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Lagrangian Relaxation Neural Networks for
Job Shop Scheduling

Peter B. Luh, Fellow, IEEE, Xing Zhao, Yajun Wang, and Lakshman S. Thakur

Abstract—Manufacturing scheduling is an important but dif-
ficult task. In order to effectively solve such combinatorial opti-
mization problems, this paper presents a novel Lagrangian relax-
ation neural network (LRNN) for separable optimization problems
by combining recurrent neural network optimization ideas with
Lagrangian relaxation (LR) for constraint handling. The conver-
gence of the network is proved, and a general framework for neural
implementation is established, allowing creative variations. When
applying the network for job shop scheduling, the separability of
problem formulation is fully exploited, and a new neuron-based
dynamic programming is developed making innovative use of the
subproblem structure. Testing results obtained by software simula-
tion demonstrate that the method is able to provide near-optimal
solutions for practical job shop scheduling problems, and the re-
sults are superior to what have been reported in the neural network
scheduling literature. In fact, the digital implementation of LRNN
for job shop scheduling is similar to the traditional LR approaches.
The method, however, has the potential to be implemented in hard-
ware with much improved quality and speed.

Index Terms—Integer optimization, Lagrangian relaxation,
manufacturing scheduling, neural networks.

I. INTRODUCTION

PRODUCTION scheduling is a major issue faced daily by
almost all manufacturers. Deriving benefits from effective

scheduling, however, has been recognized to be extremely
difficult because of the inherent problem complexity and
the sizes of real problems. This paper is to explore novel
neural network optimization techniques to effectively solve
job shop scheduling problems. Historically, neural networks
for unconstrained optimization were developed based on the
“Lyapunov stability theory” of dynamic systems: if a network is
“stable,” its “energy” will decrease to a minimum as the system
approaches its “equilibrium state.” If one can properly set up
a network that maps the objective function of an optimization
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problem onto an “energy function,” then the solution is a
natural result of network convergence and can be obtained at a
very fast speed [8].

For constrained optimization, the Hopfield-type recur-
rent networks have been based on the well-known “penalty
methods,” which convert a constrained problem to an uncon-
strained one by having penalty terms on constraint violations
[8]. The unconstrained problem is then solved by neural
networks as mentioned above. Generally, a solution to the
converted problem is the solution to the original one only
when penalty coefficients approach infinity. As coefficients
become large, however, the converted problem becomes ill
conditioned. To obtain a solution without having coefficients
tend to infinity, a tradeoff between solution optimality and
constraint satisfaction has to be made through the fine tuning
of algorithm parameters. The tradeoff, however, is generally
difficult to make. For problems with integer variables, Hopfield
networks approximate integer variables by continuous ones
and induce integrality by using “high gain” functions or having
additional constraints. These approaches, however, introduce
convergence difficulties and impede solution quality. In addi-
tion, Hopfield-type networks may possess many local minima.
Since escaping from local minima is not an easy task [19], the
solution quality depends highly on initial conditions.

Hopfield-type networks and their variations have been de-
veloped for job shop scheduling [5], [6], [20]. Although these
models demonstrate the possibility of using neural networks for
solving small scheduling problems, they suffer from the above-
mentioned difficulties. In addition, it is not easy to scale up these
methods to solve practical problems. Heuristics have also been
used to modify neuron dynamics to induce constraint satisfac-
tion within the job shop context [14], [15], [18]. The results,
however, may be far from optimal.

The recent developments on neural networks for constrained
optimization include combining Hopfield-type networks opti-
mization ideas withLagrangian relaxation(LR) or augmented
LR for constraint handling, showing significant improvement
on solution quality [10], [16]. The convergence of the resulting
LRNN, however, has not been fully established, and integer
variables are still approximated by continuous ones. Further-
more, with “traveling salesman problems” as the reference
model by most researchers, the method development has been
problem-specific, overlooking many important issues and
missing great opportunities.

