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Lagrangian Relaxation Neural Networks for

Job Shop

Peter B. Luh Fellow, IEEE Xing Zhao,

Abstract—Manufacturing scheduling is an important but dif-
ficult task. In order to effectively solve such combinatorial opti-
mization problems, this paper presents a novel Lagrangian relax-
ation neural network (LRNN) for separable optimization problems
by combining recurrent neural network optimization ideas with
Lagrangian relaxation (LR) for constraint handling. The conver-
gence of the network is proved, and a general framework for neural
implementation is established, allowing creative variations. When
applying the network for job shop scheduling, the separability of
problem formulation is fully exploited, and a new neuron-based
dynamic programming is developed making innovative use of the
subproblem structure. Testing results obtained by software simula-
tion demonstrate that the method is able to provide near-optimal
solutions for practical job shop scheduling problems, and the re-
sults are superior to what have been reported in the neural network
scheduling literature. In fact, the digital implementation of LRNN
for job shop scheduling is similar to the traditional LR approaches.
The method, however, has the potential to be implemented in hard-
ware with much improved quality and speed.

Index Terms—integer optimization, Lagrangian relaxation,
manufacturing scheduling, neural networks.

. INTRODUCTION

Scheduling

Yajun Wang, and Lakshman S. Thakur

problem onto an “energy function,” then the solution is a
natural result of network convergence and can be obtained at a
very fast speed [8].

For constrained optimization, the Hopfield-type recur-
rent networks have been based on the well-known “penalty
methods,” which convert a constrained problem to an uncon-
strained one by having penalty terms on constraint violations
[8]. The unconstrained problem is then solved by neural
networks as mentioned above. Generally, a solution to the
converted problem is the solution to the original one only
when penalty coefficients approach infinity. As coefficients
become large, however, the converted problem becomes ill
conditioned. To obtain a solution without having coefficients
tend to infinity, a tradeoff between solution optimality and
constraint satisfaction has to be made through the fine tuning
of algorithm parameters. The tradeoff, however, is generally
difficult to make. For problems with integer variables, Hopfield
networks approximate integer variables by continuous ones
and induce integrality by using “high gain” functions or having
additional constraints. These approaches, however, introduce
convergence difficulties and impede solution quality. In addi-

RODUCTION scheduling is a major issue faced daily biion, Hopfield-type networks may possess many local minima.
almost all manufacturers. Deriving benefits from effectivéince escaping from local minima is not an easy task [19], the
scheduling, however, has been recognized to be extreme@jution quality depends highly on initial conditions.

difficult because of the inherent problem complexity and Hopfield-type networks and their variations have been de-
the sizes of real problems. This paper is to explore nowgtloped for job shop scheduling [5], [6], [20]. Although these
neural network optimization techniques to effectively solvehodels demonstrate the possibility of using neural networks for
job shop scheduling problems. Historically, neural networkgolving small scheduling problems, they suffer from the above-
for unconstrained optimization were developed based on thentioned difficulties. In addition, itis not easy to scale up these
“Lyapunov stability theory” of dynamic systems: if a network isnethods to solve practical problems. Heuristics have also been
“stable,” its “energy” will decrease to a minimum as the systemtsed to modify neuron dynamics to induce constraint satisfac-
approaches its “equilibrium state.” If one can properly set ufon within the job shop context [14], [15], [18]. The results,
a network that maps the objective function of an optimizatiomowever, may be far from optimal.
The recent developments on neural networks for constrained
optimization include combining Hopfield-type networks opti-
mization ideas withLagrangian relaxatiorn(LR) or augmented
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of decision variables leads the so-called “surrogate dual” to d&- LR
crease to a global minimum. Thus, a general framework for thep)aying 5 fundamental role in constrained optimization over

implementation of “decision neurons” is provided allowing Crége gecades, LR is powerful for the above separable problems.

ative variations. . Since constraints (2.2) couple the decision variablethey are
Building on this framework, LRNN is extended to solve sepsg|axed” by Lagrangian multipliera. The relaxed problem is
arable integer optimization problems in Section Ill. It is welj, ;s given by

known that NP-hard integer optimization problems are diffi-

cult to solve. For separable problems where subproblems can _ I - I

be efficiently solved, however, LRNN can be a powerful ap- ~ L(A) = min STl AT gilw)| - (2.3)
proach. In LRNN, system-wide coupling constraints are relaxed i=1 i=1

and the problem is decomposed into many smaller and easighre, A is an M x 1 vector of Lagrangian multipliers, and
subproblems. Integer variables in these subproblems are regf@-functionL () is the “Lagrangian dual.” Since the decision
sented directly by “discrete decision neurons” without approxariaples are decoupled through the introduction of Lagrangian

imation. Local constraints are then enforced by specifically dgmytipliers ), (2.3) can be written in terms of individual sub-
signed subnetworks. These ideas enable LRNN to overcome fagplems

difficulties of traditional networks in handling constraints and

integer variables, and obtain near-optimal solutions efficiently Li(A\) = min [J;(z;) + A gi(2;)] (2.4)

for complex separable integer programming problems. e
As a specific example, LRNN is applied to separable jolnd

shop scheduling in Section IV. In this case, LRNN includes

hmany sgbnetworkg, one for each ]ob_ (or part). To_effecuvely L) = ZLZ‘()‘)' (2.5)
andle integer variables and constraints for each job, a novel

neuron-based dynamic programming (NBDP) is developed

making innovative use of the dynamic programming (DP) The dual problem is then given by

structure with simple topology and elementary functional D - IO\ 26

requirements. Testing results in Section V obtained by software 'Tﬁ%‘ (). (2.6)

simulation demonstrate that the method is able to provide ) _ . _
near-optimal solutions for practical job shop scheduling proB/I_aX|m|Z|ng the dual without its explicit representation can be

lems, and the results are much better than what have b&3€ by several methods, including the most widely used gra-
reported in the neural network scheduling literature. In facdient method described by

the digital implementation of LRNN for job shop scheduling is k41l k & &

similar to the traditional LR approaches. The method, however, AT = max{0, A+ "V L(AT)} 2.7)
has the potential to be implemented in hardware with mughh

improved quality and speed. ;

