problems, leading to better performance than previously reported
in the literature.
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1. Introduction

Integer optimization problems are generally difficult to solve because
of their inherent combinatorial complexity, and Lagrangian relaxation has
been a powerful approach to obtain near-optimal solutions. In Lagrangian
relaxation, certain constraints are first relaxed through the introduction of
Lagrangian multipliers. The relaxed problem is easier than the original one
and can be solved efficiently if it belongs to Class P. Multipliers are then
iteratively adjusted based on the level of constraint violation. The dual func-
tion is maximized in this multiplier updating process, and the values of the
dual function serve as lower bounds to the optimal feasible cost (Ref. 1).
At the termination of such updating iterations, simple heuristics are applied
to adjust the relaxed problem solutions to form a feasible result satisfying
all the constraints.

A major challenge in Lagrangian relaxation is to maximize effectively
the dual function, which is concave, piecewise linear, and consists of many
facets. The subgradient method is commonly used, where a subgradient can
be obtained by minimizing the relaxed problem, and the multipliers are
updated along this direction (Ref. 2). However, the multipliers often zigzag
across ridges (intersections of two or more facets) of the dual function,
and require many iterations to reach an optimum. Recently, the surrogate
subgradient method (SSG) was developed, where only an approximate opti-
mization of the performance index of the relaxed problem is needed to
obtain a proper surrogate subgradient direction to update the multipliers
(Refs. 3–4). Compared with methods that take effort to find good direc-
tions, this method obtains directions with much less effort and provides a
new approach for solving large problems.

Bundle methods represent a quite different approach for nonsmooth
optimization, and aim to find an (-ascent direction along which a function
value can increase by at least ( (Ref. 5). In these methods, subgradients
from past iterations are accumulated in a bundle, and a trial direction is
obtained by quadratic programming based on the bundle information. Line
search is then performed along the trial direction, generating a serious step
if the function value is improved by ( or a null step otherwise. Since a
serious step is generated at the cost of quadratic programming and line
search, with the possibility of having multiple null steps in-between two
serious steps, much computation is required.

The Lagrangian relaxation framework and the methods for solving the
nonsmooth dual problem as discussed above will be presented briefly in
Section 2. Based on the insights obtained from these methods, (-minimum
solutions of the relaxed problem and (-surrogate subgradients are intro-
duced, and the improved bundle method is developed in Section 3. The key
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idea is to make good use of all the information obtained during
the minimization of the performance index of the relaxed problem, not just
the minimum solution but also near-minimum solutions. The bundle infor-
mation is thus enriched, leading to better search directions and less number
of null steps.

To reduce the computational requirements in solving large problems, a
simplified bundle method is developed in Section 4 to decrease the distance
to the optimal solution instead of requiring the function value to be
increased by (. In this way, the quadratic programming and line search
required by traditional bundle methods are no longer necessary, and a fuzzy
rule is established to combine linearly the subgradients associated with the
near-optimal solutions of the relaxed problem. When the simplified bundle
method is specialized to an important class of problems where the relaxed
problem can be solved by using dynamic programming (DP), fuzzy dynamic
programming (FZDP) is developed to obtain efficiently near-optimal solu-
tions and their weights for the linear combination. The convergence of the
method is proved, and the testing result presented in Section 5 on a bench-
mark problem shows that the simplified bundle method generates a similar
result but with less computational requirements as compared to results pre-
viously obtained by using traditional bundle methods. Fuzzy dynamic pro-
gramming is then applied to job shop scheduling problems in Section 6,
where the complexity of FZDP can be reduced further by exploiting the
special structure of the relaxed problem. Testing results show that the
simplified bundle�FZDP method leads to better performance as compared
with result previously reported in the literature. This method is generic for
separable integer or mixed integer optimization problems beyond job shop
scheduling, and provides a powerful approach to solve large-scale dual
problems within the Lagrangian relaxation framework.

2. Problem Description and Formulation

The Lagrangian relaxation framework and several methods to solve the
dual problem are introduced in this section.

2.1. Lagrangian Relaxation. An integer optimization problem can be
described as follows:

(IP) min
x

J(x), (1)

s.t. g(x)⁄0 and x∈X. (2)
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Here, x is an nB1 decision variable belonging to the integer space XGZn.
The constraint g(x) is an mB1 function, and the cost J(x) is a scalar func-
tion. In the Lagrangian relaxation approach, the constraints g(x)⁄0 are
relaxed by introducing the mB1 multiplier vector λ and the Lagrangian
function

L̃(x, λ ) ≡ J(x)CλTg(x). (3)

The relaxed problem is to minimize L̃(x, λ ) over X, resulting in the concave
nonsmooth dual function L(λ ),

L(λ ) ≡min
x∈X

L̃(x, λ ). (4)

The dual problem is to maximize the dual function (Ref. 6),

max
λ¤0

L(λ ), (5)

with the optimal dual solution denoted by λ* and the optimal dual value
denoted by L*GL(λ*). In most cases, the optimization in (5) is performed
iteratively, and at the termination of such iterations, a simple heuristics is
applied to adjust the relaxed problem solutions so as to form a feasible
result satisfying all the constraints.

