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Mixed coordination method for long-horizon optimal control problems 

JIANXIN TANGt, P. B. LUHt and TSU-SHUAN CHANGt 

We present a new approach to solving long-horizon, discrete-time optimal control 
problems using the mixed coordination method. The idea is to decompose a long­
horizon problem into subproblems along the time axis. The requirement that the 
initial state of a subproblem equal the terminal state of the preceding subproblem is 
relaxed by using Lagrange multipliers. The Lagrange multipliers and initial state of 
each subproblem are then selected as high-level variables. The equivalence of the 
two-level formulation and the original problem is proved for both convex and non­
convex cases. The low-level subproblems are solved in parallel using extended 
differential dynamic programming (DDP). An efficient way to find the gradient and 
hessian of a low-level objective function with respect to high-level variables is 
developed. The high-level problem is solved using the modified Newton method. 
An effective procedure is developed to select initial values of multipliers based on the 
initial trajectory. The method can convexify the high-level problem while maintain­
ing the separability of an originally non-convex problem. The method performs 
better and faster than one-level DDP for both convex and non-convex test 
problems. 

1. Introduction 
Large-scale optimal control problems are generally difficult to solve because of 

their inherent high dimensionality, problem complexity and non-linear behaviour. 
There are many different techniques for problems of small to medium size, but there 
have not been many efficient methodologies for solving large-scale problems. Some 
methods, such as goal coordination and model coordination, were developed along 
the line of state decomposition and coordination (Mesarovic et al. 1969, Jamshidi 
1983). For many large-scale problems, the long time horizon adds another dimension 
of difficulty. For this reason, 'incentive coordination' (Chang et al. 1990, Bromberg 
et al. 1989 a, b) and 'target coordination' (Chang et al. 1989) were recently developed 
along the line of time decomposition. The idea of incentive coordination is to modify 
the cost function of each subproblem by adding an incentive term to it. These incen­
tive terms are updated at a high level to insure overall optimality. In target coordi­
nation, the initial and terminal states of subproblems are selected as high-level 
coordination variables. Note that both the incentive and the target coordinations are 
primal methods. In this paper, we present another time decomposition approach for 
long-horizon optimal control problems using a mixed coordination method, which 
is a combination of the primal and the dual methods. 

The mixed coordination method for static optimization was presented by Singh 
(1978) and Tang et al. (1988, 1989). When applied to time decomposition and 
coordination of dynamic problems, a problem is first decomposed along the time axis 
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into smaller subproblems. The requirement that the initial state of a subproblem equal 
the terminal state of the preceding subproblem is relaxed by using Lagrange 
multipliers. The Lagrange multipliers and the initial state of each subproblem are then 
selected to be optimized at the high level. For a given set of high-level variables the 
low-level subproblems are decoupled optimal control problems with a shorter time 
horizon, and can therefore be solved in parallel. The high-level variables are then 
updated on the basis of low-level results, and the process repeats until convergence. 

Although many existing techniques can be used to solve the high-level problem 
and low-level subproblems, fast convergence and algorithm compatibility are of 
crucial importance in solving a two-level problem: see the discussion in Chang et 
al. (1989). In this paper, the differential dynamic programming (DDP) of Yakowits 
and Rutherford (1984) is extended for low-level subproblems, and the modified New­
ton method is used for high-level optimization. The reasons for selecting the DDP 
for low-level subproblems are that it has a quadratic convergence rate near the 
optimal, and can provide the first- and second-order derivative information needed 
for high-level optimization. The modified Newton method also has fast high-level 
convergence near the optimum. An effective procedure is developed to select the 
initial values of multipliers based on the given initial trajectory. 

Mixed coordination has an advantage over other coordination methods. When 
applied to non-convex problems the method preserves the separability of subpro­
blems even when quadratic convexification terms are added. As a result, the method is 
promising for problems with non-convex cost functions or non-linear system 
dynamics. Although the algorithms presented in § § 3 and 4 are only for the 
unconstrained case, they can be extended to problems with constraints on state and 
control variables. This investigation is currently under way. 

In § 2 we formulate the problem and describe the time decomposition procedure. 
The equivalence of the two-level formulation and the original problem is shown for 
the convex case. The algorithms presented in § § 3 and 4 are for convex and non­
convex problems, respectively. In § 4 the equivalence of the two-level formulation and 
the original problem is shown for the non-convex case. In § 5 the procedure for 
selecting initial values of multipliers based on the given initial trajectory is presented. 
Numerical results show that significant speedups are achieved for both convex and 
non-convex test problems in a simulated parallel processing environment. There are 
some concluding remarks in § 6. 