In this paper, the convergence of LRNN for constrained op-
timization problems is established in Section II. In the proof,
there are no requirements on the differentiability of functions
nor the continuity of decision variables, as long as the evolution
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of decision variables leads the so-called “surrogate dual” to de-
crease to a global minimum. Thus, a general framework for the
implementation of “decision neurons” is provided allowing cre-
ative variations.

Building on this framework, LRNN is extended to solve sep-
arable integer optimization problems in Section III. It is well
known that NP-hard integer optimization problems are diffi-
cult to solve. For separable problems where subproblems can
be efficiently solved, however, LRNN can be a powerful ap-
proach. In LRNN, system-wide coupling constraints are relaxed
and the problem is decomposed into many smaller and easier
subproblems. Integer variables in these subproblems are repre-
sented directly by “discrete decision neurons” without approx-
imation. Local constraints are then enforced by specifically de-
signed subnetworks. These ideas enable LRNN to overcome the
difficulties of traditional networks in handling constraints and
integer variables, and obtain near-optimal solutions efficiently
for complex separable integer programming problems.

As a specific example, LRNN is applied to separable job
shop scheduling in Section IV. In this case, LRNN includes
many subnetworks, one for each job (or part). To effectively
handle integer variables and constraints for each job, a novel
neuron-based dynamic programming (NBDP) is developed
making innovative use of the dynamic programming (DP)
structure with simple topology and elementary functional
requirements. Testing results in Section V obtained by software
simulation demonstrate that the method is able to provide
near-optimal solutions for practical job shop scheduling prob-
lems, and the results are much better than what have been
reported in the neural network scheduling literature. In fact,
the digital implementation of LRNN for job shop scheduling is
similar to the traditional LR approaches. The method, however,
has the potential to be implemented in hardware with much
improved quality and speed.

II. LRNN

A. Problem Formulation

Consider the following separable convex programming
problem:

(2.1)

s.t. (2.2)

where is an continuous decision variable with
, is an function, is the number

of subproblems, and and are convex and differen-
tiable functions. For clarity of presentation, only inequality con-
straints are considered here (equality constraints can be handled
similarly without any theoretical difficulties). Since both the ob-
jective function and constraints are additive, the problem is sep-
arable.

B. LR

Playing a fundamental role in constrained optimization over
the decades, LR is powerful for the above separable problems.
Since constraints (2.2) couple the decision variables, they are
“relaxed” by Lagrangian multipliers. The relaxed problem is
thus given by

(2.3)

Here, is an vector of Lagrangian multipliers, and
the function is the “Lagrangian dual.” Since the decision
variables are decoupled through the introduction of Lagrangian
multipliers , (2.3) can be written in terms of individual sub-
problems

(2.4)

and

(2.5)

The dual problem is then given by

(2.6)

Maximizing the dual without its explicit representation can be
done by several methods, including the most widely used gra-
dient method described by

(2.7)

with

and

Here, is the iteration index, the multipliers at iteration
, the step size, and the gradient of the dual func-

tion evaluated at . The dual function is always concave
and provides a lower bound to the optimal primal cost. Let the
optimal dual be denoted as , where is a min-
imum solution (maybe nonunique) of the relaxed problem given
the optimal multipliers . For convex programming problems,
the optimal solution to the primal problem is included in[2].
In this case, the and a primal optimal solution form a
Lagrange multiplier-optimal solution pair ( ) or a saddle
point [2].

C. LRNN

LR has recently been combined with neural networks to solve
constrained optimization problems. Since the dual function is
always concave, the key idea of LRNN is to create a network to
let the negative dual be the energy function shown in Fig. 1. If
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Fig. 1. Negative dual function.