2.2. Methods for the Dual Problem.

Subgradient Method. Since the dual problem is nondifferentiable for
integer optimization problems, the subgradient method is commonly used
to maximize the dual function. In order to get a subgradient direction,
a minimum solution for the relaxed problem is obtained,

xkGarg min
x∈X

L̃(λ k, x), (6)

where k is the iteration index. A subgradient is then calculated based on
this minimum solution,

gkGg(xk). (7)

In the subgradient method, the multipliers are updated along the subgradi-
ent direction,

λ kC1Gλ kCskgk, (8)

where the stepsize sk satisfies

0FskF2 (L*ALk)���gk��2. (9)

The method requires the minimization of the performance index of the
relaxed problem to obtain a subgradient and will reduce the distance to the
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optimal point step-by-step (Ref. 7). However, it may suffer from the diffi-
culty of zigzagging across ridges of the dual function (Ref. 2).

Surrogate Subgradient Method. To overcome the above-mentioned
difficulties and to solve more efficiently large integer optimization problems,
the surrogate subgradient method was recently developed. It provides a new
approach to speed up convergence by reducing the effort to obtain a direc-
tion. Instead of minimizing the performance index of the relaxed problem to
obtain an optimal solution, only an approximate minimization is performed
where the new iterate x(λ k) should satisfy the following condition for the
given set of multipliers λk (Ref. 3):

x(λ k)∈{x�L̃(λ k, x)FL̃(λ k, xkA1), x∈X}. (10)

The surrogate subgradient direction g̃ k is calculated based on an approxi-
mate solution xk,

g̃ kGg(xk), (11)

and the multipliers are updated along the surrogate subgradient direction.
It has been proved that the distance to the optimal point is reduced step-
by-step under the following stepsize rule:

0FskF(L*AL̃ k)���g̃ k��2. (12)

Note that the upper bound in (12) for the surrogate subgradient method is
half of the bound in (9) for the gradient method, indicating that, without
the accurate xk, the stepsizing rule should be more conservative. Neverthe-
less, with the approximate minimization employed in the relaxed problem,
the computational complexity to obtain a direction can be much reduced.
For example, when the relaxed problem can be decomposed into N subprob-
lems, only one subproblem needs to be solved to satisfy (10). This special-
ized version is the interleaved idea of Ref. 4, and the effort to obtain a
direction is 1�N of that required by a traditional subgradient method.

Bundle Method. The bundle method has been a powerful approach
for maximizing nonsmooth concave functions (Ref. 5). It employs a concept
called the (-subdifferential, defined as

∂(L(λ ) ≡ {g∈Rm�L(λ̄ )⁄L(λ )C〈g, λ̄Aλ〉C(, ∀λ̄ ∈Rm}. (13)

Elements in ∂(L(λ ) are called (-subgradients. Correspondingly, the (-direc-
tional derivative along the direction d at λ is defined as

L′( (λ , d ) ≡ sup
tH0

[L(λCtd )AL(λ )A(]� t. (14)
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It has been shown that

L′( (λ , d )G inf
g∈∂(L(λ )

g′d. (15)

From (15), if a direction d can be found such that L′( (λ , d )H0, then the
dual cost can be increased by at least (. Therefore, it is desirable to select a
search direction d*such that the directional derivative is maximized, i.e.,

d*Garg {max
��d��G1

L′( (λ , d )}

Garg {max
��d��G1

inf
g∈∂(L(λ )

g′d}

Garg { inf
g∈∂(L(λ )

max
��d��G1

g′d}

Garg { inf
g∈∂(L(λ )

��g��}. (16)

Therefore, this d* is the (-subgradient with the smallest norm.
Generally, since the (-subdifferential is very difficult to obtain, the idea

of the bundle method is to accumulate subgradients of the past iterates in
a bundle

BG{g1 , g2 , . . . , gb}

and to approximate ∂(L(λ ) by the convex hull of the bundle elements,

PbG�g �gG ∑
b

iG1

α igi , gi∈B, 0⁄α i , ∑
b

iG1

α iG1, ∑
b

iG1

α i ei⁄(� , (17)

where ei is the linearization error for element i,

eiGL(λ i)C〈gi , λAλ i 〉AL(λ ). (18)

A direction in Pb that has the smallest norm is obtained by using quadratic
programming, and a line search is then performed along this trial direction.
If a point in the trial direction leads to an (-ascent of the function value, λk

is updated to the new point, resulting in a serious step. If Pb is not adequate
enough to approximate ∂(L(λ ), the trial direction may not be an (-ascent
direction. In this case, λk is not updated and the new point is added to the
bundle, resulting in a null step. Null steps generate more subgradients near
λk so that Pb becomes closer to ∂(L(λ ); however, several null steps may be
required before a serious step is obtained.

The approach described above is sometimes referred to as the dual
form of the bundle methods. There are also primal forms of the bundle
methods derived from stabilized cutting-plane methods (Ref. 8). Bundle
methods have been used to maximize nonsmooth Lagrangian dual functions
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so as to provide better directions than those of the subgradient method
(Ref. 9). The quadratic programming and line search involved, however,
require much computation. Recently, second-order information was
explored for bundle methods so as to improve the convergence rate at the
cost of even more computation (Ref. 10).