VLOW) = 3 gl (A9))
II. LRNN i=1

A. Problem Formulation and

Consider the following separable convex programming z;i(A*) = argmin [Ji(z;) + (A) gi(z:)] -
problem: *
Here,k is the iteration index)* the multipliers at iteration
d k, o* the step size, an&¥ L(\*) the gradient of the dual func-
11211 J = Z Ji(wi) (2.1)  tion L()) evaluated ap*. The dual function is always concave
=1 and provides a lower bound to the optimal primal cost. Let the
optimal dual be denoted ds = L(\*, z*), wherez* is amin-
; imum solution (maybe nonunique) of the relaxed problem given
e L the optimal multipliers\*. For convex programming problems,
S't';gz(%) =9 =11 (2:2) the optimal solution to the primal problem is included:in[2].
In this case, the\* and a primal optimal solutior* form a

wherez; € R is anV; x 1 continuous decision variable with Lagrange multiplier-optimal solution pai{, =*) or a saddle
SY_ N, = N, gi(x;) isanM x 1 function, T is the number Point [2].

of subproblems, anl(x;) andg;(z;) are convex and differen-

tiable functions. For clarity of presentation, only inequality corc- LRNN

straints are considered here (equality constraints can be handlddR has recently been combined with neural networks to solve
similarly without any theoretical difficulties). Since both the obeonstrained optimization problems. Since the dual function is
jective function and constraints are additive, the problem is segdways concave, the key idea of LRNN is to create a network to
arable. let the negative dual be the energy function shown in Fig. 1. If
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Fig. 1. Negative dual function. Fig. 2. Multiplier updating directions.

this can be done, then the negative dual will naturally approattte convergence of the relaxed problem, the recurrent network
its minimum (or the dual will approach its maximum) as thebtains approximate dual values and gradients—surrogate dual
network converges, and thes can be found easily. However,values and surrogate gradients—according to (2.9). Based on
since the negative dual is not explicitly available but must dbe surrogate dual values and gradients, the multiplier neurons
obtained through the resolution of the relaxed problem (2.3) [evolve according to (2.8) at the same time. The proof of conver-
subproblems (2.4)] for various values bfthe construction of gence, the extension to integer variables, and handling problems
the network is a bit complicated. Nevertheless, since there iswith local constraints are the challenging issues.

constraintin the relaxed problem, (2.3) can be solved by a recur-

rent neural network [or (2.4) can be solved by multiple subnd® Convergence of LRNN

works]. The crux of LRNN is to merge these two constructs, one The convergence of a specific implementation of (2.8) and
for the negative dual and the other for the relaxed problem, agdo) with o(t) = £(t) = 1 was established in 1958 for
letthem feed each other and converge simultaneously. In LRN&¥sictly convex problems [1]. This was done within the context
the network elements that update multipliers will be referred tf reaching the saddle poinf{, z*). The approach, known
as the tagrangian neurons.In contrast, neurons solving theas the “differential multiplier method,” was developed years
subproblems will be calleddecision neurons The dynamics before the birth of neural networks. Since this method leads
of the LRNN can then be described by the following differentiasdsymptotically to a periodic solution when both the objective
equations: function and constraints are linear [4], a modified version
D (t) was developed for convex problems (not _necessarily stri_ctly
—n - convex) through a nonlinear transformation of constraints
0, [1]. This nonlinear transformation, however, destroys the
8E(A(t) 2(t)) separability of the original problem. In addition, the differential
for A (t) =0 anda)\—kt) <0, multiplier method is based on the steepest descent idea to
OLOE), 2(1)) m upd_at_e continuous decision neurons (2.9). The dynamics of
af )8)\77(0’ decision neurons, howe_ver,_ can be ma_de more ge_n_eral to cover
o{ﬁerwise a bro_ader range of applications, e.g., discrete decision neurons,
'm 1 .M 2.8) as will be illustrated later.
L Motivated by the ideas presented in [9] and [21], the fol-
lowing steps establish the convergence of LRNN for convex pro-
. gramming (not necessarily strictly convex) without destroying
= —B(t) OLA®), =(t)) (2.9) the separability of the original problem. What is more important
dx(t) is that it can be extended to nonconvex programming problems,
with and provides a general framework for the implementation of de-
cision neurons allowing numerous creative variations.
Proposition 1: Given the current pointh(¢), =(¢)), if

L(t) = L), 2(1) = D Jilwi(®) + A0 Y gilwi(t))-
i=1 i L(t) < L* (2.12)

(2.10)

