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Mixed coordination method for non-linear programming problems 
with separable structures 

1. 

JIANXIN TANGt, PETER B. LUHt and TSU-SHUAN CHANG§ 

Static optimization with linear equality constraints and separable structures is 
studied by using the mixed coordination method. The idea is to relax equality 
constraints via Lagrange multipliers, and create a hierarchy where the Lagrange 
multipliers and part of the decision variables are selected as high-level variables. The 
method was proposed about ten years ago with a simple high-level updating scheme. 
We show that the solution of the high-level problem is a saddle point, and the simple 
updating scheme has a linear convergence rate under appropriate conditions. To 
obtain faster convergence, the modified Newton method is adopted at the high level. 
There are two difficulties associated with this approach. One is how to obtain the 
hessian matrix in determining the Newton direction, since second-order derivatives 
of the objective function with respect to all high-level variables are needed. The 
second is when to stop in performing a line search along the Newton direction, as the 
high-level problem is a maxmini problem looking for a saddle point. In this paper, 
the hessian matrix is obtained by using a kind of sensitivity analysis. The line search 
stopping criterion, on the other hand, is based on the norm of the gradient vector. 
Extensive numerical testings show that our approach performs much better than the 
simple high-level updating scheme. Since the low level consists of a set of 
independent subproblems, this method is well suited for parallel implementation in 
solving large-scale problems. Simulated parallel-processing results show that our 
method outperforms the one-level Lagrange relaxation method for all the test 
problems. Furthermore, since convexification terms can be added while maintaining 
the separability of low-level subproblems, the method is very promising for non
convex problems. 

Introduction 
This paper studies static optimization with linear equality constraints and 

separable structures by using the mixed coordination method. The idea is to relax 
equality constraints via Lagrange multipliers, and create a hierarchy where the 
Lagrange multipliers and part of the decision variables are selected as high-level 
variables (coordination variables). The remaining decision variables are to be 
optimized at the low level, which is divided into independent subproblems according 
to problem structure. The method was proposed about ten years ago with a simple 
high-level updating scheme (Singh 1978). In this paper, we show that the solution of 
the high-level problem is a saddle point, the two-level problem is equivalent to the 
original problem, and the simple updating scheme has a linear convergence rate under 
appropriate conditions. However, faster convergence is essential for the method to be 
practical. The reason is that under the two-level structure, a high-level function 
evaluation generally implies solving all low-level subproblems once, and is very 
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expensive. The simple updating scheme requires many high-level function evaluations, 
and thus is not efficient. 

To obtain faster convergence, the modified Newton method is adopted at the high 
level. There are two major difficulties. The first one is how to obtain the hessian matrix 
in determining the Newton direction, as second-order derivatives of the objective 
function with respect to all coordination variables are needed. The second is when to 
stop in performing a line search along the Newton direction, as the high level is a 
maxmini problem looking for a saddle point. In this paper, the hessian matrix is 
obtained by using a kind of sensitivity analysis (Armacost and Fiacco 1974, Fiacco 
1976). Note that the hessian matrix is with respect to coordination variables only, 
whose dimension is generally much lower than the dimension of the original problem. 
The line-search stopping criterion, on the other hand, is based on the norm of the 
gradient vector (Dennis and Shnabel 1983). Since the low level consists of a set of 
independent subproblems, this approach is well suited for parallel implementation in 
solving large-scale problems. As inequality constraints can be converted into equality 
constraints by using slack variables, the approach can also be extended to problems 
with inequality constraints. 

For non-convex optimization problems, it is known that the lagrangian can be 
'augmented' by having additional terms (for example, quadratic terms) to convexify 
the problem, and also to speed up convergence (see, for example, Bertsekas 1982, 
Luenberger 1984). Unfortunately, the augmentation process very often destroys the 
separability of the original formulation, thus prevents the decomposition of the low
level problem. Many researchers have been trying to overcome this difficulty via 
various approaches (see, for example, Bertsekas 1979, Tanikawa and Mukai 1985, 
1987). Bertsekas has considered a convexification procedure in Bertsekas (1979). His 
approach starts with a conventional two-level Lagrange formulation where the 
Lagrange multipliers are selected as high-level variables. Additional variables are then 
created, together with the original decision variables, to form quadratic convexifica
tion terms. To preserve the separability of the problem, these additional variables are 
determined at an even higher level. Consequently, his approach results in three levels 
of optimization. Because each higher level function evaluation requires solving all the 
lower level problems once, this three-level optimization may not be efficient. 
Tanikawa and Mukai presented a two-level approach which also preserves the 
separability of the low-level problem (Tanikawa and Mukai 1979). In their approach, 
additional variables are created in forming convexification terms. To avoid three-level 
optimization, Lagrange multipliers are estimated at each iteration. These estimates 
may not be good if the initial condition is not close to the optimal solution. In 
Tanikawa and Makai (1985), the high level uses a gradient-type method with linear 
convergence rate. In a later version of their approach, the high level is changed to the 
Newton method (Tanikawa and Mukai 1987). However, the hessian matrix involves 
many high-dimensional matrix manipulations (with dimensions equal to the dimen
sion of the original problem) and is difficult to obtain. 