2. Mixed coordination formulation of optimal control problem 
Consider the following discrete-time optimal control problem. (For simplicity, the 

problem considered here is without terminal cost gN+ 1 (XN+ d· A problem with 
terminal cost can be converted to our formulation by lumping the terminal cost with 
gN(XN, UN) using system dynamics.) 

Problem P 

minJ, 
{u.} 

subject to the system dynamics: 

N 

with J == L gt(Xt , ut ) (1) 
t=i 
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Assume that gt and it are twice, continuously differentiable in X t and Ut for all t, and 
N = MT» 1, where M and T are positive integers. To facilitate time decomposition 
that will partition Problem Pinto M subproblems each with T stages, we shall adopt 
a double subscript notation. In the new notation, the first subscript is the subproblem 
index, and the second subscript is the stage index within a subproblem. Problem P 
can thus be rewritten as follows, 

Problem pi 

subject to: 

and 

minJ, 
{Uj.} 

M T 

with J == L L gjt(XjO Ujt ) 
j= 1 t= 1 

Xj(t+ 1) = !jt(Xjt , Ujt ), j == 1,2, ... , M, t = 1,2, ... , T 

Xj(T+l) = XU+1)1' j = 1,2, ,." M -1, t = 1,2, ... , T 

(4) 

(5) 

(6) 

XjtEXjtcRn and UjtEUjtcRm, j=1,2, ... ,M, t=I,2, ... ,T (7) 

Note that constraint (6) requires that the initial state of a subproblem equal the 
terminal state of the preceding subproblem. 

Using Lagrange multipliers to relax constraint (6), we have the following problem. 

Problem pI! 

max min minL, withL== I [f gjt(XjOUjt)+AJ[XU+l)l-X'(T+1)]] (8) 
P'j} {X(j+1)ll {Uj.} j=l t=l J 

with AM == X(M+l)l ==0, subject to constraints (5) and (7). Selecting {Aj}~11 and 
{xu+ 1)d~11 as high-level coordination variables, Problem pI! can be decomposed 
into the following M subproblems. 

Subproblems (P - j), j = 1,2, ... , M 
T 

min L j , with L j == L gjt(XjO Ujt ) - AJ Xj(T+ 1) (9) 
(Uj.) t= 1 

sub~ect to relevant constraints from (5) and (7). Let {UJ;(Aj , xjl)}T=l denote the 
optImal controls of Subproblem (P - j) for the given high-level variables Aj , X j l, and 
Lj(Aj, Xjl) the corresponding optimal cost. Then the high-level problem is to find the 
optimal {Aj}~li and {xu+i)d~l\ i.e. the following problem. 

Problem (P - H) 

max min L H , 
p.j} {X(j+ I)I} 

with Ao == AM == 0, subject to 

M 

where LH = L [Lj(Aj' x ji ) + A&-1)Xji ] 
j= 1 

XU+ i )l E X U+ i )l c Rn
, j = 1, 2, ... , M-1 

(10) 

(11) 

When the cost function is convex the system dynamics is linear, and X t and Ut are 
convex for all t, Problem P' is a convex programming problem. Equation (5) can 
be rewritten as 
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Theorem 1 

The solution of Problem (PI - H) is a saddle point. 

Theorem 2 

Problem (P - H) and Problem P" are equivalent. 

In Theorem 2, the two problems are equivalent in the sense that if ({Aj}, 
{x0+ l)l}) is the solution of Problem P - Hand {uj;(Aj, x0+ l)l)} is the solution of 
Subproblem (P - j) given ({Aj}, {x0+ l)d), then ({Aj}, {x0+ lid, {uj;(Ajx0+ l)l)}) is the 
solution of Problem P" and vice versa. The proofs of Theorems 1 and 2 are similar 
to those for the static problems due to Tang et al. (1989), and are omitted here. 

3. Mixed coordination algorithm for convex problems 
As mentioned in § 1, the algorithms presented here and in § 4 are for unconstrained 

problems only. That is, X jt = Rn and Ujt = Rm for all j and t in (7). For convex 
problems considered in this section, the DDP of Yakowits and Rutherford (1984) 
is extended for low-level subproblems, and the modified Newton method is 
adopted for high-level optimization. Two major difficulties are associated with the 
modified Newton method under the mixed coordination framework (Tang et al. 
1988, 1989). The first is how to obtain the gradient and hessian information in 
determining the Newton direction, since first- and second-order derivatives of the 
objective function with respect to all high-level variables are needed. The second is 
when to terminate a line search along a Newton direction, as the high level is a 
max-mini problem. An efficient way is developed here to find the high-level gradient 
and hessian information by exploiting the DDP algorithm. The line search stopping 
criterion, on the other hand, is based on the norm of the gradient vector (Dennis and 
Schnabel 1983). In this section, we shall first present the extended DDP algorithm to 
see how the needed information can be obtained, and then present the details of the 
high-level modified Newton method. 