3. Improved Bundle Methods

Bundle methods are developed based on the assumption that one
subgradient can be obtained for a given λ . When this method is applied to
maximize the dual function within the Lagrangian relaxation framework,
the dual value and the subgradient are obtained by minimizing the perform-
ance index of the relaxed problem (6). However, solving the relaxed problem
is problem dependent and can be quite time consuming. For example, it has
been reported that around 80% of the total CPU time is spent on solving
the relaxed problem in job shop scheduling (Ref. 11). In addition, multiple
null steps may be needed to accumulate neighborhood subgradients if Pb is
not a good approximation of ∂(L(λ ). Since the relaxed problem must be
solved at least once for every null step, it is desirable to approximate
∂(L(λ ) with as small number of null steps as possible. Within the Lagrang-
ian relaxation framework, it will be shown that near-optimal solutions of
the relaxed problem contain valuable information, which can be used to
improve the approximation of ∂(L(λ ), thereby reducing the number of null
steps needed.

To be precise, define the set of (-optimal solutions for the relaxed prob-
lem as

XZ (λ , () ≡ {xi �L̃(λ , xi)AL(λ )⁄(, xi∈Zn}, (19)

where xi is an (-optimal solution. Usually, these (-optimal solutions are
byproducts when the relaxed problem is solved and can be obtained without
much effort. Accordingly, the (-surrogate subdifferential is defined as

∂L̃( (λ ) ≡ �∑
i

α ig(xi) �xi∈XZ (λ , (), and α iH0, ∑
i

α iG1� . (20)

In the following theorem, it will be shown that (-surrogate subgradients
belong to (-subdifferentials.

Theorem 3.1. Any (-surrogate subgradient belongs to the (-subdiffer-
ential, i.e.,

∂L̃( (λ ) ⊂∂(L(λ ). (21)
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Proof. Based on the definition of (19), an (-optimal solution xi

satisfies

L̃(λ , xi)AL(λ )⁄(. (22)

From the definition of the dual function in (4), we have that, for any λ̄ ,

L(λ̄ )Gmin
x∈Zn

{J(x)Cλ̄ Tg(x)}⁄J(xi)Cλ̄ Tg(xi). (23)

From the definition of the relaxed problem in (3), we have

L̃(λ , xi)GJ(xi)CλTg(xi)GJ(xi)Cλ̄ Tg(xi)A(λ̄Aλ )Tg(xi), (24)

which can be rewritten as

J(xi)Cλ̄ Tg(xi)GL̃(λ , xi)C(λ̄Aλ )Tg(xi). (25)

Combining (22), (23), (25), we have

L(λ̄ )⁄L̃(λ , xi)C(λ̄Aλ )Tg(xi)⁄L(λ )C(λ̄Aλ )Tg(xi)C(. (26)

Thus, the direction g(xi) related to an (-optimal solution xi satisfies

L(λ̄ )⁄L(λ )C〈g(xi), λ̄Aλ〉C(, ∀λ̄ . (27)

Based on the definition of ∂(L(λ ) in (13),

g(xi)∈∂(L(λ );

consequently,

gG∑
i

α ig(xi)∈∂L( (λ ). �

Theorem 3.1 states that (-optimal solutions provide valuable infor-
mation and that the related (-surrogate subgradients belong to ∂(L(λ ). Since
the bundle method uses Pb to approximate ∂(L(λ ), ∂L̃( (λ ) can be added to
Pb to obtain a better approximation. In fact, for convex problems with real
decision variables (i.e., x∈Rn as opposed to x∈Zn) and linear constraints,
it can be proved that Pb itself is contained in ∂L̃( (λ ).

Theorem 3.2. For a convex problem with real decision variables and
linear constraints,

Pb⊂∂L̃( (λ ). (28)

Proof. From the definition of Pb in (17), given any g∈Pb , we have

gG ∑
b

iG1

α igi , ∑
b

iG1

α iG1, (29)

∑
b

iG1

α i ei⁄(. (30)
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For each bundle element gi , there is a corresponding λ i , and the
associated minimum solution xi satisfies

giGg(xi), (31)

L(λ i)GJ(xi)C〈gi , λ i 〉. (32)

According to (18), we have

eiGL(λ i)C〈gi , λAλ i 〉AL(λ ). (33)

Combining (32) and (33), we have

eiGJ(xi)C〈gi , λ i 〉C〈gi , λAλ i 〉AL(λ )

GJ(xi)C〈gi , λ〉AL(λ ). (34)

This can be rewritten as

J(xi)C〈gi , λ〉GL(λ )Cei . (35)

Since J(x) is convex and g(x) is linear, the following is true for ∑i α ixi :

L̃�∑
i

α ixi , λ�GJ�∑
i

α ixi�Cg�∑
i

α ixi�
T

λ

⁄∑
i

α iJ(xi)C�∑
i

α igi , λ� . (36)

Combined with (35) and (30), we have

L̃�∑
i

α ixi , λ�⁄∑
i

α i (J(xi)C〈gi , λ〉)G∑
i

α i (L(λ )Cei)⁄L(λ )C(. (37)

For the case with real decision variables, the set of (-optimal solution is
defined as

XR (λ , () ≡ {x�L̃(λ , x)AL(λ )⁄(, x∈Rn}, (38)

and the corresponding (-surrogate subdifferential is

∂L̃( (λ ) ≡ {g(x),∀x∈XR (λ , ()}. (39)

From (37),

∑
i

α ixi∈XR (λ , (), gG∑
i

α igiGg�∑
i

α ixi�∈∂L̃( (λ );

therefore, (28) is proved. �
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Figure 1. Relationship among bundle Pb , (-surrogate subdifferential ∂L̃( (λ ), and (-subdiffer-
ential ∂L( (λ ).