this can be done, then the negative dual will naturally approach
its minimum (or the dual will approach its maximum) as the
network converges, and then can be found easily. However,
since the negative dual is not explicitly available but must be
obtained through the resolution of the relaxed problem (2.3) [or
subproblems (2.4)] for various values of, the construction of
the network is a bit complicated. Nevertheless, since there is no
constraint in the relaxed problem, (2.3) can be solved by a recur-
rent neural network [or (2.4) can be solved by multiple subnet-
works]. The crux of LRNN is to merge these two constructs, one
for the negative dual and the other for the relaxed problem, and
let them feed each other and converge simultaneously. In LRNN,
the network elements that update multipliers will be referred to
as the “Lagrangian neurons.” In contrast, neurons solving the
subproblems will be called “decision neurons.” The dynamics
of the LRNN can then be described by the following differential
equations:

for and

otherwise,
(2.8)

(2.9)

with

(2.10)
Here, and are positive coefficients and can be time-
varying. The energy function used in LRNN is a contin-
uous-time version of the “surrogate dual function” defined as

(2.11)

In (2.11), minimization over is not required as opposed to
the definition of the dual function in (2.3). This surrogate dual
is introduced because in a traditional LR method, the relaxed
problem is optimally solved, and the dual value and gradient are
obtained to update multipliers. Since LRNN does not wait for

Fig. 2. Multiplier updating directions.

the convergence of the relaxed problem, the recurrent network
obtains approximate dual values and gradients—surrogate dual
values and surrogate gradients—according to (2.9). Based on
the surrogate dual values and gradients, the multiplier neurons
evolve according to (2.8) at the same time. The proof of conver-
gence, the extension to integer variables, and handling problems
with local constraints are the challenging issues.

D. Convergence of LRNN

The convergence of a specific implementation of (2.8) and
(2.9) with was established in 1958 for
strictly convex problems [1]. This was done within the context
of reaching the saddle point ( ). The approach, known
as the “differential multiplier method,” was developed years
before the birth of neural networks. Since this method leads
asymptotically to a periodic solution when both the objective
function and constraints are linear [4], a modified version
was developed for convex problems (not necessarily strictly
convex) through a nonlinear transformation of constraints
[1]. This nonlinear transformation, however, destroys the
separability of the original problem. In addition, the differential
multiplier method is based on the steepest descent idea to
update continuous decision neurons (2.9). The dynamics of
decision neurons, however, can be made more general to cover
a broader range of applications, e.g., discrete decision neurons,
as will be illustrated later.

Motivated by the ideas presented in [9] and [21], the fol-
lowing steps establish the convergence of LRNN for convex pro-
gramming (not necessarily strictly convex) without destroying
the separability of the original problem. What is more important
is that it can be extended to nonconvex programming problems,
and provides a general framework for the implementation of de-
cision neurons allowing numerous creative variations.

Proposition 1: Given the current point , if

(2.12)

then the gradient of is always at an acute angle with the
direction toward (shown in Fig. 2), i.e.,

(2.13)

Proof: Since minimization is performed for ac-
cording to (2.3), the surrogate dual always satisfies

(2.14)

The above is also true at ( ), i.e.,

(2.15)
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From (2.10) and (2.11), the right-hand side of (2.15) is

(2.16)

Thus (2.15) can be written as

(2.17)

Given (2.12), this yields

(2.18)

From (2.8) and (2.18), we have

(2.19)

and (2.13) is proved.
Proposition 2: If the initial point satisfies

(2.20)

and the coefficient in the dynamics of Lagrangian neurons sat-
isfies

(2.21)

then .
Proof: From (2.8)–(2.10)

(2.22)

With (2.21), we have

(2.23)

Together with (2.20), it can be shown that

Based on Propositions 1 and 2, we have the following theorem.
Theorem 1: For a convex programming problem,

( ) in the LRNN described by (2.8) and (2.9)
will converge to an optimal solution pair ( ) of the dual
problem as long as

and

(2.24)

Proof: From Propositions 1 and 2, the gradient of is
always at an acute angle with the direction pointing to. From
(2.13), we have

(2.25)

This means that gets closer and closer to . Now suppose
that ( ) converges to ( ). Then, with the con-
vexity of the problem, (2.9) implies that is a global minimal
solution for the given , and (2.8) implies that .
Thus, ( ) is an optimal solution pair of the dual problem. It
can also be shown by contradiction that ( ) always con-
verges to a certain point. Thus, the theorem is proved.