3.1. Extended DDP for low-level subproblems 
DDP is a successive approximation technique for solving optimal control 

problems (Jacobsen and Mayne 1970, Ohno 1978, Yakowits and Rutherford 1984, 
Yakowits 1986, Chang et al. 1989). It consists of two steps: backward dynamic 
programming and successive policy construction. For Subproblems (P - j), the back­
ward dynamic programming procedure is first applied by making quadratic approxi­
mations of Subproblems (P -j) along a nominal trajectory, and formulating at each 
stage a quadratic programming problem in terms of variational state and control. 
By solving the quadratic programming problem at each stage, coefficients of the 
variational feedback controls and the variational cost-to-go functions are obtained. 
The successive policy construction procedure then uses these coefficients and the 
nominal controls to construct new controls and states forward in time, and to calcu­
late the new cost. If the cost is lower than the nominal one, the nominal trajectory 
is updated by the new trajectory. Otherwise the new controls are modified in a specific 

- - - - . 
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The extension of Yakowits and Rutherford (1984) is needed to represent the 
variational feedback controls and the variational cost-to-go functions explicitly in 
terms of all relevant high-level variables. To see how this can be done, consider 
Subproblems (P - j) with Aj and Xjl given. Let {iljt , t = 1, ":' T} be a g~ven set of 
nominal controls and {Xjt, t = 1, "., T + I} be the correspondlllg state trajectory. By 
taking a second-order Taylor series approximation of Problem (P - j) at the last 
stage, the approximate quadratic programming problem in variational terms can be 
formulated as follows: 

V}T(Aj, (jx jT ) = min QP[gjT(XjT' u jT ) - AI Xj(T+ 1)] 
~UjT 

where QP denotes the quadratic approximation operation, and 

QP[gjT(XjT' u jT ) - AI Xj(T+ 1)] == (jXITCljT(jXjT + (jUITCZjT(jXjT 

+ (jUITC3jT(jUjT + C4jT(jUjT + CSjT(jXjT 

+ AI C 7jT (jUj T + AI CSjT(jXjT 

(13) 

(14) 

The coefficients C ljT ' C ZjT ' C 3jT ' C 4jT ' C SjT ' C 7jT and C SjT are defined as follows: 

C ljT ==!VxxgjT 

CLT == VxugjT 

C3jT==!VuugjT 

CIjT == VugjT 

CIjT == VxgjT 

C 7jT == -BjT 

C SjT == -AjT 

(15) 

where V g. V g. and so on denote the first- and second-order derivatives of the 
x )T' xx JT . . .. 

stagewise cost function gjT' For convex problems, assume that matnx C 3jT IS pOSItIve 
definite; then problem (13) has a unique solution: 

where 

(jujr = -!C3j}(CIj T + CZjT(jXjT + CLTAj) 

== rtjT + {3jT(jXjT + ')IjTAj 

- lC-
l 

C
T 

} rtjT = - 2 3jT 4jT 

{3jT == -!C3j~CZjT 
- lC- 1 CT 

')IjT = -2 3jT 7jT 

(16) 

(17) 

are called control coefficients. Substituting (16) into (13), the optimal variational cost­
to-go function is given by: 
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where 
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D ljT = C ljT - PTTC3jTPjT 

D 2jT = C SjT - 2jJJT C 3jTYjT 

D 3jT = -yTT C 3jTYjT 

D 4jT = C SjT - 2aTTC3jTPjT 

D SjT = -2aTT C 3jTYjT 

(19) 

and @jT is the su~ of all. other terms not containing Aj or bxjT . Because oLH/oAj is 
very eas~ to obtam (as wlll be seen in (27)), coefficient D SjT in (19) will not be needed 
by the hlgh level. Therefore D Sjt for 1 :;( t < T will not be derived here. 

By following a similar derivation the quadratic approximation of an intermediate 
stage t, 1 :;( t < T, has the following form: 

QP[gjt(xjt> Ujt ) + V}(t+l)(Aj , bXj(t+1))] 

== bxJr Cljtbxjt + buTt C2jtbXjt + buJr C3jtbUjt + C4jtbujt 

+ CSjtbxjt + AT C6jtAjt + AT C7jtbUjt + AT CSjtbxjt (20) 

The calculations of Cljt> C 2jt> C 3jt> C 4jt> CSjt> C 6jt , C 7jt and C Sjt are as follows: 

C ljt = tVxxgjt + AJrDlj(t+ 1)Ajt 

C 2jt = Vxugjt + 2AJrDlj(t+ 1)Bjt 

C 3jt = tVuugjt + BJrDlj(t+ 1)Bjt 

Crjt = Vugjt + BJrD4j(t+l) 