From the above theorems, the relationship among the bundle Pb , (-
surrogate subdifferential ∂L̃( (λ ), and (-subdifferential ∂L( (λ ) is summarized
in Fig. 1. Since it is not guaranteed that

∑
i

α ixi∈XZ (λ , (),

Theorem 3.2 is not true for general integer optimization problems.
For integer optimization, the dual function is a piecewise linear concave

function with many facets, and each facet corresponds to a solution of the
relaxed problem. A near-minimum solution for a given λk is associated with
a facet that is close to the facet corresponding to the minimum solution as
illustrated in Fig. 2. In this figure, x3 is the minimum solution given λk and
x2 is a near-minimum solution. Their corresponding facets are close to each
other around λk, and the gradient associated with x2 belongs to ∂L̃( (λ k).

When Pb is not a good approximation of ∂L( (λ ), the bundle methods
accumulate subgradients from nearby facets with several null steps. Since
most neighborhood subgradients are in fact already contained in ∂L̃( (λ ),
some null steps may not be necessary if the information in ∂L̃( (λ ) is utilized
fully. Therefore, by combining ∂L̃( (λ ) with Pb , the bundle method can be
enriched, leading to better trial directions and less number of null steps.

Figure 2. Near-minimum solution and nearby intersecting facet.
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4. Simplified Bundle Method

4.1. Relaxed Convergence Condition. Compared with traditional
bundle methods, the improved bundle method provides better directions by
enriching the bundle with (-surrogate subdifferential. Quadratic program-
ming and line search, however, are still required to guarantee the algorithm
convergence. This is because both methods try to improve the objective
function by at least ( for each serious step. Instead of improving the func-
tion value, another approach is to reduce the distance between the current
iterate to an optimal solution step-by-step. It will be shown in this section
that the convergence conditions for such an algorithm will be much relaxed.

Given the current iterate λ , define the optimal direction to be the direc-
tion emanating from λ to λ*, i.e., g*(λ ) ≡ λ*Aλ . We have the following
theorem.

Theorem 4.1. Any direction g∈Pb or g∈∂L̃( (λ ) is at an acute angle
with the optimal direction if ( is sufficiently small; i.e.,

0F[L*AL (λ )]�2FgT(λ*Aλ ), (40)

if

(F[L*AL (λ )]�2. (41)

Proof. For any g∈Pb ,

gG ∑
b

iG1

α igi .

From (35), within the proof of Theorem 3.2, we have

L̃(λ , xi)GJ(xi)C〈gi , λ〉GL(λ )Cei , (42)

where xi is the minimum solution for λ i associated with the bundle element
gi. Since a minimization is performed in deriving L(λ ), L̃(λ , xi) is greater
than or equal to the dual; i.e.,

L (λ )⁄L̃(λ , xi), ∀xi and λ . (43)

The above is also true at λ*, i.e.,

L*GL (λ*)⁄L̃(λ*, xi). (44)

Then, from (42), we have

L*AL (λ )AeiGL*AL̃(λ , xi)⁄L̃(λ*, xi)AL̃(λ , xi), (45)
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which from (3) can be written as

L*AL (λ )Aei⁄g ( xi)
T(λ*Aλ ). (46)

Combining (30), (41), (46) one obtains

0F[L*AL (λ )]�2FL*AL (λ )A(

F∑
i

α i(L*AL (λ )Aei)

F�∑
i

α igi�
T

(λ*Aλ ). (47)

Equation (40) is thus proved for g∈Pb.
For any g∈∂L̃( (λ ),

gG∑
i

α ig ( xi),

where xi is an (-optimal solution satisfying

L̃(λ , xi)AL(λ )⁄(. (48)

Given (39) and (41), we have

L̃(λ , xi)⁄(CL(λ )〈[L*AL(λ )]�2CL (λ )G[L*CL (λ )]�2. (49)

From (41), (49), (4), we have

0F[L*AL (λ )]�2〈L*AL̃(λ , xi)⁄L̃(λ*, xi)AL̃(λ , xi), (50)

which can be rewritten as

0F[L*AL (λ )]�2⁄g(xi)
T(λ*Aλ ); (51)

therefore, (40) is proved for g∈∂L̃( (λ ). �

Theorem 4.1 states that any direction g∈Pb or g∈∂L̃( (λ ) is at an acute
angle with the direction pointing to λ*, if ( is sufficiently small as illustrated
in Fig. 3. In the following, it will be shown that the distance to the optimal
λ* can be reduced step-by-step.

