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An Effective Method to Reduce Inventory in Job Shops

Peter B. Luh, Xiaohui Zhou, and Robert N. Tomastik

Abstract—Inventory plays a major role in deciding the overall manu-
facturing costs, and a good scheduling system should balance the on-time
delivery of products versus low work-in-process (WIP) inventory. In this
paper, the "CONstant work-in-process" (CONWIP) concept is applied to
job shop scheduling to effectively control WIP inventory. A new mathemat-
ical formulation of CONWIP-based job shop scheduling with a separable
structure is presented. By using a synergistic combination of Lagrangian
relaxation, dynamic programming, and heuristic methods, good schedules
are obtained in a reasonable amount of computation time. Results show
that the new method can directly control the maximum WIP levels while
maintaining good on-time delivery performance.

Index Terms—Job shop, Lagrangian relaxation, manufacturing sched-
uling, work-in-process inventory.

I. INTRODUCTION

Inventory plays an important role in scheduling because it has a
major impact on overall manufacturing costs. Excessive inventory cre-
ates the needs for floor space, equipment, and manpower to transport,
stock, and manage the inventory with no added value. Furthermore, de-
fects are more difficult to detect, creating high rework and scraps. This
study was motivated by a request from Sikorsky Aircraft, one of our in-
dustrial partners, to better control work-in-process (WIP) for job shops
while maintaining good on-time delivery performance.

In most job shops, the “push-based” material requirement planning
(MRP) is used as a production planning and scheduling tool. The
WIP of these shops, however, is usually high mainly because of
long lead times of MRP to handle shop floor uncertainties and the
ignorance of machine capacities during the planning process. The
“pull-based” just-in-time (JIT) production control manages WIP but
is only applicable for repetitive manufacturing. Most other scheduling
systems do not directly control inventory. Recently, the “CONstant
work-in-process” (CONWIP) concept receives significant attention
because of its simplicity in implementation, effectiveness in inventory
control, and a few other advantages. Originally introduced for serial
production lines, the strict CONWIP requires the number of parts
simultaneously in the system to be equal to a certain constant—the
maximum level of WIP allowed. It is argued that the CONWIP system
is more effective than MRP and is more widely applicable than JIT [7].

For CONWIP-based serial production lines, the first-come
first-served (FCFS) rule is usually used as the dispatching rule at
work centers, and the key issue is to sequence the releases of raw
materials to adequately utilize the machines and increase system
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throughput. Several heuristic methods have been presented in the
literature. A heuristic method of releasing the highest priority job first
for a multistation network was presented in [8], and a static work
balance sequencing rule was used in scheduling networks of queues
in [3]. CONWIP production lines were modeled as a tandem queuing
system with a constant WIP level (number of containers) in [4], and
the releasing sequence was obtained based on mean throughput and
flow time using mean value analysis (MVA). The quality of schedules
obtained by heuristic methods, however, is difficult to quantify and
may be far from satisfaction.

The CONWIP concept can in principle be applied to other manufac-
turing settings (e.g., job shop). For CONWIP-based job shop sched-
uling, not only the releasing sequence of raw materials is important,
but also the sequences of remaining operations on various machines are
critical. Consequently, the problem is more complicated, and very little
result has been reported. Based on our previous work [2], [6], a new
formulation for CONWIP-based job shop scheduling is presented in
Section II . Unlike other existing models, the CONWIP constraints pre-
sented here are additive and maintain the separability of the overall for-
mulation. These CONWIP constraints are treated as extended machine
capacity constraints and are effectively handled by using Lagrangian
relaxation as presented in Section III. Numerical testing presented in
Section IV shows that the method can directly control the maximum
WIP level while maintaining good on-time delivery performance.

II. PROBLEM FORMULATION

Extending the formulation of [2], the CONWIP-based job shop
scheduling is formulated as an integer optimization problem. Assume
that there areH machine types, each containing one or several identical
machines. These machine types are indexed byh, h = 0; � � � ; H � 1.
There areI parts, and parti, 0 � i � I � 1, has due datedi and
priority !i and consists ofJi nonpreemptive sequential operations.
Operationj, 0 � j � Ji�1, of parti is denoted as(i; j) and requires
a machine of typeh belonging to a given set of eligible machine types
Hij for a specified processing timepijh. The scheduling horizon
consists ofK time units, indexed byk (k = 0; � � � ; K � 1). The
objective function and constraints of the formulation are presented
below.