CLt = Vxgjt + AJrD4j(t+l) 

C 6jt = D 3j(t+ 1) 

C 7jt = D 2j(t+l)BJr 

C Sjt = D 2j(t+ 1)AJr 

The optimal variational feedback control is given by: 

where 

lC-
l cT 

} a jt = -2 3jt 4jt 

Pjt = - tC3"} C 2jt 

- lC-1C Yjt - - 2 3jt 7jt 

(21) 

(22) 

Substituting (22) into (20), the optimal variational cost-to-go function is given by: 

where 
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D ljt = C ljt - PTtC3jt P jt 

D 2jt = C Sjt - 2PJrC3jtYjt 

D 3jt = C 6jt - yJrC3jtYjt 

D 4jt = C Sjt - 2aJrC3jtP jt 
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(24) 

To let (20)-(24) also cover the t = T case, we define the terminal conditions for 
equation (24) as follows: 

Dlj(T+l) = 0 

D 2j(T+l) = -J 

D 3j(T+l) = 0 

D 4j(T+l) =0 

where J represents an identity matrix. 
To ensure that the new controls we have constructed yield a cost lower than that of 

the nominal ones, the variational feedback control of (22) is modified as follows: 

bUjt = Bajt + PjtbXjt + BYjtAj (25) 

where parameter B is first set to be 1, then reduced by half if necessary until the new 
controls yield a cost lower than the nominal. 

Since (23) represents the optimal variational cost-to-go function at stage t, the 
optimal variational cost for Subproblems (P - j) is V}t. As a result, the derivatives 
of Lj(Aj' xjd with respect to high-level variables, e.g. oLj/OX(j+l)l, 02Lj/oX0+1)1' 

02 Lj/OA} etc., are readily available from the coefficients of V}l· 

3.2. High-level derivative information and modified Newton method 

The high-level variables are updated using the modified Newton method accord­
ing to 

X 2 1 

(26) 

where H is the hessian of L H , VLH is the gradient of L H, k is the high-level iteration 
index, and the step size 0:;( ak 

:;( 1 is determined by an appropriate line search 
procedure. From (8), (10) and (23) the high-level gradients are 

oLH 
-- =X(j+l)l -Xj(T+l) (27 a) 
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The high-level hessian matrix is 

2D311 I 0 0 

I 2D121 D221 0 

H= 0 D221 2D321 I (28) 

0 I 2D 131 

Note that this hessian matrix is with respect to high-level variables only, so its 
dimension will not be too large. Note also that H i.s not positive definite nor positive 
semidefinite. In fact, it is an indefinite matrix since the high-level solution is a saddle 
point (see Theorem 1). Consequently it is difficult to use the value of LH as the 
criterion in determining the step size ak• To overcome this difficulty we use the norm of 
the high-level gradient as the stopping criterion, as used by Tang et al. (1988, 1989). 
Let e denote the square of the euclidean norm of the high-level gradient, i.e. 

M-l [18LH 12 1 8LH 1
2J e(Aj' X(j+l)l) =.L ~ + ;) J=l UAj uX(j+l)l 

(29) 

The goal of the high-level optimization is to reduce e to zero or to minimize e. 
Therefore, if e has no other local minimum, its value can be used as the stopping 
criterion for the high-level line search routine (Dennis and Schnabel 1983). It has 
been proved by Tang et al. (1989) that e has a unique minimum for static problems. 
The proof of e having a unique minimum for dynamic problems is similar and is 
omitted here. In our algorithm, if 

'+1 '+1 .. 
e(Aj ,xu+l}d < e(Aj, XU+l)l) (30) 

is satisfied, where i is the index within a line search, then the line search is stopped. 

4. Mixed coordination for non-convex problems 
In this section we extend the results of § 3 to non-convex problems. One basic 

technique in dealing with non-convex problems is to add quadratic convexification 
terms to the standard lagrangian function (see, for example, Bertsekas 1982, Luen­
berger 1984). This convexification process, however, may destroy the separability of 
the original problem, and prevent the decomposition oflow-level subproblems. Many 
researchers have tried to overcome this difficulty by various approaches (see, for 
example, Bertsekas 1979 and Tanikawa and Mulai 1985, 1987 for static optimization). 
Because of the specific selection of high-level variables, our method preserves the 
separability of the original problem even when quadratic convexification terms are 
added. Further, the information needed for high-level optimization is again readily 
available from low-level subproblems, and the dimension of the high-level hessian 
matrix is the same as that for convex problems. 