Here,a(#) and3(t) are positive coefficients and can be timeten the gradient oh(¢) is always at an acute angle with the
varying. The energy functiof(t) used in LRNN is a contin- girection toward\* (shown in Fig. 2), i.e.,

uous-time version of the “surrogate dual function” defined as

0 < (X* = A(t) O (2.13)
; ; dt
L\, z)= Zr]i(l'i) +)\ngi($i)- (2.11) Proof: Since minimization is performed fof.()\) ac-
i=1 i cording to (2.3), the surrogate dual always satisfies

In (2.11), minimization over: is not required as opposed to
the definition of the dual function in (2.3). This surrogate dual
is introduced because in a traditional LR method, the relaxgfle above is also true ak{, z(%)), i.e.,

problem is optimally solved, and the dual value and gradient are

obtained to update multipliers. Since LRNN does not wait for L* = L) < L\, (). (2.15)

L)) < L(\, ). (2.14)
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From (2.10) and (2.11), the right-hand side of (2.15) is

I

I
L, () = D2 Jilwal)) + X7 - giln(0)

=1

L)+ (V= MO Y ai(ai(t)

7 IL(t)

=L{t)+ (A" = \(®) 0! (2.16)
Thus (2.15) can be written as
* T * Ta‘i(t)
L* < L(t) + (A* = A1) W(t) (2.17)
Given (2.12), this yields
. . OL(t)
0< L*—L(t) < (X" — A(t))Tm (2.18)
From (2.8) and (2.18), we have
* OL(t) * dA(?)
and (2.13) is proved. QED
Proposition 2: If the initial point satisfies
L(0) < L* (2.20)

81

and

0<a(t) < L — L(t)

Y A (2.24)
Haﬁ(t) /8)\(t)H

Proof: From Propositions 1 and 2, the gradient\¢t) is
always at an acute angle with the direction pointing’toFrom
(2.13), we have

dl|x = @)
dt

dA(t)

AN .
g

=20\ = A()* (2.25)
This means thak(t) gets closer and closer #§. Now suppose
that (\(¢), z(¢)) converges to X™, z¥). Then, with the con-
vexity of the problem, (2.9) implies that" is a global minimal
solution for the givem\™, and (2.8) implies thab(\*) = L*.
Thus, AT, zT) is an optimal solution pair of the dual problem. It
can also be shown by contradiction that«), =(t)) always con-
verges to a certain point. Thus, the theorem is prov@de.D.

Convexity is required in Theorem 1 so that the decision
neuron dynamics (2.9) converges to a global minimgfmFor
a nonconvex problemz™ may be a local minimum but may
not be a global minimum giveh™; therefore, Theorem 1 may
not hold. However, if a global minimum can be guaranteed by
the dynamics of decision neurons, LRNN will still converge to
(A*, x*) for the nonconvex case.

The above proof is for a particular implementation of LRNN
based on the gradient approach (2.9). As can be seen, there are

and the coefficient in the dynamics of Lagrangian neurons sgfjq ¢ongitions on decision neuron dynamics for the conver-

isfies

alt) < L@Q (2.21)
HaL(t)/a)\(t)H
thenL(t) < L*.
Proof: From (2.8)—(2.10)
dL(t) OL(t)" d\(#)  OL() da(t)
dt — oN®)  dt | ox(t)  dt
~ 2 ~ 2
<at)|5rg| - 80) | 5eee (2.22)
With (2.21), we have
~ ~ 2
— S (LT-L@) -8@) 92(0) S L*-L(t). (2.23)
Together with (2.20), it can be shown that
L(t) < L*.
Q.ED.

gence of LRNN. The first is tha@L(t)/dx(t))" (dx(t) /dt) <

0 as required by (2.22) and (2.23). The other is that global min-
imum should be guaranteed as required by Theorem 1. This im-
plies that as long as the dynamics of the decision neurons cause
the surrogate dudl(¢) to decrease to a global minimum for the
given multipliers, i.e.,

L(A(t), z(t) + Ax(t)) < LIA(E), =(t)) (2.26)

and

Az(t) = 0, ifand only if #(t) = arg min L(A(t), z(t))

(2.27)
then LRNN will converge. Note that this is true in general
regardless whether is continuous or discrete. In fact, re-
quirements such as convexity of the problem, differentiability
of functions or the continuity of the decision variables are
not necessary. Creative variations beyond (2.9) can therefore
be developed to fit the specific needs of individual problems
[9], [21]. For example, it will be shown in later sections that
decision neurons can also be discrete variables following
various dynamics.

Based on Propositions 1 and 2, we have the following theorem Example 1: This example is to show the structure of LRNN

Theorem 1:For

a convex programming problem,and its convergence. Consider the following quadratic program-

(A(t), z(¥)) in the LRNN described by (2.8) and (2.9)ming problem:

will converge to an optimal solution paid{, z*) of the dual

problem as long as

L(0) < L*

1
ga:TQa: + e,

Arx=1b

min

S.t.
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and

% = —/35—; = —/3(0.2{1}2 +0.2)\1 — )\2)
The above LRNN is simulated by using a set of difference
equations with the initial poinit\; (0), A2(0), 21(0), z2(0)] =
[0, 0, 0, 0]. The coefficienin(t) is calculated ag§L* — L(t))/
|0L(t)/dA(t)||?based on (2.21), whete* = 1203 is assumed
to be known for simplicity. The coefficiertt can be any positive
value, and3 = 1 is used in the simulation. The trajectories of
multipliers, decision variables, addare shown in Fig. 4. It can
be seen that LRNN converges to the known optimal solution
Fig. 3. The structure of LRNN for quadratic programming. [Af A3 27 23] = [22 5.4 49 5].