A. Objective Function

The goals of on-time delivery and low WIP inventory are modeled
as weighted penalties on tardiness and on releasing raw materials too
early (the earliness penalties) in the objective function, i.e.,

J �

I�1

i=0

!iT
2

i +

I�1

i=0

�iE
2

i : (2.1)

In the above, the tardinessTi is the amount of overdue time, i.e.,
max(ci�di; 0) with ci the part completion time (the completion time
of the part’s last operation) anddi its due date. EarlinessEi is de-
fined as the amount that part beginning time (the beginning time of
the part’s first operation) leads the desired release time following [2].
The purpose of tardiness penalties is to maintain good on-time delivery
performance, while the purpose of earliness penalties is to prevent re-
leasing raw materials too early, indirectly controlling WIP inventory.
The weights are selected based on the following guidelines: the tar-
diness weight!i of part i reflects the importance or priority of the
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Fig. 1. An illustration of an inventory variable.

part (generally 1–10), and the earliness weights�i is inversely propor-
tional to the corresponding tardiness weight. This is because a part with
higher priority should be allowed to start earlier to meet its due date,
and the earliness penalty should be the secondary as compared to the
tardiness penalty.

B. Machine Capacity Constraints

The machine capacity constraints state that the total number of op-
erations assigned to machine typeh must be less than or equal to the
number of machines available at any time, i.e.,

I�1

i=0

J �1

j=0

�ijkh �Mkj ; k = 0; � � � ; K � 1; h 2 H (2.2)

where�ijkh is a 0–1 integer variable equal to 1 if operation(i; j) is
processed on machine typeh at timek, and 0 otherwise, i.e.,

�ijkh =
1; bij � k � cij

0; otherwise

wherebij andcij are the beginning and completion times of operation
(i; j), respectively.

C. CONWIP Constraints

For serial production lines, the CONWIP constraints are usually
modeled by having a fixed number of “containers” or “cards” in the
system, and when both a new material and a vacant container or card
are available, the new material will be released into the system to make
the overall WIP constant. For job shops, a part is counted as WIP after
it is released to the shop up to its completion, i.e., from the beginning
of its first operation to the completion of its last operation. A set of
0–1 integer “inventory variables”f�ikg is therefore introduced. It
equals 1 when parti is in the shop at timek, and 0 otherwise, i.e.,

�ik
1; bi;0 � k � ci;J �1

0; otherwise .

An inventory variable of parti with release time equal to 2 and com-
pletion time 14 is illustrated in Fig. 1.

The strict constant WIP control policy for serial production lines may
not be good for job shops. This is because due dates of parts may vary
widely, and releasing materials too early to satisfy the strict CONWIP
constraints may result in higher WIP and higher cost because of the ex-
istence of earliness penalties. Therefore, the CONWIP-based job shop
requires the number of parts simultaneously in the shop to be less than
or equal toW , the maximum WIP inventory allowed at any time, i.e.,

I�1

i=0

�ik �W; k = 0; � � � ; K � 1: (2.3)

D. Operation Precedence Constraints

An operation cannot be started until its preceding operation has been
finished, i.e.,

cij + 1 � bi;j+1 8(i; j) (2.4)

wherecij andbi;j+1 are the completion time of operation(i; j) and
the beginning time of operation(i; j + 1), respectively. The term "1"
is required in (2.4) since operation(i; j) is assumed to be completed
at the end of time unitcij , and operation(i; j + 1) is assumed to be
started at the beginning of time unitbij . For the same reason, the term
“1” also appears in the following processing time requirements.

E. Processing time Requirements

Each operation must be assigned the required amount of processing
time on a selected machine type h belonging to the given set of eligible
machine typesHij , i.e.,

cij = bij + pijh � 1 8(i; j);h 2 Hij (2.5)

The overall problem is to minimize the objective function (2.1) sub-
ject to constraints (2.2)–(2.5) by selecting the machine typesfhijg and
beginning timesfbijg for all operations. Oncefbijg andfhijg are se-
lected,fcijg, fTig, fEig, f�ijkhg, andf�ikg can be easily derived.
Since all the constraints are linear and the objective function is addi-
tive, the problem is “separable,” which is essential for Lagrangian re-
laxation to be effective.