Mixed coordination for optimal control 

Problem Pn 

max min min L n , 
p.j} {X(j+ 1)il {Ujt} 

M T 

with Ln == .L L gjt(Xjt> Ujt ) + AT [xu+ 1}1 - Xj(T+ 1}] 
J=l t=l 

C
1 

2 + 2 X(j+l}l - Xj(T+l}1 
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(31) 

subject to constraint (5). In Problem Pn AM == x(M + 1)1 == 0, c is an appropriate 
positive constant, and subscript n denotes non-convexity. The choice of c will be 
dis~ussed later in this section. By selecting {AJ~11 and {xu+l}d~11 as high-level 
vanables, Problem Pn can be decomposed into the following M subproblems. 

Problem (P - j') j = 1,2, ... , M 

subject to 

Xj(t+ 1} = jjt(Xjt> Ujt), t = 1, ... , T 

The high-level problem, similar to Problem (P - H) in § 2, is as follows. 

Problem P - H' 

max min L'n 
p.j} {X(j+ l)il 

where L'n = j~l ( Lj*(Aj' x j1 , Xu+ 1)1) + [AU-l}Xj1 + ~ IX(j+ 1)11
2 J) (33) 

where. Ao == AM == X!M + 1)1 == 0, and Lj*(') denotes the optimal low-level cost, given 
the hIgh-level vanables. From (32) and (33) we see that the separability of the 
original problem is preserved even with the presence of cross product terms 
{xI<T+l}x(j+l}d. This is one advantage of mixed coordination over the augmented 
Lagrange relaxation method. To show the existence of a saddle point for Problem 
(P- H') and the equivalence of the one-level and two-level approaches, the following 
notation is needed. Let 

= (T T T T )T XH - X21' X31' ... , XU+1)1' ... , XM1 

A == (Ai, AI, ... , AI, ... , A1_1)T 

U == (ui, uL ... , U1)T 

We have Theorems 3 and 4 below. 

Theorem 3 
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Theorem 4 

Problem (P - H') and problem Pn are equivalent. 

In Theorem 4 the two problems are equivalent in the sense that if z* is a local 
solution of Problem (P - H') and u*(z*) is a local optimal solution of Problem (P - j'), 
given z*, then (z*, u*(z*)) is a local solution of Problem Pn , and vice versa. The proof 
of Theorem 4 is similar to that for Theorem 2 and is omitted here. 

4.2. Extended DDP for low-level subproblems 

The major difference between (32) and (9) is that Subproblems (P - j') contain not 
only the high-level variables Aj and Xj1, but also x(j+ 1)1. Therefore, additional infor­
mation from Subproblems (P - j') with respect to X(j+ 1)1 is needed at the high level. 
Consequently the forms of the optimal variational controls and variational cost-to­
go functions for Subproblems (P - j') have to be modified to include explicitly x(j+ 1)1. 

By adapting a procedure similar to that in § 3 we have the following results for stage t 
(1 ~ t ~ T). 

The quadratic approximation of Subproblems (P - j') at stage tis: 

QP[gjt(xjt , Ujt ) + f}(t+ l)(Aj, bXj(t+ 1), X(j+ l)dJ 

== bX!tC1jtbXjt + bu!tCZjtbXjt + bU!tC3jtbUjt 

+ C4jtbUjt + CSjtbXjt + AT C6jtAj + AT C7jt bUj 
.. T T T C J; + Aj CsjtbXj + X(j+ 1)1 C9jt , X(j+ 1)1 + X(j+ 1)1 10jtUUjt 

+ X&+l)l ClljtbXjt + X&+l)l C1ZjtAj + C13jt X(j+1)1 (34) 

The calculations of C4 , Cs, C6 , C7 and Cs are the same as those in § 3 except that Ajt is 
replaced by Vxht and Bjt by Vuht. The calculations of C1, Cz , C3, C9, C10 , C11 , C12 

and C 13 are as follows: 

C1jt =![ V xxgjt + 2Vxh: D1j(t+ 1) V xht + ;t
1 

(D4j(t+ 1) + DL(t+ 1)Aj 

+ D~j(t+ 1) X(j + 1)1); V xx ((ht);) ] 

n 

CZjt = V xugjt + 2"11 xh: D1j(t+ 1) Vuht + I (D4j(t+ 1) + DL(t+ 1)Aj 
;= 1 

+ D~j(t+ 1)t X(j + 1)1); V xu ((ht);) 

C3jt = ~[ Vuugjt + 2Vuh: Dlj(t+ 1) Vuht + ;t1 (D4j(t+ 1) + DL(t+ 1)Aj 

+ D~j(t+ l)X(j+ 1)1); V uu((ht);) ] 

C9jt = D6j(t+ 1) 