Figure 3. Surrogate subgradient forming an acute angle with the optimal direction.
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Theorem 4.2. If the multipliers are updated as follows:

λ kC1Gλ kCskgk, (52)

with

gk∈∂L̃( (λ k) or gk∈Pb, (53a)

and if

0FskF(L*AL (λ k))���gk��2, (53b)

then the multipliers move closer to an optimal λ* step-by-step; i.e.,

��λ*Aλ kC1��F��λ*Aλ k��, for all k . (54)

Proof. From (52),

��λ*Aλ kC1��2G��λ*Aλ k��2A2sk(λ*Aλ k)TgkC(sk)2��gk��2. (55)

Combining with (40), the above yields [for brevity, we set Lk ≡L(λ k)]

��λ*Aλ kC1��2⁄ ��λ*Aλ k��2Ask(L*ALk)C(sk)2��gk��2. (56)

It can be rewritten as

��λ*Aλ kC1��2⁄ ��λ*Aλ k��2Ask[(L*ALk)Ask��gk��2]. (57)

For the range of stepsizes in (53), the term in the pair of brackets is greater
than zero; thus, (54) is proved. �

4.2. Simplified Bundle Method. Similar to the convergence proof of
subgradient methods, the above theorems demonstrate that quadratic pro-
gramming and line search are not necessary to guarantee algorithm conver-
gence. Therefore, it is possible to develop simpler and more flexible
algorithms. For example, we can use the stepsizing rule (53) instead of the
line search. Furthermore, instead of obtaining the direction with the mini-
mum norm by using quadratic programming, it will be much easier to get
a direction with a small norm by using some sensible rules. In fact, any
direction g∈Pb or g∈∂L̃( (λ ) is eligible. One intuitively appealing idea is to
form a fuzzy set of near-optimal solutions and define the membership ᾱ i of
a near-optimal solution xi to be the closeness of L̃(xi , λ ) to L(λ ), e.g.,

ᾱ i ≡ [L(λ )C(AL̃(xi , λ )]�(, with xi∈XZ (λ , (), (58a)

ᾱ i ≡ 0, otherwise. (58b)

A fuzzy gradient is then obtained by combining linearly the gradients of all
the elements in the fuzzy set, with the weight of an element equal to its
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normalized fuzzy membership, i.e.,

gG∑
i

α ig(xi), with α i ≡ ᾱ i�∑
i

ᾱ i . (59)

Combining the ideas obtained in Sections 3 and 4, a simplified bundle
method can be constructed. In this method, the directions ∂L̃( (λ ) from the
near-optimal solutions form the bundle, and a simple fuzzy rule such as
(59) is used to obtain a search direction. For simplicity of computation,
the stepsizing rule (53) is applied instead of a line search to update the
multipliers.

4.3. Fuzzy Dynamic Programming. The above simplified bundle
method provides a framework to utilize (-optimal solutions of the relaxed
problem, assuming that these solutions are available. In certain cases, it may
not be easy to obtain (-optimal solutions if the relaxed problem is compli-
cated. In the following, we will present how to implement the fuzzy idea for
an important class of problems where the relaxed problem can be solved by
using dynamic programming (Ref. 12). This is done by exploiting the closed-
loop nature of DP solutions where near-optimal solutions are obtainable
without much additional effort than that needed for obtaining an optimal
solution. To be precise, the standard DP is first introduced.

Dynamic Programming. Suppose that the relaxed problem is a dis-
crete-time and discrete-state optimal control problem described by

x{t}C1Gft (xt , ut), for tG0, . . . , TA1,

with the initial state x0 given. The objective function to be minimized is

LGgT (xT)C ∑
TA1

tG0

gt (xt , ut).

In the above, t is the stage or time index, xt the state, and ut the control
that governs the state transition; gt (xt , ut) is the stagewise cost and gT (xT)
is the terminal cost. The structure of such a problem is illustrated in Fig. 4,
where the optimal states are represented by gray nodes and the optimal
controls are marked with weight 1.

A standard backward DP begins at the last stage with the terminal
cost VT (xT)GgT (xT) computed. It then moves backward to the previous
stage. For a given state, the cost-to-go function for each possible control is
calculated as

Ṽt (xt , ut)Ggt , (xt , ut)CVtC1( ft , (xt , ut)), (60)
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Figure 4. Structure of dynamic programming.

where the cost-to-go function Ṽt (xt , ut) is the sum of the stagewise cost and
the associated minimum cost-to-go starting from the next stage. The mini-
mum cost-to-go function Vt (xt) is then obtained by minimizing Ṽt (xt , ut)
over the set of all possible controls Ut (xt), i.e.,

Vt (xt)G min
ut∈Ut (xt)

Ṽt (xt , ut)

G min
ut∈Ut (xt)

{gt (xt , ut)CVtC1( ft (xt , ut))}. (61)

The backward calculation proceeds from the last stage to the first stage, and
the minimum cost-to-go at the first stage for the given initial state x0 is the
minimum cost. A forward sweep is then used to find the optimal path from
the first stage for the given x0 to the last stage as follows:

u*t (xt)Garg min
ut∈Ut (xt)

Ṽt (xt , ut), tG0, . . . , TA1, (62)

x*tC1Gft (x*t , u*t (x*t )), with x*0 Gx0 , tG0, . . . , TA1. (63)

Based on u*0 (x0) for the given x0 , it proceeds to the state at the next stage.
This process continues until the last stage is reached.