Convexity is required in Theorem 1 so that the decision
neuron dynamics (2.9) converges to a global minimum. For
a nonconvex problem, may be a local minimum but may
not be a global minimum given ; therefore, Theorem 1 may
not hold. However, if a global minimum can be guaranteed by
the dynamics of decision neurons, LRNN will still converge to
( ) for the nonconvex case.

The above proof is for a particular implementation of LRNN
based on the gradient approach (2.9). As can be seen, there are
two conditions on decision neuron dynamics for the conver-
gence of LRNN. The first is that

as required by (2.22) and (2.23). The other is that global min-
imum should be guaranteed as required by Theorem 1. This im-
plies that as long as the dynamics of the decision neurons cause
the surrogate dual to decrease to a global minimum for the
given multipliers, i.e.,

(2.26)

and

if and only if

(2.27)
then LRNN will converge. Note that this is true in general
regardless whether is continuous or discrete. In fact, re-
quirements such as convexity of the problem, differentiability
of functions or the continuity of the decision variables are
not necessary. Creative variations beyond (2.9) can therefore
be developed to fit the specific needs of individual problems
[9], [21]. For example, it will be shown in later sections that
decision neurons can also be discrete variables following
various dynamics.

Example 1: This example is to show the structure of LRNN
and its convergence. Consider the following quadratic program-
ming problem:

s.t.
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Fig. 3. The structure of LRNN for quadratic programming.

where are continuous decision variables,a positive
definite matrix, and is an matrix. The LRNN
dynamics can be described as

and

The structure of LRNN is shown in Fig. 3. To show the conver-
gence of the above network, the following problem is tested:

s.t.

and

The two constraints are relaxed by introducing multipliers
and , and the problem is decomposed into two subprob-

lems, each with one decision variable. This problem can then
be mapped onto an LRNN where the surrogate dual is

The dynamics of the multiplier neurons are

and

The dynamics of the decision neurons are

and

The above LRNN is simulated by using a set of difference
equations with the initial point

. The coefficient is calculated as
based on (2.21), where is assumed

to be known for simplicity. The coefficient can be any positive
value, and is used in the simulation. The trajectories of
multipliers, decision variables, andare shown in Fig. 4. It can
be seen that LRNN converges to the known optimal solution

.
In practice, is not known and an estimation has to be used.

There are two cases when the estimation ofis off. For an un-
derestimation, the system will converge to the estimated value,
and the resulting solution is not optimal. For an overestimation,
there is no stable point in the system, and the surrogate dual will
oscillate. How to estimate properly, however, is problem de-
pendent. A feasible solution obtained by heuristics can be used as
anupperboundfor ,andadualsolution isalwaysa lowerbound
for . Based on this information, the estimation can be adjusted
dynamically. Several techniques to estimateusing the lower
bound and the upper bound have been introduced in [2].

III. LRNN FOR SEPARABLE INTEGER

PROGRAMMING PROBLEMS

A. LR for Integer Programming

Integer programming problems are generally difficult to solve
because of their inherent combinatorial complexity. For sepa-
rable integer programming problems, however, LR has proven
to be particularly powerful. Consider now the problem described
by (2.1) and (2.2) with variablesrestricted to be integers, i.e.,

where is the set of integers. For such a problem,
the hard coupling constraints (2.2) are first relaxed through the
introduction of Lagrangian multipliers. The relaxed problem can
then be decoupled into individual subproblems. If these subprob-
lems belong to class-P problems, they can be efficiently solved
for a given set of multipliers. Multipliers are then iteratively ad-
justed based on the level of constraint violation. For integer pro-
gramming problems, however, the from the relaxed problem
may not be feasible [12]. Simple heuristics are thus applied to ad-
justsubproblemsolutionsto formafeasiblesolutionsatisfyingall
constraints at the termination of such updating iterations. Since
subproblem solutions will tend to satisfy the relaxed coupling
constraints and approach an optimal feasible solution over the
iterations, LR provides a powerful approach to obtain near-op-
timal solutions for NP-hard integer programming problems. Fur-
thermore, since dual costs are lower bounds to the optimal cost,
quality of the solution can be quantitatively evaluated by com-
paring the feasible cost with the highest dual cost obtained.