C10jt = D7j(t+ 1) Vuht 

(35) 
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In the above equations n is the dimension of x, the terms V xx((ht);) and so on are the 
block hessian matrices of the ith coordinate of ht. The matrices D6 , D7 , Ds and D9 are 
related to optimal cost-to-go functions, and will be presented later. Note that C1 , Cz 
and C3 contain Aj and x(j+ 1)1. For simplicity, Aj and x(j+ 1)1 are treated as constants in 
evaluating C 1, C Z and C 3. The optimal variational control is: 

buJ; = ajt + {3jt bXjt + YjtAj + I1jt X(j + 1)1 (36) 

Substituting (36) into (34), the optimal variational cost-to-go is given by: 

f}t(A j, bXjt> x(j+ l)d = bx!tD1jtbXjt + AT DZjtbxjt + AT D3jt Aj 

+ DrjtbXjt + DrjtAj + X&+ 1)1 D6jt x(j+ 1)1 

+ X&+ 1)1 D7jtbXjt + X&+ 1)1 DSjtAj + D~jtx(j+ 1)1 + 0 jt (37) 

The derivations of a, {3, Y, D1 , Dz, D3 and D4 are as in § 3, with some of the terminal 
conditions modified as follows: 

D1j(T+1) = cI } 

D4j(T+ 1) = CXj(T+ 1) 

The calculations of 11, D6 , D7 , Ds, and D9 are as follows: 

1C- 1C I1jt = -"2 3jt 10jt 

D6jt = C9jt -11!tC3jt l1jt 

D7jt = Clljt - 211!tC3jt {3jt 

DSjt = C1Zjt - 211!tC3jtYjt 

D9jt = C13jt - 2aJr C3jt11jt 

The terminal conditions for the above iteratively defined coefficients are: 

1C- 1 C I1jT = -"2 3jT 10jT 

D6j(T+1) =0 

D7j(T+1) = -cI 

DSj(T+1) = 0 

D9j(T+1) = 0 

By similar reasoning to that which led to (25), (36) is modified as follows: 

buJ; = Bajt + {3jt bXjt + BYjtAj + Bl1jt x(j+1)1 

where the choice of B is the same as that in (25). 

4.3. High-level derivative information 

(38) 

(39) 

(40) 

( 41) 

From (31), (33) and (37) it is not difficult to see that the high-level gradients are: 

OLH 
ok = X(j+ 1)1 - Xj(T+ 1) (42 a) 

J 

oL~ 
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The high-level hessian matrix is: 

2D311 1+ DSll 0 

1+ DSll cI + 2D6ll + 2D121 D221 D721 0 

0 D221 2D321 I +DS21 0 0 

0 D721 1+ DS21 cI + 2D621 + 2D 131 D231 D731 

0 0 0 D231 2D331 1+ DS31 

( 43) 

For the choice of c, it should not be too small or too large. If it is too small the 
convexification may not be enough. If it is too large the convergence will be slowed 
down. The stopping criterion for high-level line search is the same as in § 3. 

5. Numerical results 
As mentioned by Yakowits and Rutherford (1984), there are no well-established, 

standard test problems for large-scale optimal control systems. In this section, five 
problems are tested. We start with a scalar problem to see how our algorithms work. 
We then apply our algorithms to multi-dimensional problems with uncoupled, 
coupled and non-linear system dynamics to see how robust the algorithms are in 
solving different types of problems. 

As mentioned, low-level subproblems are solved by using the extended DDP 
algorithm, and the high-level problem is solved using the modified Newton method. 
For purposes of comparison, each problem is also solved using the one-level DDP 
algorithm without decomposition and coordination. In testing the two-level al­
gorithms, a simple line search procedure is employed at each high-level Newton 
iteration. The step size is initially set to 1, and reduced by half as needed until the value 
of e (as defined in (29)) decreases. The high-level convergence criterion is 

I
Lk+1 Lk 1 

H - H ::::: 0·000001 (44 a) 
IL~I + 1 '" 

or 

VLH ~ 0·0001 (44 b) 

where VLH is the high-level gradient as described in (27) or (42). The convergence 
criterion for the extended DDP algorithms is 

IL~+l - L~I IL11+ 1J ~p (44 c) 

where p = 0·000001 for the one-level DDP (Lj == J in this case), and p = 0·0001 for the 
DDP in two-level algorithms. 