Fuzzy Dynamic Programming. Usually, only one optimal path is
obtained in DP, and these x*t and u*t are used to calculate a subgradient.
However, in general, there could be many near-optimal or optimal paths,
each associated with an (-minimum solution or a minimum solution. In view
of the closed-loop nature of DP, many (-optimal paths can be obtained as
byproducts when the DP procedure is performed without much additional
efforts. Fuzzy dynamic programming (FZDP) is thus to assign weights to
states and controls associated with these (-optimal paths according to fuzzy
rules, and to compute the corresponding fuzzy gradient to utilize fully the
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Figure 5. Structure of fuzzy dynamic programming.

information contained in near-optimal solutions. FZDP can be imple-
mented efficiently by properly modifying the DP procedure as illustrated in
Fig. 5, where proper weights are assigned to near-optimal controls.

In FZDP, the backward calculation of the minimum costs-to-go is the
same as that in DP. The forward sweep begins at the initial state with the
state weight w(x0)G1. Given a state with a positive weight, all possible
transitions to the next stage are assigned control weights w(xt , ut) following
(58),

w̄(xt , ut)G�[V(xt)C(′AṼ(xt , ut)]�(′, if Ṽ(xt , ut)FV(xt)C(′,
0, otherwise,

(64)

w(xt , ut)Gw̄(xt , ut)	 ∑
Ut (xt)

w̄(xt , ut), tG0, . . . , TA1. (65)

To obtain (-minimum solutions for the relaxed problem, the parameter (′
in (64) is arbitrarily set to be (′G(�T, where ( is equally divided among the
T stages. Given a state weight w(xtA1) at stage tA1 and the associated con-
trol weight w(utA1), the state weight at stage t can be calculated as

w(xt)G∑(w(xtA1 , utA1) · w(xtA1)), (66a)

s.t. xtGftA1(xtA1 , utA1). (66b)

The process then repeats until the terminal stage is reached. Consequently,
states related to near-optimal paths are assigned with state weights {w(xt)}
and controls with control weights {w(xt , ut)}. Such information can be used
to calculate a fuzzy gradient following (59), and an example on job shop
scheduling will be presented in Section 6.

Compared to DP, additional computations are required in the forward
sweep of FZDP. Assuming that there are KS states per stage and there are
KC controls per state, the complexity of the forward sweep in the worst case
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is O(KSKCT ), which is similar to the complexity of the backward calcu-
lation. Since there may be many states with zero weights, the additional
computation is usually insignificant as compared to the time-consuming
backward sweep.

In FZDP, any path with a positive weight is guaranteed to be an (-
optimal solution. However, not all (-optimal solutions are obtained from
the above process in view of the equal division of ( into T parts, one for
each stage. The additional complexity to find all the remaining (-optimal
solutions in DP is nonetheless prohibitive. The key of FZDP is to consider
a significant number of (-optimal solutions and to reasonably assign their
weights in a computationally efficient manner.

4.4. Comparison of Methods. For the simplified bundle method with
fuzzy dynamic programming (SB�FZDP), the relaxed problem is solved by
using FZDP for a given set of multipliers, and a fuzzy gradient is obtained
to be the search direction by considering near-minimum solutions. The dif-
ferences between SB�FZDP and other methods are highlighted in Table 1.

In a subgradient method, a minimum solution is selected with weight
1, and all other solutions are ignored. For the surrogate subgradient
method, only a near-optimal solution obtained by approximate minimiz-
ation is selected with weight 1. The bundle methods obtain a good search
direction by combining the subgradients of many nearby points. However,
the relaxed problem may have to be solved many times to obtain the needed
subgradients for a serious step, and the combination of the individual
subgradients is determined by quadratic programming. Therefore, the com-
putational requirements for bundle methods are high. The improved bundle
method is similar to the bundle methods, except that fewer null steps are

Table 1. Comparison of methods.

Improved
SG SSG Bundle bundle SB�FZDP

Relaxed problem Once FOncea Several FSeveral Once
minimized times timesb

Neighborhood information No No Yes Yes Yes
considered

(-optimal solutions used Ignored Utilized Ignored Utilized Utilized
Line search No No Yes Yes No
Weight assignment N�A N�A QP QP Simple rule
Direction Not good Not good Good Best Good
Complexity Low Lowest Highest High Low

aApproximate minimization is performed once.
bNumber of null steps for the improved bundle method is less than that for the bundle method.
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Figure 6. Complexity comparison of various methods.

required in view of the inclusion of the (-surrogate subgradients. The simpli-
fied bundle method, on the contrary, does not require a line search nor
quadratic programming. It makes good use of the subgradients of near-
optimal solutions, which are generally available when the relaxed problem
is solved, and these directions are combined linearly by using a simple rule.
Computational requirements are thus relatively small. The complexity of
one iteration of the above methods is depicted in the ascending order in
Fig. 6.