B. LRNN with Discrete Decision Neurons

LRNN can be constructed for separable integer programming
problems based on the above idea. How to handle integer vari-
ables, however, has been a challenging issue. The traditional
neural optimization for 0–1 integer programming problems is
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Fig. 4. Neuron trajectories in LRNN.

to approximate discrete variablesby continuous ones. For ex-
ample, it is known that “high gain” of “sigmoid” activation func-
tions can be used to induce integer solutions [8]. If the gain is too
high, however, the problem will be ill conditioned. The penalty
term can also be used to induceto either 0 or
1. These penalty terms, however, may impede solution quality.
Approximating integer variables by continuous ones is therefore
not satisfactory.

Based on the general framework provided in Section II, de-
cision neurons can in fact be discrete, and approximating them
by continuous ones is not necessary. This leads to LRNN with
discrete decision neurons introduced. According to (2.26), the
dynamics of these discrete decision neurons in LRNN should
cause the surrogate dual to decrease to a global minimum, i.e.,

(3.1)

and

if and only if

(3.2)

For separable problems, a sufficient condition for (3.1) with re-
spect to decomposed subproblems is

(3.3)

and

if and only if

(3.4)
LRNN is thus composed of multiple subnetworks satisfying
(3.3) and the multiplier neurons as described by (2.8), and they
feed each other and converge to ( ).

To illustrate the above idea, reconsider Example 1 of Sec-
tion II again except that the decision variables are now assumed
to be integers. The dynamics of decision neurons of LRNN can
be described as

if
if
otherwise

and

if
if
otherwise.

The above dynamics are designed to satisfy (3.3), and simula-
tion shows that the network converges to the optimal solution

.
Since integer variables are represented directly by discrete

neurons, high gain function, or additional penalty terms to en-
force integrality is no longer needed in LRNN. The major con-
cern for LRNN, however, is to design subnetwork satisfying
(3.3).

C. Subnetworks

Thus far, only system-wide constraints are considered in the
formulation, and once they are relaxed, there is no constraint
within a subproblem. In most applications, however, this is
not the case, and subproblemmay have to satisfy many local
constraints involving variable . These local constraints add
another level of complexity to the design of subnetworks. If
these constraints are handled by the penalty method, solutions
may not be feasible, and local minima cannot be avoided. If
relaxation is used, additional multipliers have to be introduced,
leading to slow convergence.
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In spite of the above difficulties, it is possible to design
specific subnetworks to satisfy (3.3) while handling local
constraints if the subproblems are not NP-hard. The synergy
of LR with these specific subnetworks enables LRNN to
obtain near-optimal solution with quantifiable quality in an
efficient manner for complex integer programming problems.
Constructing subnetworks to effectively solve subproblems,
however, is a challenging task and may be problem dependent.
In the following, we will apply LRNN to job shop scheduling
problems and design specific subnetworks to handle the
subproblems.

IV. JOB SHOP SCHEDULING VIA LRNN

A. Problem Formulation

In applying LRNN to job shop scheduling, the separable
structure of our previous job shop formulation is exploited.
In the formulation, each “part” has its due date, weight (or
priority), and requires a series of operations for its completion.
Each operation is to be performed on a machine of a specified
type for a given period of time. The processing may start only
after its preceding operations have been completed, satisfying
theoperation precedence constraint. Furthermore, the number
of operations assigned to a machine type may not exceed
the number of machines available at any time, satisfying the
machine capacity constraints. The problem is to determine op-
eration beginning times so that the total weighted part earliness
and tardiness is minimized. Through appropriate selection of
decision variables, these constraints are formulated in additive
forms [7], [17]. Unlike other prevalent formulations [13], the
key feature of our formulation is itsseparability. The variables
used in the problem formulation are listed below as follows.