For each test problem the initial state Xl and initial nominal controls {Ut}~=l are 
given. Nominal states {Xt}~=2 are then calculated according to system dynamics. To 
implement the two-level algorithms we also need initial conditions of Lagrange 
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the Lagrange multipliers for the given initial nominal trajectory using the first-order 
necessary conditions of optimal control. Consider Subproblem (P - j) with constraint 
(5) relaxed by using Lagrange multipliers {njt}T= 1. A new lagrangian can be formed: 

T 

L jn = I gjt(Xj/> Ujt) - AT Xj(T+ 1) + X[;-l)x j1 
t=l 

T 

+ I [nTt(xj(t+ 1) - jjt(Xj/> Ujt ))] (45) 
t= 1 

By setting to zero the derivative of L jn with respect to Xj(T+1), we have 

-Aj + njT = 0 (46) 

On the other hand, by setting to zero the derivative of L jn with respect to UjT, we have 

8gjT _ (8jjT )T njT = 0 
8UjT 8UjT 

(47) 

Combining (46) and (47), Aj is given by: 

Aj = [(:~: rr :~~: (48) 

where [.] + denotes pseudo-inverse (Brogan 1985). When the above equation is 
evaluated at the initial nominal trajectory one obtains {An. In all the testing 
presented here, {An are selected using this method. 

Test problem T1: A scalar problem 

S 

J = I [0·5xi + (Xt - 2)2 + (Ut - 2)2] 
t= 1 

subject to 

with initial state Xl = 0·5, initial nominal control ut = 0 for all t, and M = 2, T = 4 
(two subproblems, each with four stages). The high-level initial conditions are Xg1 
(= x~) = 0·5 and A~ = 4 according to (48). 

Test problem T2 
This problem is taken from Chang et al. (1989). 

N[n m m m m n ] 
J = t~l i~l (Xit - ait)2 i~l uft + i~l uft + i~l j~i uitUjt + 100 i~l (Xit - ait )2 . 

subject to 

with N = 14, n = m = 2, ait = 20 for all i and t, and At = 12, Bt = - 12. The initial 
state is Xl = [5 5]T, the initial nominal controls are uit = - 2 f~r all i and t:., The 
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Test problem T3 

This test problem has the following A and B matrices: 

[-1 OJ At = 12 , Bt = , for all t 
1 -1 

The cost function is the same as in Test problem T2 • The initial-state Xl, N, M, T, n, 
m and ait are also the same as those in problem 2. The initial nominal controls are 
ut =[-2 _4]T for all t. The high-level initial conditions are ;.°=[42 26]T and 
X~l(=X~) = [19 19]T. 

Test problem T4 

This problem has a cost function similar to that in Test problem T2 : 

It has the following non-linear system dynamics 

Xt+l = Atxt + Btw(ut) 

where At = 12 , Bt = - 12 , w(ut) = [sin (u lt ) sin (U2t)]T, and N, M, T are the 
same as in problem 2. The low-level initial conditions are Xl = [5 5]T and 
iit = [-0·3 -0·3]T for all t. The high-level initial conditions are ;.~ = [204 204]T 
and X~l ( = x~) = [7·06 7·06]T. This is a non-convex problem, and the convexi­
fication parameter c is chosen to be 10. 

Test problem Ts 

This problem is taken from Chang et al. (1989). 
N 

J = L [exp (aT Xt) + exp (bT Ut) - aT X t exp (aT xn - bT Ut exp (bT un 
t= 1 

where 

dt = -exp (aT xn - exp (bT un + aT xt exp (aT xn + bT ut exp (bT un 

The system dynamics is the same as that in T3 . In Ts, n = m = 2, N = 42, M = 3, at = 
bt = [0·01 O·Ol]T, xt and ut are user-designed optimal solutions, and Cl = C2 = 0·1 
guarantee the strict convexity of J. The initial state Xl is [0 O]T, the initial nominal 
controls are iit = [0 O]T for all t, and ut = [0·5 0·5] for all t. The high-level initial 
conditions are ;.~ =;.~ = [-0·2 -O·l]T and X~l = X~l = [0 O]T. 

Testings are performed on an IBM 3090 mainframe computer on MVS in the 
absence of a parallel processor. In the testings, we assume zero communication time 
and synchronous processing. We also assume that the number of subproblems equals 
the number of processors. A user-supplied subroutine (provided by UConn Computer 
Center) is used to time the execution of the algorithms. The low-level CPU time of an 
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adopted. Speedup, defined as Sp == T,j'rv where 1'. is the one-level DDP processing 
time, measures the improvement in computation time using our two-level parallel 
algorithm for comparison with the one-level DDP. Testing results are summarized in 
Table l. 

From Table 1 we see that the final costs for both the one-level DDP and the two­
level algorithms are either the same or very close. More importantly, the results show 
that significant speedups are achieved. The speedups for T2 and T3 are extremely high 
for a simulated two-processor system. Detailed examination of the execution of the 
two algorithms for T2 and T3 reveals that the parameter 8 (see (25)) was reduced 
several times during the first few iterations of the one-level DDP. This is probably 
due to the accumulated errors of DDP in solving long-horizon problems. This did 
not occur for the two-level algorithm, where each subproblem had a much shorter 
time horizon. The speedup measures, defined according to one of the definitions given 
on p. 15 of Bertsekas and Tsitsiklis (1989), is therefore very high. More tests are 
performed on T3 • The total number of stages reached 336 and the total number of 
subproblems 7. Other parameters, including Xl' n, m and ail' remained the same. The 
results are summarized in Table 2. 