However, the overall performance of a method is a tradeoff between
the complexity per iteration versus the number of iterations required.

5. Numerical Testing

In this section, two examples are presented. Example 5.1 is to solve a
simple dual problem to show that the simplified bundle method can reduce
the solution zigzagging. Example 5.2 is a benchmark problem, and the
performance of the simplified bundle method is compared with that of a
traditional bundle method.

Example 5.1. As mentioned earlier, the subgradient directions often
cause the multipliers to zigzag across sharp ridges. However, for the simpli-
fied bundle method since the direction is obtained by a weighted combi-
nation of the gradients of nearby facets, zigzagging is significantly reduced
as illustrated below by maximizing the following piecewise linear dual
function:

L(λ1 , λ2)Gmin{−λ1A3λ2C300,Aλ1Cλ2C1, 2λ1Aλ2C1}.
(67)

The parameter ( for the simplified bundle method is set to be

(G(L*AL)�2,

and

sG(L*AL)�2��g̃��2
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is used following (53). The rules (58) and (59) are applied to obtain a com-
bined direction based on ∂L̃( (λ ). For the subgradient method,

sG(L*AL)�2��g̃��2

is also used. For both methods,

L*G25(11�12)

is assumed to be known within their stepsizing rule formulas.
The multiplier trajectories for the first ten iterations of both methods

are shown in Fig. 7. Compared with the subgradient method, the simplified
bundle method significantly reduces zigzagging. This is because, when the
multipliers are close to a ridge, the search direction of the simplified bundle
method is a combination of the gradients of nearby facets, generating a
much smoother trajectory.

Figure 7. Reduction of solution zigzagging: (a) dual function, (b) trajectory obtained by using
the subgradient method, and (c) trajectory obtained by using the simplified bundle
method.
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Example 5.2. Benchmark Problem. Bundle methods were developed
for general nonsmooth optimization, and many benchmark problems have
been reported in the literature. However, the improved bundle method and
the simplified bundle method are developed within the Lagrangian relax-
ation framework so as to maximize the dual problem, which is a special
class of nonsmooth optimization problems. Nevertheless, the concepts of
near-optimal solutions and (-surrogate subdifferential are generic, and the
results in Sections 3 and 4 can be extended to linear min-max problems such
as

min f (x) ≡min
x

{max ( fi (x): iG1, . . . , I )}, (68)

where {fi (x)} are linear functions. In the literature, the Goffin polyhedral
problem is such a linear min-max benchmark problem,

f (x)GN max {xi : iG1,· · ·N}A ∑
N

iG1

xi . (69)

The problem dimension is NG50, and the optimal cost is f (x*)G0. The
initial point is given as

x0
i GiA(NC1)�2, for iG1, . . . , N,

with cost f (x0)G1225.
It is reported that bundle methods can get to the optimal solution with

51 iterations (34 serious steps and 17 null steps in Ref. 13). The results
obtained by the subgradient method and the simplified bundle method are
summarized in Table 2 for a few selected number of iteration indices. It can
be seen that the performance of the simplified bundle method (SB) is much
better than that of the subgradient method (SG). The performance of SB is
also comparable with those obtained by bundle methods, having a similar
number of iterations or function evaluations. However, the computation
complexity in SB is much reduced as compared to traditional bundle
methods, because neither quadratic programming nor line search is
required.

Table 2. Testing results for the Goffin polyhedral problem.

Iterations 10 20 30 40 50

f (x) SG 980.7 651.8 403.9 327.1 249.1
SB 14.7839933 0.1600545 0.0014129 0.0000353 0.0000029
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6. Job Shop Scheduling with Fuzzy Dynamic Programming

In this section, fuzzy dynamic programming is applied to job shop
scheduling problems.

6.1. Problem Formulation and Solution Methodology. In a job shop,
each part has its due date and weight or priority, and requires a series of
operations for its completion. Each operation is to be performed on a
machine of a specified type for a given period of time. The processing may
start only after its preceding operations have been completed, satisfying the
operation precedence constraint. The number of operations assigned to a
machine type may not exceed the number of machines available at any time,
satisfying the machine capacity constraints. The problem is to determine
the operation beginning times so that the total weighted part earliness and
tardiness penalty is minimized. Through proper selection of the decision
variables, these constraints are formulated in additive forms in Ref. 14.
Unlike the prevalent formulations in the literature, the key feature here is
its separability.

Within the Lagrangian relaxation framework, machine capacity con-
straints are relaxed by using Lagrange multipliers (capacity multipliers). For
a given set of multipliers, the relaxed problem can be decomposed into de-
coupled part subproblems. Each subproblem represents the scheduling of a
part so as to minimize its tardiness and earliness penalties and the costs for
utilizing the machines (reflected by the values of the multipliers for the
required machine types at scheduled time slots).