III. SOLUTION METHODOLOGY

Machine capacity constraints and CONWIP constraints are first re-
laxed by using Lagrangian multipliers. The “relaxed problem” can then
be decomposed into smaller and easier part subproblems. These sub-
problems are solved by using backward dynamic programming (BDP)
with stages corresponding to operations, precedence constraints em-
bedded in state transitions, and the “inventory” component of the part
costs (WIP cost) efficiently calculated by treating CONWIP as an “ex-
tended” machine type. Finally, a heuristic method is developed to gen-
erate feasible schedules satisfying all the constraints based on sub-
problem solutions.

A. Lagrangian Relaxation

By using Lagrangian multipliers�kh to relax machine capacity con-
straints and�k the CONWIP constraints, the following relaxed problem
is obtained:

minL; with L �
i

(!iT
2

i + �iE
2

i )

+
i jkh

�kh�ijkh �
kh

�khMkh

+
i k

�k�ik �
k

�kW (3.1)

subject to (2.4) and (2.5). By regrouping relevant terms, the relaxed
problem can be decomposed into the following part-level subproblems:

min
fb ;h g

Li; with Li � !iT
2

i + �iE
2

i

+

J �1

j=0

c

k=b

�kh +

c J �1

k=b

�k (3.2)

subject to (2.4) and (2.5). The above costLi includes tradiness penalty,
earliness penalty, the cost for using machines, and the cost for con-
tributing to WIP.

B. Dynamic Programming

In solving part subproblems, the backward DP is used, with stages
corresponding to operations and precedence constraints embedded in
state transitions following [1] and [5]. Since inventory variablesf�ikg
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involve queue times as well as operation processing times, the calcula-
tion of the WIP cost within BDP is not easy.

From another point of view, CONWIP can be treated as an extended
machine type with capacity equal toW . The major difference between
this extended machine type and a regular machine type is that a “WIP”
operation does not have a “fixed processing time.” It starts as a part is
released to the shop and completes when its last operation is finished
as explained earlier. Since undetermined queue times are involved, the
completion time cannot be uniquely calculated for a given beginning
time in advance. Neverthless, the following identity holds:

c

k=b

�k =

c

k=0

�k �

b �1

k=0

�k: (3.3)

Consequently, the WIP cost can be allocated to the first and the last
operation, and be easily calculated.

The BDP algorithm starts from the last stage with the following ter-
minal cost:

Vi;J �1(bi;J �1; hi;J �1) = !iT
2

i +

c

k=b

�kh +

c

k=0

�k:

(3.4)

The cumulative cost when moving backward is calculated recursively
by

Vi;j(bij ; hij) = min
fb ;h g

�iE
2
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�k �i
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c

k=b

�kh + Vi;j+1(bi;j+1; hi;j+1)
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c

k=b

�kh

+ min
fb ;h g

(Vi;j+1(bi;j+1; hi;j+1));

0 � j � Ji � 2 (3.5)

where�i is an integer variable equal to one if operation(i; j) is the first
operation of parti, and zero otherwise. The optimalL�i is obtained as
the minimal cumulative cost at the first stage, and the optimal beginning
times and the corresponding selected machine types can be obtained by
tracing forward the stages.

C. Dual Problem

Given the optimal subproblem costsfL�i g, the high level dual
problem is obtained as

min
f� ;� g

D;

with D =
i

L
�
i �

kh

�khMkh �
k

�kW (3.6)

subject to�kh � 0; k = 0; � � � ; K � 1;h 2 H (3.7)

and�k � 0; k = 0; � � � ; K � 1: (3.8)

In this study, the subgradient method is used to iteratively update
Lagrangian multipliers in solving the dual problem.

D. Obtaining Feasible Solution

Since the machine capacity constraints and the CONWIP constraints
are relaxed, the solutions for part subproblems, when put together,

may not be feasible. With the updating of multipliers at the high level,
the part subproblem solutions will be more and more feasible. If the
dual problem solution can converge to its optimal, the corresponding
optimal part subproblem solutions, when put together, is an optimal
primal solution when there is no duality gap. When there is an inherent
duality gap, the optimal part subproblem solutions may be infeasible,
but they will provide valuable information for the construction of the
feasible primal solution in heuristics.