Beginning time of the first operation of part.
Beginning time of operation —the th opera-
tion on part .
Completion time of the last operation of part.
Completion time of operation .
Due date of part.
Earliness of part, defined as .
Set of all machine types.
Machine type index, .
Part index ( ).
Operation index ( ).
Time index ( ).
Capacity of machine type at time .
Processing time of operation ( ) on machine type

.
Desired raw material release time for part.
Tardiness of part, defined as .
Tardiness weight for part.
Earliness weight for part.
0-1 operation variable which is one if operation
( ) is performed on machine typeat time , and
zero otherwise.

The constraints and objective function are briefly presented
below.

1) Machine Capacity Constraints:The number of opera-
tions assigned to machine typeat time should be less than

or equal to , the number of machines available at that time,
i.e.,

(4.1)

2) Operation Precedence Constraints:An operation cannot
be started until its preceding operation has been completed, i.e.,

(4.2)

3) Processing Time Requirements:Each operation must be
assigned the required amount of time for processing on the spec-
ified machine type, i.e.,

(4.3)
4) Objective Function:The time-based competition goals

of on-time delivery and low inventory are modeled as penalties
on delivery tardiness and on releasing raw materials too early,
and the objective function is

(4.4)

The problem is to determine operation beginning timesfor
individual operations to minimize (4.4) subject to machine ca-
pacity constraints (4.1), operation precedence constraints (4.2),
and processing time requirements (4.3). The key feature of this
formulation is itsseparability.

B. Solution Methodology

Within the LR framework, machine capacity constraints are
relaxed by using Lagrange multipliers , and the “relaxed
problem” is given by

with

(4.5)

s.t. (4.2) and (4.3). Since the formulation isseparable, the re-
laxed problem can be decomposed into the following decoupled
partsubproblemsfor a given set of multipliers:

with

(4.6)

s.t. (4.2) and (4.3). Each subproblem represents the scheduling
of a single part to minimize its tardiness and earliness penalties
and the costs for using machines (as reflected by the values of
Lagrangian multipliers for various machine types at different
time periods).

Each part subproblem is a multistage optimization problem
and can be efficiently solved by using DP with polynomial
complexity. A typical DP structure is shown in Fig. 5. With
stages corresponding to operations and states corresponding to
operation beginning times, the backward DP algorithm starts
with the last stage and computes the tardiness penalties and
machine utilization costs. As the algorithm moves backward,
cumulative costs of individual states belonging to a particular
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Fig. 5. DP structure.

stage are computed based on the stagewise costs and the
minimum of the cumulative costs for the succeeding stage,
subject to allowable state transitions as delineated by operation
precedence constraints. This minimization can be efficiently
implemented by pairwise comparisons, starting from the
last state (largest possible operation beginning time) of the
succeeding stages [17]. The optimal subproblem cost is then
obtained as the minimum of the cumulative costs at the first
stage, and the optimal beginning times for individual operations
can be obtained by tracing the stages forward.

In the LR approach, multipliers are iteratively adjusted, and
the subproblems are repeatedly solved. Such iterative process in
practice is terminated before algorithm convergence. The solu-
tions to part subproblems, when put together, are generally as-
sociated with an infeasible schedule, i.e., capacity constraints
might be violated at some time periods. Heuristic is thus re-
quired to adjust subproblem solutions to a feasible solution of
the original problem [17]. In the heuristics, a list of immedi-
ately performable operations is created in the ascending order
of their beginning times from part subproblem solutions. Op-
erations are then scheduled on the required machine types ac-
cording to this list as machines become available. If the capacity
constraint for a particular machine type is violated at time, a
greedy heuristic determines which operations should begin at
that time and which ones are to be delayed by one time unit.
The subsequent operations of those delayed ones are then de-
layed by one time unit if precedence constraints are violated.
The process repeats until the last operation in the list.