In practice,L* is not known and an estimation has to be used.
wherez € RN are continuous decision variablg$,a positive There are two cases when the estimatiof bfs off. For an un-
definite NV x N matrix, andA is anM x N matrix. The LRNN derestimation, the system will converge to the estimated value,

dynamics can be described as and the resulting solution is not optimal. For an overestimation,
1 . T there is no stable point in the system, and the surrogate dual will
LA z) = 9% Qr +c’ x4+ A (Ar — ) oscillate. How to estimaté* properly, however, is problem de-
N M pendent. Afeasible solution obtained by heuristics can be used as
day - _ Z Qnjmj + Cn + Z Apmnim | anupperboundfat*, and adual solutionis always alowerbound
dt =1 et for L*. Based on this information, the estimation can be adjusted
n=1,---, N dynamically. Several techniques to estimateusing the lower

7

q bound and the upper bound have been introduced in [2].

an

SV . LRNN FOR SEPARABLE INTEGER

dt Z Apnn = bm, m=1 .-, M. PROGRAMMING PROBLEMS
n=1

A. LR for Integer Programming

d

The structure of LRNN is shown in Fig. 3. To show the conve
gence of the above network, the following problem is tested: Integer programming problems are generally difficult to solve
min  0.522 + 0.122 becau_se of their inhere_nt combinatorial complexity. For sepa-
@1, T2 rable integer programming problems, however, LR has proven
to be particularly powerful. Consider now the problem described
by (2.1) and (2.2) with variablesrestricted to be integers, i.e.,
dr1 + 2 2> 250 xz; € ZNi whereZ is the set of integers. For such a problem,
the hard coupling constraints (2.2) are first relaxed through the
introduction of Lagrangian multipliers. The relaxed problem can
then be decoupled into individual subproblems. If these subprob-
The two constraints are relaxed by introducing multipliengms belong to class-P problems, they can be efficiently solved
A1 and Xz, and the problem is decomposed into two subprokg 5 given set of multipliers. Multipliers are then iteratively ad-
lems, each with one decision variable. This problem can thgfsted based on the level of constraint violation. For integer pro-

st. 21 — 0.2z > 48

and

r1, T2 € R.

be mapped onto an LRNN where the surrogate dual is gramming problems, however, thé from the relaxed problem
ji()\l, Ao, T1, Ta) = 0,5g;§ + 0,1333 + A1(48 — 21 + 0.229) may not be feasible [12]. Simple heuristics are thus applied to ad-
+ Aa(250 — 5y — @) justsubproblem solutionsto form afeasible solution satisfying all

(0522 — ) “) 12 constraints at the termination of such updating iterations. Since
=(0.521 — Az — Shazy) + (0123 subproblem solutions will tend to satisfy the relaxed coupling
+0.2M\ 132 — Aaw2) + 481 +250X2.  constraints and approach an optimal feasible solution over the

The dynamics of the multiplier neurons are iterations, LR provides a powerful approach to obtain near-op-
= timal solutions for NP-hard integer programming problems. Fur-
dAy oL . .
— =)z =48 — 21 + 0.2x; thermore, since dual costs are lower bounds to the optimal cost,
dt I quality of the solution can be quantitatively evaluated by com-
and paring the feasible cost with the highest dual cost obtained.
% = O‘(t)gTL =250 — 521 — Z9. B. LRNN with Discrete Decision Neurons
2

) o LRNN can be constructed for separable integer programming
The dynamics of the decision neurons are problems based on the above idea. How to handle integer vari-
dz; ables, however, has been a challenging issue. The traditional

oL .
a _ﬁa—xl = —Blz1 = AL = 5A2) neural optimization for 0-1 integer programming problems is



LUH et al: LRNN FOR JOB SHOP SCHEDULING 83

30 15
~ 20 o 10
o ke
: :
=10 = 5
0 0
0 2000 4000 6000 0 2000 4000 6000
60 30
40 20
- (4]
x x
20 10
0 0
0 2000 4000 6000 0 2000 4000 6000
1500
1000
-
500
0
0 2000 4000 6000

Fig. 4. Neuron trajectories in LRNN.

to approximate discrete variabldsy continuous oneg~or ex- To illustrate the above idea, reconsider Example 1 of Sec-
ample, itis known that “high gain” of “sigmoid” activation func-tion Il again except that the decision variables are now assumed
tions can be used to induce integer solutions [8]. If the gainis ttmbe integers. The dynamics of decision neurons of LRNN can
high, however, the problem will be ill conditioned. The penaltpe described as
term[z - (1 —z)] = 0 can also be used to indueedo either O or w1t + At
i. Thes_e pe_nal_ty terms, h_owever, may _|mpede SO|UFIOH quality. ei(t) 41 it 21(£) — A () — 5Aa(t) + 0.5 < 0
pproximating integer variables by continuous ones is therefore . . .
not satisfactory. =< x1(t) — 1, if _(xl.(t) —A1(t) — 5A2(t)) + 0.5<0
Based on the general framework provided in Section Il, de- z1(b), otherwise
cision neurons can in fact be discrete, and approximating th
by continuous ones is not necessary. This leads to LRNN wigh (¢ + A¢)
discrete decision neurons introduced. According to (2.26), the z2(t)+1, if 0.222(¢) + 0.2A1(t) — A2(t) + 0.2 < 0
dynamics of these discrete decision neurons in LRNN should J ;1)1 if —(0.222(¢)+0.2A; (£) — A2(2)) +0.2< 0
cause the surrogate dual to decrease to a global minimum, i.e., | ;,(¢), otherwise.