A modified version of the list scheduling heuristics of [6] is devel-
oped to generate a feasible schedule based on subproblem solutions.
In the heuristics, operations are first arranged in a list in the ascending
order of their subproblem beginning times. They are then assigned to
machines according to this list as machines become available. When
operations have same beginning times, they are sorted in the list ac-
cording to the incremental cost as defined in [6], and the operation
with higher incremental cost will be scheduled first. In addition, the
WIP level is computed for each timek, and only when the WIP level
is smaller thanW can a new part be released. Otherwise, new parts are
delayed to the next time slot. The process is repeated until all operations
are assigned, and the cost for this feasible schedule can be computed.
This heuristics can be run many times as the multipliers are updated,
and the schedule with the lowest cost is chosen as the final schedule.

IV. NUMERICAL RESULTS

The method has been implemented in C++ on a Pentium II 400-MHz
personal computer. Three examples are presented below to demonstrate
the method and to present insights obtained. In the testing, all the mul-
tipliers are initialized to zero, and the subgradient algorithm terminated
after a fixed number of iterations (Examples 1 and 2), or after a fixed
amount of CPU time for the larger Example 3. In addition, the “time
step reduction technique” is used to handle the long time horizon for
Examples 2 and 3 following [6].

A. Example 1

Eleven data sets were randomly generated in this example to assess
the impact of CONWIP levels. There are 10 to 14 machines and 100
parts for each data set. For each part, there are two to five operations.
The tardiness weight equals 1 and the earliness weight equals 0.5. The
machine types, operation processing times, and part due dates were ran-
domly generated with discrete uniform distributions within appropriate
intervals.

The job shop scheduling results without CONWIP constraints were
obtained first, and the maximum WIP was recorded for each case. Then,
the CONWIP-based job shop scheduling results were obtained for dif-
ferent CONWIP levels (W was set as a fractionC times the maximum
WIP and rounded up to the next integer). The detailed job shop sched-
uling results without CONWIP constraints are presented in Table I.

Among the 11 data sets, the first 10 have high machine utilization
(around 80%). They reflect our past experience that, in reality, many
parts can be overdue and, therefore, should be processed as soon as pos-
sible. The duality gaps of these ten cases are illustrated in Fig. 2. Higher
duality gap is expected for CONWIP-based job shop because the ad-
ditional CONWIP constraints are relaxed. It can also be seen from
the figure that when CONWIP constraints are loose(C = 0:8), the
schedule quality measured in terms of duality gap is good (the average
duality gap is 24.06%) as it is not too difficult to satisfy the CONWIP
constraints. When CONWIP constraints are very tight(C = 0:2), the
schedule quality is also good (the average duality gap is 24.06%). This
is because the multipliers relaxing CONWIP constraints dominate the
solution process, whereas the multipliers relaxing machine capacity
constraints are mostly inactive. If these two types of constraints are
both active(C = 0:6 andC = 0:4), relatively larger gaps (39.58%
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TABLE I
NUMERICAL RESULTS FOREXAMPLE 1

Fig. 2. Duality gaps for cases 1–10.

TABLE II
COSTS FORCASE 1 AND CASE 11 IN EXAMPLE 1

and 40.71%, respectively) are encountered. The feasible costs do in-
crease asC decreases, as illustrated by the third row of Table II for
Data Set 1.

To explore the performance of this algorithm under low machine
utilization situation, the 11th data set is generated based on Data Set 1
by reducing all the operation processing times to half and then rounded
up to the next integer value. Material arrival times are generated based
on a Poisson distribution, and part due dates are set to be the material
arrival times plus the due dates of Data Set 1. The machine utilization
is decreased to an average of 44.9%. The scheduling costs for different
CONWIP levels are presented in the fourth and fifth row of Table II.
Compared with high utilization results, the similar trend is observed.
Since most parts can satisfy their due dates and Lagrange Relaxation
is a due date driven method, the costs are much less than those of Case
1, resulting in higher relative gaps.

TABLE III
NUMERICAL RESULTS FOREXAMPLE 2

Fig. 3. Plot of average WIP versus feasible costs.