C. NBDP

The above LR approach can be naturally mapped onto an
LRNN presented in Section III. The key challenge is to develop
efficient subnetworks to solve part subproblems. One approach
is to map the above DP states onto neurons and mathematically
delineate state transitions by having constraints among neurons.
These constraints can then be handled by penalty or relaxation
methods. As mentioned in Section III, however, penalty method
may lead to infeasibility and local minima, while the relaxation
method will cause slow convergence.

To overcome the above difficulties, NBDP is developed.1 The
key idea is to make the best use of the DP structure that already
exists and implement the DP functions by neurons. In doing this,
the DP structure illustrated in Fig. 5 is utilized where each state
is represented by a neuron to obtain the cumulative cost. The

1This is fundamentally different from the “neuro-dynamic programming”
which was developed for the better training of feedforward neural networks [3].

Fig. 6. NBDP structure.

TABLE I
DATA AND FEASIBLE SCHEDULE FOR

CASE 1

TABLE II
SIMULATION RESULTS FORCASE 2

neuron will add up two values, the stagewise cost derived from
multipliers and the minimum of the cumulative costs of the suc-
ceeding stage. Thepairwise comparisonto obtain the minimum
cumulative costs of the succeeding stage is carried out through
the introduction of another layer of “comparison neurons.” The
connections of comparison neurons and “state neurons” are sub-
ject to state transitions as shown in Fig. 6, where comparison
neurons are represented by gray circles. The traditional back-
ward DP algorithm is thus mapped onto a neural network with
simple topology and elementary functional requirements that
can be implemented in hardware. The number of neurons re-
quired for subproblem is roughly twice the number of states
in its DP structure, i.e., , where is the number of
required operations for part, and the time horizon.

Since the DP structure is fully exploited in NBDP, the solu-
tion satisfies all subproblem constraints that are enforced by DP.
Difficulties such as infeasibility, local minima, and slow conver-
gence of subproblem solutions encountered by using the penalty
or relaxation methods do not exist any more.
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TABLE III
DATA AND FEASIBLE SCHEDULES FOR THEFIRST PROBLEM IN CASE 2

LRNN can be implemented by analog circuits or by digital
circuits. It is clear that given a set of multipliers, NBDP obtains
a global optimal solution for the subproblem after the signals
propagate from the last stage to the first stage. If NBDP is im-
plemented by an analog circuit and assume that signals can in-
stantly propagate through the stages, then the convergence of
LRNN is similar to that of the traditional LR method however
with almost zero time to solve subproblems. If signals cannot
instantly propagate through the stages, the convergence proof
of LRNN is quite complicated since it is difficult to model the
propagation and interaction of signals in DP. If NBDP is im-
plemented by a digital circuit, signal propagation has to be ex-

plicitly considered in the overall network design. One way is to
update multipliers after NBDP solves all the subproblems. This
will be referred to as the “SG approach” since it follows the
traditional LR framework using the subgradient method to up-
date the multipliers. Another way is to update multipliers after
NBDP solves only one subproblem. This will be denoted as the
“SSG approach” because it follows a particular implementation
of the surrogate subgradient method, where previous results for
other subproblems are used to obtain the surrogate dual and the
surrogate subgradient [21]. Since one subproblem is minimized
while solutions for others are kept the same, the surrogate dual is
decreased satisfying (3.1). In fact, the digital version of LRNN
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is a discrete-time system, and its convergence can be guaranteed
if the proof is modified appropriately as what was presented in
[21]. Preliminary architectural design of LRNN hardware for
job shop scheduling can be found in [11].

Both the SG approach and the SSG approach for the dig-
ital version of LRNN will converge. The convergence, however,
may be slow for such a combinatorial optimization problem.
The algorithm is therefore stopped when certain criteria are sat-
isfied based on CPU time or the number of iterations. Heuristics
are then applied to obtain a feasible schedule, and the duality
gap will provide a measure of solution quality. For SSG, only
the surrogate dual is available. To obtain the true duality gap,
multipliers are fixed at the final iteration of SSG, and all sub-
problems are resolved by using NBDP’s. In this way, the dual
cost is obtained and the duality gap is calculated.