E()\(t), z(t) + Ax(t)) < E()\(t),x(t)), z(t) e ZV, The above dynamics are designed to satisfy (3.3), and simula-
Az(t) e Z¥  (3.1) tion shows that the network converges to the optimal solution
[AE XS 2% 5] = [22 5.4 49 3]
and Since integer variables are represented directly by discrete
neurons, high gain function, or additional penalty terms to en-
force integrality is no longer needed in LRNN. The major con-
(3.2) cern for LRNN, however, is to design subnetwork satisfying
For separable problems, a sufficient condition for (3.1) with re(:_3_3)_
spect to decomposed subproblems is C. Subnetworks

Az(t) =0, if and only if x(¢) = arg In(iI)l.Zz()\(t), z(1)).
z(t

Li(A(#), zi(t) + Awi(t) < Li(A(®), (1)), Thus far, only system-wide constraints are considered in the
wilt) € N Axy(t) € 7N (3.3) formulation, and once they are relaxed, there is no constraint
! ’ ! ' within a subproblem. In most applications, however, this is
and not the case, and subproblémmay have to satisfy many local
constraints involving variable;. These local constraints add
another level of complexity to the design of subnetworks. If
(3.4) these constraints are handled by the penalty method, solutions
LRNN is thus composed of multiple subnetworks satisfyinmay not be feasible, and local minima cannot be avoided. If
(3.3) and the multiplier neurons as described by (2.8), and theyfaxation is used, additional multipliers have to be introduced,
feed each other and converge 5 (z*). leading to slow convergence.

Az, (t) =0, ifandonlyifz;(t) = arg m%r; L(t), z;(t)).
(t

T
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In spite of the above difficulties, it is possible to desigmor equal toMy;,, the number of machines available at that time,
specific subnetworks to satisfy (3.3) while handling locadle.,
constraints if the subproblems are not NP-hard. The synergy
of LR with these specific subnetworks enables LRNN to

obtain near-optimal solution with quantifiable quality in an 5 . q o :
efficient manner for complex integer programming problems. ) Operation Precedence Constraintsin operation cannot

Constructing subnetworks to effectively solve subproblem@’? started until its preceding operation has been completed, i.e.,
however, is a challenging task and may be problem dependent. ; | +1 < b;;, 1=1,2,---,1, j=2---J;. (4.2)

In the following, we .W'” apply !‘RNN to job shop scheduling 3) Processing Time RequirementEach operation must be
problems and design specific subnetworks to handle the’: dth ired ftime f . h
subproblems. assigned the required amount of time for processing on the spec-

ified machine type, i.e.,

czj:sz+-PzJ}L_17 12177]7 7:1727711
. (4.3)
A. Problem Formulation 4) Objective Function:The time-based competition goals

In applying LRNN to job shop scheduling, the separabl@f on-time delivery and low inventory are modeled as penalties
structure of our previous job shop formulation is exploited®n delivery tardiness and on releasing raw materials too early,
In the formulation, each “part” has its due date, weight (G¥"d the objective function is
priority), and requires a series of operations for its completion. I
Each operation is to be performed on a machine of a specified Z(Win + B:E?). (4.4)
type for a given period of time. The processing may start only i=1
after its preceding operations have been completed, satisfyiflge problem is to determine operation beginning tirhiggor
the operation precedence constraifturthermore, the numberindividual operations to minimize (4.4) subject to machine ca-
of operations assigned to a machine type may not excqgatity constraints (4.1), operation precedence constraints (4.2),
the number of machines available at any time, satisfying tlad processing time requirements (4.3). The key feature of this
machine capacity constraint¥he problem is to determine op-formulation is itsseparability
eration beginning times so that the total weighted part earliness
and tardiness is minimized. Through appropriate selection Bf Solution Methodology
decision variables, these constraints are formulated in additiveyjithin the LR framework, machine capacity constraints are

forms [7], [17]. Unlike other prevalent formulations [13], therelaxed by using Lagrange multipliers,,, and the “relaxed
key feature of our formulation is itseparability The variables problem” is given by

used in the problem formulation are listed below as follows. ) 5 )
min L with L = > (W17 + B,E})

Z(SijkhSMkha k=1, K, heH  (41)

IV. JOB SHOP SCHEDULING VIA LRNN

B; Beginning time of the first operation of pait {b:;) ‘

b Beginning time of operatiofx, j)—the jth opera- ¢ o
tion on parti.

C; Completion time of the last operation of part + Z k; ki %: menMn - (4.5)

Cij Completion time of operatiofy, j). o o

] Due date of par. s.t. (4.2) and (4.3). Since the formqlatlonseparab_lethe re-

E; Earliness of part, defined as; = max[0, S;— B;]. laxed problem can be d_ecomposed |nt(_) the following decoupled

H Set of all machine types. partsubproblemdor a given set of multipliers:

h Machine type indexheH . min L;, with L; = mﬁ + /371E?

i Partindex{ =1, ---, I). {bis} ’ ’

J Operation index{ =1, ---, J). Ji i

2 Time index ¢ = 1,-- -, K). +3 0> mw, i=1,, 1 (46)

My Capacity of machine typk at timek. J=1 k=bi;

Piji Processing time of operatiof () on machine type s.t. (4.2) and (4.3). Each subproblem represents the scheduling
heH;;. of a single part to minimize its tardiness and earliness penalties

S; Desired raw material release time for part and the costs for using machines (as reflected by the values of

T; Tardiness of part, defined ag; = max[0, C;—D;]. Lagrangian multipliers for various machine types at different

W; Tardiness weight for pait time periods).