One-level DDP Two-level algorithm 

Exec. Exec. 
time, time, 
1:, (s) fc·t MxT Kt 7;, (s) Sp fc. 

T1 0·010 41·95537 2x4 5 0·0055 1·82 41·95537 
Tz 0·032 104163·562 2x7 3 0·015 2·13 104163·625 
T3 0·060 140349·25 2x7 5 0·021 2·85 140349·25 
T4 0·022 5533·28687 2x7 4 0·014 1·57 5533·29297 
Ts 0·035 0·00004 3 x 14 3 0·022 1·58 0·00000 

t f.c.: final cost. 
t K: number of high-level iterations. 

Table 1. Summary of test results. 

One-level DDP New two-level algorithm 

Exec. Exec. 
time, time, 

Stages 1:, (s) f.c. MxT 7;, (s) Sp fc. 

42 0·080 140349·92 3 x 14 0·036 2·22 140349·94 
84 0·200 140349·92 3 x 28 0·068 2·94 140349·92 

168 0·360 140349·92 3 x 56 0·116 HO 140349·92 
336 0·700 140349·92 3 x 112 0·24 2·91 140349·92 
42 7x6 0·04 2·00 140349·94 
84 7 x 12 0·058 3-45 140349·92 

168 7 x 24 0·092 3-91 140349·92 
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In Table 2 the speedups increase when the number of stages and the number of 
subproblems increase, as expected. For a fixed size problem it may not be advan­
tageous to divide a problem into too many subproblems. For example, the speedup 
for T3 with N = 42 and M = 3 is 2·22. The speedup for the same problem but with M 
= 7 is reduced to 2 because of the increase in high-level computational load. On the 
other hand, the speedup does increase for larger problems as M increases. For 
example, with N = 336 and M = 3 the speedup for T3 is 2·91. The speedup with M = 7 
is increased to 4·72. This indicates that large speedups can potentially be achieved for 
problems with large numbers of stages and subproblems. We therefore believe that the 
algorithms for solving long-horizon optimal control problems under a parallel 
processing environment will be advantageous. 

6. Concluding remarks 
This paper presents a new approach for solving long-horizon optimal control 

problems using the mixed coordination method. The idea is to decompose a problem 
along the time axis into smaller subproblems. The requirement that the initial state of 
a subproblem equal the terminal state of the preceding subproblem is relaxed by using 
Lagrange multipliers. The Lagrange multipliers and the initial states of subprob­
lems are then selected as high-level variables. For a given set of high-level variables the 
low-level subproblems are decoupled and can be solved in parallel. By exploiting the 
DDP algorithm the high-level gradient and hessian are made available once low-level 
subproblems are solved. Therefore the modified Newton method is ideal for high­
level optimization. Further, with specific selection of high-level variables the separa­
bility of the original problem is preserved even when quadratic convexification terms 
are added. As a result, our algorithm can be applied to non-convex problems. 
Numerical results show that our algorithm outperforms the one-level DDP under a 
simulated parallel processing environment and is suitable for long-horizon optimal 
control problems. 

Compared to the incentive and target coordination schemes mentioned in § 1, the 
new approach offers an advantage over incentive coordination where the low-level 
subproblems are not completely decoupled. Additional steps have to be taken to 
decouple them. Compared to target coordination, the new approach offers the 
advantage of being able to handle non-convex problems. Further, the terminal state of 
each subproblem is free in the new approach in contrast to the fixed terminal state 
case of the target coordination. This might have special value when extended to 
constrained problems. This issue is currently under investigation. 
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Appendix 

Proof of Theorem 3 
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for j = 1, ... , M - 1. Although V;u+ 1)1 Lj or V;u+ 1)I.LO+ 1) may 2not,be po~i~ive defi~ite 
I·n x the term cI with sufficiently large c wIll make V XHLH posItIVe defimte, 

u+ 1)1' 
implying that L~ is convex in XH. On the other hand, define 

<1>(,1,) == min L~(A, XH) 
XH 

and 

Then the hessian of <I> is (Luenberger 1984, p. 399) 

V~<I>(A) = - VXHh(xH)(V;HL~(A, XH)) -1 V xHh(XH)T 

Since V2 L' (A x
H

) is positive definite and V x h( xH ) is full rank, V~ <1>( A) is negative 
XH H , . H. , 

definite, implying that <1>(,1,) is concave III A. Therefore the solutIOn of Problem (P - H) 

is a saddle point. D 
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