V. SIMULATION RESULTS

Testing of LRNN for basic job shop scheduling problems de-
scribed in Section IV has been conducted by simulating the dig-
ital version of LRNN on a PC and then feeding the results to
heuristics [17]. Recall that Hopfield-type networks and its vari-
ations have been developed for job shop scheduling. Because
these methods have difficulties in dealing with integer variables
and system-wide as well as local constraints, results reported are
mostly for small problems (the 14 parts and 7 machines problem
in [15] and the 20 parts and 5 machines problem in [14]). In con-
trast, LRNN aims at solving practical problems. In our testing,
both the SG approach and the SSG approach are simulated, and
results for problems of various sizes have been obtained on a
Pentium II 400-MHz PC as summarized in the following.

Case 1: This case demonstrates that LRNN generates the op-
timal schedule for a small problem. There are 3 machine types
with 1 machine each and 4 parts with a total of 12 operations.
For every part, the due date is –1 and the weight is 5, and there
is no part earliness penalty. The operation beginning times ob-
tained by SG and SSG within one second are identical as pre-
sented in Table I. in conjunction with the operation processing
times and the required machine types. Since the duality
gap obtained is 0, the solution is optimal.

Case 2: This case is to demonstrate that LRNN generates
near-optimal schedules for practical problems with data sets
based on a factory of Sikorsky Aircraft at Stratford, CT. The
algorithm is stopped if the CPU time is more than 5 min or the
duality gap is less than 10%. Summary of testing results are pre-
sented in Table II. Since the amount of data is substantial, de-
tailed information is only provided for the first problem in the
Appendix. Other information is available at our web site.2

The small duality gap implies that near-optimal solutions are
obtained. Compared with other results in the neural network
scheduling literature, LRNN is able to solve much larger prob-
lems with satisfactory quality. In fact, the digital version of
LRNN can also be considered as the hardware implementation
of the traditional LR and DP method (LRDP). Therefore, sim-
ulation results should be the same as those obtained by LRDP
[17], [21]. Our ultimate goal, however, is to implement LRNN

2[Online]. Available: http://www.engr.uconn.edu/msl/test_data/ra_data

in hardware. In view of NBDP’s simple topology and the ele-
mentary function requirements as illustrated in Section IV, hard-
ware implementation is feasible. Such an implementation can
drastically reduce the computation time, thus allowing more it-
erations to be performed within a fixed amount of time to im-
prove solution quality. It also allows larger and more compli-
cated problems to be solved within reasonable amount of com-
putation time.

VI. CONCLUSIONS

In this paper, a novel LRNN is developed for separable opti-
mization problems by combining recurrent neural network op-
timization ideas with LR for constraint handling. Its general
convergence is established, allowing flexibility for the decision
neuron dynamics. A framework is thus established for LRNN to
solve this class of problems, where the key is the design of effi-
cient subnetworks for subproblems. As a specific application to
job shop scheduling, the novel NBDP is developed to effectively
solve part subproblems. With NBDP, difficulties of integer vari-
ables and subproblem local minima and solution infeasibility
are avoided. Numerical testing demonstrated that the method
is able to provide near-optimal solutions for practical job shop
scheduling problems and is much better than what have been
reported in the neural network scheduling literature. In addi-
tion, the method has the potential to be implemented in hardware
with much improved quality and speed, where applications are
not limited to job shop scheduling problems only. Rather, it can
be applied to separable integer or mixed-integer optimization
problems with stagewise additive subproblem cost functions, a
generic class of problems with many important applications.

APPENDIX

This appendix presents the input data and the resulting sched-
ules for the first problem of Case 2, as shown in Table III. For
this problem, each machine type has one machine, and for every
part, the tardiness weight is 1 and there is no part earliness
penalty.
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