Each subproblem is a multistage optimization problem, and can be
solved efficiently by using dynamic programming (DP) with polynomial
complexity (Ref. 11). A typical DP structure is shown in Fig. 8. With stages

Figure 8. Dynamic programming for a part subproblem.
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corresponding to operations and states corresponding to operation begin-
ning times, the backward DP algorithm starts with the last stage and com-
putes the tardiness penalties and machine utilization costs. As the algorithm
moves backward, the cumulative costs of the individual states belonging to
a particular stage are computed based on the stagewise costs and the mini-
mal costs-to-go for the succeeding stage, subject to the allowable state tran-
sitions as delineated by the operation precedence constraints. The optimal
subproblem cost is then obtained as the minimum of the cumulative costs
at the first stage, and the optimal beginning times for the individual oper-
ations can be obtained by forward tracing the stages.

Each state node in Fig. 8 represents an operation beginning time and
implies the utilization of a machine of a particular type for a specified period
of time. Based on the optimal beginning times obtained from DP, the
machine utilization by all the operations for each machine type at different
time slots can be calculated. The subgradient is then a long vector of
the difference between machine utilization and machine capacity for all
machines and for all time periods. Iterative updating of the multipliers along
a proper direction, repeated resolutions of subproblems, and the final
heuristic adjustment of the subproblem solutions lead to the near-optimal
solutions of the original problem. The cost of the feasible schedule J from
the heuristic is an upper bound on the optimal feasible cost J*. On the other
hand, the optimal dual D* is a lower bound on J*. Since it is usually difficult
to find J* and D*, the pseudoduality gap (J-D)�D is often used as a measure
of the quality of the feasible schedule, where D is the highest dual cost
obtained over the iterations.

Only one optimal beginning time is usually obtained for each operation
in a traditional DP. In FZDP, near-optimal beginning times are obtained,
each with an associated state weight. The fuzzy machine utilization by the
operation is calculated based on a weighted combination of these near-
optimal beginning times. A fuzzy gradient can then be derived as the differ-
ence between the total fuzzy machine utilization and the machine capacity.
Since near-optimal solutions are considered in FZDP, the resulting fuzzy
gradient directions are much better than the subgradient directions. The
complexity of FZDP can be reduced further by exploiting the special struc-
ture of the relaxed problem.

6.2. Testing Results. Several practical job shop scheduling problems
were tested by using the simplified bundle�fuzzy dynamic programming
(SB�FZDP) and the subgradient�dynamic programming method (SG�DP)
within the Lagrangian relaxation framework on a Pentium 400 MHz PC.
However, traditional bundle methods were not tested here because their
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significant computational requirements to obtain good search directions
hinder their ability for handling large problems (Ref. 11). For both methods
tested, the same heuristics was used to obtain feasible solutions. For SG�
DP, the input to the heuristics is the optimal beginning time for each oper-
ation, and for SB�FZDP, the input is the beginning time associated with
the largest weight for each operation. Both algorithms are stopped after the
same amount of CPU time, and the results are summarized in Table 3. The
testing shows significant performance improvement by using SB�FZDP, as
it can efficiently provide good directions.

As mentioned early, the surrogate subgradient method combined with
dynamic programming (SSG�DP) was developed recently, and with its
interleaved idea, it generates better results than the subgradient methods or
bundle methods for very large job shop scheduling problems (Ref. 3–4). In
order to further improve SSG�DP, the interleaved idea is combined with
FZDP, and the resulting SSG�FZDP is compared with SSG�DP. Twenty-
five data sets were randomly generated with operation processing times,
machine types required, and part due dates uniformly distributed within
appropriate intervals. For each data set, there are 100 parts each with tardi-
ness weight equal to 1, ten operations per part, and ten machine types in
total. There are 10,000 multipliers in the dual problem. The duality gaps
obtained by both methods are compared, and the improvement of the dual
values in percentage by using SSG�FZDP is shown in Fig. 9 for all the 25
cases. It can be seen that the dual cost of SSG�FZDP is better than that of
SSG�DP for most cases, and the average improvement is about 0.5%. In
addition, the average duality gap is reduced by more than 10%. This much
significant improvement in the duality gap is probably caused by the more
sensible operation beginning times obtained by using fuzzy state weights in
FZDP than the operation beginning times obtained by using crisp DP.

Table 3. Comparison of SB�FZDP via SG�DP.

Optimization Dual Primal Duality CPU
Primal dimensions MT�P�O method cost cost gap time

10�10�10 SB�FZDP 6668 6879 3.2% 30
SG�DP 6234 7048 13.1% 30

10�40�10 SB�FZDP 37108 40395 8.9% 120
SG�DP 35028 40395 15.3% 120

10�100�10 SB�FZDP 302025 341201 12.9% 600
SG�DP 285942 341390 19.4% 600

CPU time in seconds. MT�P�O represents the number of machine types (MT), number of
parts (P), and number of operations (O).
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Figure 9. Testing results for SSG�FDP and SSG�DP.

7. Conclusions

Bundle methods are advanced methods developed for general non-
smooth optimization. When they are applied to optimize the dual functions
within the Lagrangian relaxation framework, they can be improved and
simplified, leading to the improved bundle method and the simplified bundle
method with fuzzy dynamic programming as presented in this paper. These
methods can utilize efficiently the valuable information contained in near-
minimum solutions, which many times are byproducts when the relaxed
problem is solved. Thus, they provide a new approach with good search
directions and small computation requirements to solve large dual
problems.
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