Bi Earliness weight for pait Each part subproblem is a multistage optimization problem

Oijnk 0-1 operation variable which is one if operatiorand can be efficiently solved by using DP with polynomial
(4, j) is performed on machine tygeat timek, and complexity. A typical DP structure is shown in Fig. 5. With
zero otherwise. stages corresponding to operations and states corresponding to

The constraints and objective function are briefly presentegeration beginning times, the backward DP algorithm starts

below. with the last stage and computes the tardiness penalties and

1) Machine Capacity ConstraintsThe number of opera- machine utilization costs. As the algorithm moves backward,
tions assigned to machine typeat timek should be less than cumulative costs of individual states belonging to a particular
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Stage 1  Stage 2

© 1
2
3
o 4
Fig. 5. DP structure. Fig. 6. NBDP structure.
stage are computed based on the stagewise costs and the TABLE |
minimum of the cumulative costs for the succeeding stage, DATA AND FEA&E‘SL;SCHEDULE FOR
subject to allowable state transitions as delineated by operation
precedence constraints. This minimization can be efficiently = PartI Oper. J H Dii by
implemented by pairwise comparisons, starting from the 0 0 1 3 0
last state (largest possible operation beginning time) of the ; (2) f g
succeeding stages [17]. The optimal subproblem cost is then 7 0 0 ) 0
obtained as the minimum of the cumulative costs at the first 1 1 3 4
stage, and the optimal beginning times for individual operations 2 2 2 7
can be obtained by tracing the stages forward. (1) (1) ‘1‘ i
In the LR approach, multipliers are iteratively adjusted, and ) ) 4 9
the subproblems are repeatedly solved. Such iterative processin 3 0 2 3 0
practice is terminated before algorithm convergence. The solu- 1 1 2 7
tions to part subproblems, when put together, are generally as- 2 0 3 2
sociated with an infeasible schedule, i.e., capacity constraints TABLE I
might be violated at some time periods. Heuristic is thus re- SIMULATION RESULTS FORCASE 2
quired to adjust subproblem solutions to a feasible solution 2f______ — : :
the original problem [17]. In the heuristics, a list of immedi. P77 drerssns - OFmreion o o léi;lfg o
ately performable operations is created in the ascending or = gg2090 SSG 7310 5081 10.55% 022
of their beginning times from part subproblem solutions. Oy ST SSSGG ;;74568 987068810 igggg ?jg
erations are then scheduled on the required machine types $G 89020 97680 073% 2:31
cording to this list as machines become available. If the capac ~ #/14/80/447 88G 590856 648784 9.80% 4:46
SG 550651 649410 17.94% 5:00

constraint for a partICUIa.r maCh”t]e type IS YIOIated at tmﬂa i (8)The notation MT/M/P/O provides number of machine types (MT), number of machines (M),

greedy heuristic determines which operations should begin number of parts (?) and number of operations (0).

that time and which ones are to be delayed by one time ur Eb;Heuristics are applied after all the subproblems are solved once to obtain a feasible schedule.
C)Pseudo duality gap is actually used here, since the gap is calculated based on the primal cost

The subsequent operations of those delayed ones are then obtained froma feasible schedule instead of the true li'ig]al optimal, ’

layed by one time unit if precedence constraints are violate PCPU time is in minute:second.

The process repeats until the last operation in the ist. neuron will add up two values, the stagewise cost derived from

multipliers and the minimum of the cumulative costs of the suc-
C. NBDP ! L . . o
ceeding stage. Thaairwise comparisotto obtain the minimum

The above LR approach can be naturally mapped onto gimylative costs of the succeeding stage is carried out through
LRNN presented in Section IIl. The key challenge is to develqpe introduction of another layer otmparison neuronsThe
efficient subnetworks to solve part subproblems. One approa@hnections of comparison neurons and “state neurons” are sub-
is to map the above DP states onto neurons and mathematicglf to state transitions as shown in Fig. 6, where comparison
delineate state transitions by having constraints among neurqfisiyrons are represented by gray circles. The traditional back-
These constraints can then be handled by penalty or relaxaigiyd DpP algorithm is thus mapped onto a neural network with
methods. As mentioned in Section Ill, however, penalty methegmple topology and elementary functional requirements that

method will cause slow convergence. _ quired for subproblen is roughly twice the number of states
To overcome the above difficulties, NBDP is developdthe i, its DP structure, i.e2 x J; x K, whereJ; is the number of

key idea is to make the best use of the DP structure that alreggyyired operations for paitandK the time horizon.

exists and implement the DP functions by neurons. In doing this,since the DP structure is fully exploited in NBDP, the solu-

the DP structure illustrated in Fig. 5 is utilized where each stajgn, satisfies all subproblem constraints that are enforced by DP.

is represented by a neuron to obtain the cumulative cost. THgficulties such as infeasibility, local minima, and slow conver-
IThis is fundamentally different from the “neuro-dynamic programmingg(':‘ﬂce of subproblem solutions encountered by using the penalty

which was developed for the better training of feedforward neural networks [&r relaxation methods do not exist any more.
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TABLE Il
DATA AND FEASIBLE SCHEDULES FOR THEFIRST PROBLEM IN CASE 2