B. Example 2

This example is to illustrate the effects of having CONWIP con-
straints in optimization. There are 5 different machines and 100 parts.
Each part has 2–12 operations, and the weight settings are the same
as in Example 1. Two methods are tested: one with the CONWIP con-
straints applied in both optimization and heuristics, and the other with
the CONWIP constraints only included in heuristics. Scheduling re-
sults for different CONWIP levels are presented in Table III.

Although the average WIP levels shown in Table III are below the
maximum allowed levels, the maximum WIP levels were reached
many times for all the cases. From Fig. 3, it can be seen that having the
CONWIP constraints in optimization significantly reduced feasible
costs as compared to the cases that CONWIP constraints were only
included in heuristics, and the effect is drastic asW decreases. It is
also observed that the feasible costJ becomes larger asW decreases
because more parts are delayed, and the rate of increase is steep as
W reduces below a certain threshold. This threshold, however, may
not be apparent by simply looking at the problem, and the tradeoff
between on-time delivery and low WIP inventory may not be easy
without such results.

C. Example 3

This data set was created by randomly picking 180 parts from a real-
istic database. There are 14 different machines and each part with 2–15
operations for a total of 1504 operations.initial WIP (parts already in
the shop before scheduling) is 30, most parts are due very early, and 10
parts are due very late (around 70 days after the scheduling beginning
time). Two cases were tested to examine the effectiveness of CONWIP
constraints in controlling WIP. The algorithm stopped after 10 min of
CPU time, and the results are presented in Table IV.

In Case 1, there are no CONWIP constraints, and the WIP over the
scheduling horizon is depicted in Fig. 4. The WIP levels are very high
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TABLE IV
NUMERICAL RESULTS FOREXAMPLE 3

Fig. 4. WIP distribution for Example 3.

for the first 20 days because parts that have very early due dates are
released to fully utilize the machines, regardless of the WIP level. The
parts with very late due dates are not released in view of the existence
of earliness penalties. The solution quality, as measured in terms of
duality gap, however, is good for this case.

In Case 2, CONWIP constraints withW = 40 were added, and
the WIP over the scheduling horizon is overlaid in Fig. 4. Compared
to Case 1, the WIP levels are much lower. At the same time, the
feasible cost increases only slightly because the CONWIP constraints
were included in optimization, and the resulting schedule maintains
good on-time delivery performance. The maximum WIP decreased
drastically for the first 20 days and the delay on part completion is
very small.

V. CONCLUSIONS

A new separable formulation for CONWIP-based job shop sched-
uling is presented. A Lagrangian relaxation-based algorithm is devel-
oped to solve the problem. Testing results demonstrate that it can gen-
erate schedules with controllable WIP levels. At the same time, good
on-time delivery performance is obtained.

The formulation can also be easily extended to cover other situa-
tions. For example, different part types may vary in size and value, and
it may be more reasonable to have different weights for different part
types in calculating WIP levels. This constant weighted WIP concept
can be easily formulated by having weights for parts in (2.3). Another
example is that a job shop may want to limit WIP levels down to indi-
vidual part types or families of part types as opposed to having one WIP
level for the entire factory. This can be similarly modeled by having the
CONWIP constraints for selected part types or families of part types.
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Deadlock Avoidance in Flexible Manufacturing Systems
Using Finite Automata

Ali Yalcin and Thomas O. Boucher

Abstract—A distinguishing feature of a flexible manufacturing system
(FMS) is the ability to perform multiple tasks in one machine or work-
station (alternative machining) and the ability to process parts according
to more than one sequence of operations (alternative sequencing). In this
paper, we address the issue of deadlock avoidance in systems having these
characteristics. A deadlock-free and maximally permissive control policy
that incorporates this flexibility is developed based on finite automata
models of part process plans and the FMS. The resulting supervisory
controller is used for dynamic evaluation of deadlock avoidance based on
the remaining processing requirements of the parts.

Index Terms—Deadlock avoidance, finite automata, flexible manufac-
turing systems, supervisory control.

I. INTRODUCTION

A typical flexible manufacturing system (FMS) is composed of
single machines or workstations that can perform various operations
and a material handling system that interconnects these machines.
Raw parts enter the system at discrete points in time. These parts are
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