Notation: Due date (D), Operation (0), Machine_type (M), Beginning_time (BT), Processing_time (PT)

Part | D [8) M PT | BT P_I3 OP_30 | M03_01 | 4 21
P_1 |10 | OP_10 | MO1 01| 5 4 P_13 OP_40 | M04. 0L | 2 25
P_l OP_20 | M02.01 | 7 9 P_13 OP_50 | MO5_01 | 2 27
P_1 OP_30 | M03_01 | 5 16 P_14 |25 | OP_10 | MO1. 01 | 1 21
P_1 OP_40 | M04.01 | 3 21 P_14 OP_20 | MO2 01 | 4 27
P2 |15|0P10 | MO1 Ol | 5 10 ‘P_14 OP_30 | M0O3.01 | 4 32
P2 OP_20 | M02.01 | 7 20 P_14 OP_40 | M04.01 | 2 36
P_2 OP_30 | M03_01 | 5 27 P_14 OP_50 | MO5_01§ 2 38
P 2 OP_40 | M04_01 | 3 32 P 15|30 | OP_10 {MOL O1 | 1 20
P3 {20 | OP_10 | MOL 01| 5 15 P_15 OP_20 | M02 01 | 4 31
P_3 OP_20 | M02. 01 | 7 35 P_15 OP_30 | M03.01 | 4 36
P_3 OP_30 | MO3_01 | 5 42 P_1S OP_40 [ M04.01 | 2 40
P_3 OP_40 | M04.01 | 3 47 pP_15 OP_50 | M05.01 | 2 42
P4 |25|OP10 | MO1O1| 5 32 P_16 |20 | OP_10 | MO7. 01| 6 0
P_4 OP 20 | M02.01 | 7 42 P_l16 OP_20 | MO8 01| 6 6
P_4 OP_30 | MO3.01 | 3 49 P_16 OP_50 | MO5_01 | 4 13
P_4 OP_40 [ M04.01 | 3 54 P_l16 OP_60 [ M06_01 | 8 20
P_5 {30 {OP_10 | MOL1 01 ) 5 22 P_16 OP_70 | MO7.01 | 4 28
P_S OP_20 | M02_01 | 7 49 P_16 OP_80 | MO8 OL | 4 32
P_5 OP_30 | M03_01 | 5 56 P_17 [ 30 | OP_10 | MO7.01| 6 6
P_5 OP_40 | M04.01 | 3 61 P_17 OP_20 | MO8 01 | 6 12
P6 {10 OP_10 | MO5 01| 4 0 P_17 OP_50 | M05_01 | 4 19
P_6 OP_20 | M06 01| 8 4 P_17 OP_60 | M06_01 | 8 28
P_6 OP_30 | M0O7. 01 | 4 12 pP_17 OP_70 | MO7.01 | 4 36
P_7 |20 | OP_10 | MO5 01 | 4 4 P_17 OP_80 | M08 01 | 4 40
P_7 OP_20 [ MO6_01 | 8 12 P_18 |40 | OP_10 | MO7.01 | 6 16
pP_7 OP_30 | M07.01 | 4 22 P_i8 OP_20 | M08 01 | 6 22
P8 |30 | OP_10 | MO5_01 | 4 23 P_18 OP_50 | M05_01 | 4 29
P_8 OP_20 | M06_01 | 8 36 P_18 OP_60 | M06_0L | 8 44
P_8 OP_30 | MO7.01 | 4 46 P_13 OP_70 | M07.01 | 4 52
P9 140 | OP_10 | M05 01 | 4 44 P_18 OP_80 | MO8 Ol | 4 56
P_9 OP_20 | M06_01 | 8 52 P_19 |50 | OP_10 | MO7 01| 6 40
P9 OP_30 | MO7.01 | 4 62 P_19 OP 20 | MO8 Ol | 6 46
P_10} 50 | OP_10 | MO5_O1 | 4 56 P_19 OP_50 | MO5_0L | 4 52
P_10 OP_20 | M06_01 | 8 68 P_19 OP_60 | M06_01 | 8 60
P_10 OP_30 | MO7.01 | 4 76 P_19 OP_70 | M0O7.01 | 4 68
P 11|10 | OP_10 | MO1.O1 | 1 0 P_19 OP_80 | MO8 01 | 4 72
P_11 OP 20 | M02.01 | 4 1 P 20| 60 | OP_10 | MO7.01 | 6 56
P_I1 OP_30 | MO3.01 | 4 5 P_20 OP 20 | MO8 OL | 6 62
P_11 OP_40 | MO4. 01} 2 9 P_20 OP_50 | MO5. 01 | 4 68
P_l1 OP_50 | MO5_01 | 2 11 P_20 OP_60 | M06_01 | 8 76
P 12|15 )| 0P_10 [ MOL OL | 1 2 P_20 OpP_70 | MO7.01 | 4 84
P_12 OP_20 | M02_01 | 4 5 P_20 OP_80 | MO8 01 | 4 88
P_12 OP_30 | M03_01 | 4 9
P_12 OP_40 [ M04.01 | 2 13
P_12 OP_50 | MO5_01 | 2 17
P_13 |20 | OP_10 | MO1 01| 1 9
P_13 OP_20 | M02. 01 | 4 16

LRNN can be implemented by analog circuits or by digitgplicitly considered in the overall network design. One way is to
circuits. It is clear that given a set of multipliers, NBDP obtainapdate multipliers after NBDP solves all the subproblems. This
a global optimal solution for the subproblem after the signalgill be referred to as the “SG approach” since it follows the
propagate from the last stage to the first stage. If NBDP is inraditional LR framework using the subgradient method to up-
plemented by an analog circuit and assume that signals candate the multipliers. Another way is to update multipliers after
stantly propagate through the stages, then the convergenc®&BDP solves only one subproblem. This will be denoted as the
LRNN is similar to that of the traditional LR method howevet'SSG approach” because it follows a particular implementation
with almost zero time to solve subproblems. If signals cannot the surrogate subgradient method, where previous results for
instantly propagate through the stages, the convergence pratbier subproblems are used to obtain the surrogate dual and the
of LRNN is quite complicated since it is difficult to model thesurrogate subgradient [21]. Since one subproblem is minimized
propagation and interaction of signals in DP. If NBDP is imwhile solutions for others are kept the same, the surrogate dual is
plemented by a digital circuit, signal propagation has to be edecreased satisfying (3.1). In fact, the digital version of LRNN



LUH et al: LRNN FOR JOB SHOP SCHEDULING 87

is a discrete-time system, and its convergence can be guarantadthrdware. In view of NBDP’s simple topology and the ele-

if the proof is modified appropriately as what was presented imentary function requirements as illustrated in Section IV, hard-

[21]. Preliminary architectural design of LRNN hardware foware implementation is feasible. Such an implementation can

job shop scheduling can be found in [11]. drastically reduce the computation time, thus allowing more it-
Both the SG approach and the SSG approach for the dayations to be performed within a fixed amount of time to im-

ital version of LRNN will converge. The convergence, howeveprove solution quality. It also allows larger and more compli-

may be slow for such a combinatorial optimization problentated problems to be solved within reasonable amount of com-

The algorithm is therefore stopped when certain criteria are sptitation time.

isfied based on CPU time or the number of iterations. Heuristics

are then applied to obtain a feasible schedule, and the duality VI. CONCLUSIONS

gap will provide a measure of solution quality. For SSG, only

. : : . In this paper, a novel LRNN is developed for separable opti-
the surrogate dual is available. To obtain the true duality gar%ization ?Jrgblems by combining recurrgnt neuralpnetwork Sp-
multipliers are fixed at the final iteration of SSG, and all sub-

problems are resolved by using NBDP's. In this way, the dugwization ideas with LR for constraint handling. Its general
cost is obtained and the duality gap is ca.lculated ' convergence is established, allowing flexibility for the decision

neuron dynamics. A framework is thus established for LRNN to
solve this class of problems, where the key is the design of effi-
cient subnetworks for subproblems. As a specific application to

Testing of LRNN for basic job shop scheduling problems dgeb shop scheduling, the novel NBDP is developed to effectively
scribed in Section IV has been conducted by simulating the digplve part subproblems. With NBDP, difficulties of integer vari-
ital version of LRNN on a PC and then feeding the results fbles and subproblem local minima and solution infeasibility
heuristics [17]. Recall that Hopfield-type networks and its varare avoided. Numerical testing demonstrated that the method
ations have been developed for job shop scheduling. Becaissable to provide near-optimal solutions for practical job shop
these methods have difficulties in dealing with integer variablesheduling problems and is much better than what have been
and system-wide as well as local constraints, results reportediggorted in the neural network scheduling literature. In addi-
mostly for small problems (the 14 parts and 7 machines probléian, the method has the potential to be implemented in hardware
in [15] and the 20 parts and 5 machines problem in [14]). In comdth much improved quality and speed, where applications are
trast, LRNN aims at solving practical problems. In our testingot limited to job shop scheduling problems only. Rather, it can
both the SG approach and the SSG approach are simulated, lamépplied to separable integer or mixed-integer optimization
results for problems of various sizes have been obtained oprablems with stagewise additive subproblem cost functions, a
Pentium Il 400-MHz PC as summarized in the following. generic class of problems with many important applications.

Case 1: This case demonstrates that LRNN generates the op-
timal schedule for a small problem. There are 3 machine types APPENDIX
with 1 machine each and 4 parts with a total_of 1.2 operaﬂons.ThiS appendix presents the input data and the resulting sched-
For every part, the due date is —1 and the weight is 5, and theTgS for the first probl e 5 h in Table Il E
. k X LT problem of Case 2, as shown in Table IIl. For
Is no part earliness penalty. The operation beginning times Wis problem, each machine type has one machine, and for ever
tained by SG and SSG within one second are identical as pre- P " : P . ' every
sented in Table I. in conjunction with the operation processirﬁrt’ the tardiness weight is 1 and there is no part earliness
! . . : ! nalty.
timesp;; and the required machine typés Since the duality
gap obtained is 0, the solution is optimal.

Case 2: This case is to demonstrate that LRNN generates
near-optimal schedules for practical problems with data setsThe authors would like to thank Prof. S.-C. Chang, Prof. T.-D.
based on a factory of Sikorsky Aircraft at Stratford, CT. Th€hieu, and K.-H. Chen of the National Taiwan University for
algorithm is stopped if the CPU time is more than 5 min or theollaborating on hardware design, and Prof. Y. C. Ho of Harvard
duality gap is less than 10%. Summary of testing results are ptiversity, and Prof. M. Caramanis, Prof. C. Cassandras, and
sented in Table Il. Since the amount of data is substantial, d&of. D. Castanon of Boston University for valuable comments
tailed information is only provided for the first problem in theand suggestions.

Appendix. Other information is available at our web Site.
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