Although our results in this paper are mainly for convex problems, they have high 
potential to be extended to non-convex problems. By choosing appropriate convexi
fication terms and selecting Lagrange multipliers and part of the decision variables as 
h;l1h-level variables. our method can convexify the high-level problem, speed up 
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In § 2, we present the problem formulation £ . . . 
equivalence of the two-level problem d th or c?~vex optImIzatIOn, and prove the 
anal~sis of the simple updating scheme o~nSin : (~ngIn~1 ~robl.em. The convergence 
the hIgh-level hessian information and em log th 978) I~ gIVen In § 3. In § 4, we derive 
the high-level problem. Numerical testinP y e modIfied Ne:vton method to solve 
a'pp~oach performs much better than th! ~~~ul~~ prese~ted In § 5 show that our 
sIgmficant speed-up when the al orithm is p. upd~tIng ~cheme, and achieves 
way in extending this method t~ n parallehzed. FInally In § 6, we indicate one 

on-convex problems. 

2. ~~:~:~: !~r~u:~tio.n and ~ si.mpI.e high-level updating scheme 
e 0 OWIng optImIzatIon problem: 

m~n {f(x) Ig(x) = O} (2.1) 

where x E X c R n, f: Rn --+ Rand g. Rn Rm . 
that f is convex and twice continuo·usly--+d.ffi (m -::bnl) ar~ gIVen functions. We assume 
Th h·· 1 erentIa egIs linear d X . 

us t IS IS a convex programmI·ng bl h '. an IS a convex set. . § ) pro em (t e conveXIty .. 
In 6. We also assume that the pr bl· . assumptIOn wIll be relaxed 

o em IS separable In the follOWing sense: 
Q 

f(x) = I f;(U 
1= 1 (2.2 a) 

and 
g(x) = {gl(X), i = 1, "" Q} 

(2.2 b) 

l hl(~J J 
gl(x) = Q = 0 

I gij( ~j) (2.2 c) 
j= 1 

where x - (~ ~ ) ~ ~ k· 
. - 1,"" Q, IE.!:.ICR',S1XS2X",XS =X,/;:Rkl--+R .'Rn Ii 

h'Rk'--+R I 'Rkj Q Q Q , ,g,. --+R, 
i' s,gl·· --+Rns·+t-l "k d" 

J "I - ;'.L... 1= n an L... 11 = m. Note that S .. 
setfori=12 Q . ,=1 1=1 ,IS a convex 

. ' ""' .. EquatIOn hJ~I) = 0 represents subproblem i's local constraint 

WhICh does not Interact with other subproblems, whereas ~ g (J:) _ O' h 
. t . L... Ij <'j - IS t e 
In er~ctIOn constraint. As a regularit conditio j= 1 . 
gradIents {Vg.(x) i = 1 2 Q} l' Y I' n, we also assume that constraInt 

Define " ""', are Inear y Independent. 

Q 

ZI = j~1 gij(~j), i = 1, ... , Q (2.3) 
NI 

as interaction variables, then constraints (2.2 c) can be rewritten as 

g;(~;, ZI) = [ hl(~I) J = 0 '-
gii(~J + ZI ,1-1, ... , Q (2.4) 

Now constraints (2.4) can be viewed as I I . 
many different ways For simple o~a constraInts, and can be dealt with in 
• n • • • presentatIOn we sh 
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where 

L=.t [fJ~;) + f3T gi(C z;) + AT(Zi- jt
1 
giA~j))J 

,-1 j*i 

~ ,t, [/;((;) + pr,h,(O + Pi,(g,,(,) + ") + AT (z, -))~: g')(l)) ] 

= .I [];(~;) + f3IihJ~;) + f3~JgdO + z;) + AT Zi - J1 AJgjJ~;)J (2.6) 
,= 1 j*i 

Selecting A and z as high-level coordination variables, we are then left with Q 

subproblems, (P-i), i = 1, ... , Q: 

(P-i): max min Li, with Li =];(~;) + f3Iihi(~;) + f3~i(gii(O + Zi) + AT Zi 
Pi ~i 

Q 

- I AJgji(~i) 
j= 1 
j*i 

(2.7) 

Note that subproblems are independent maxmini problems once A and Z are given. 
The high-level problem is to find the optimal A and z: 

(P-H): max min L(f3*(A, z), X*(A, z)) 
A 

(2.8) 

where f3* and x* are solutions of low-level subproblems. We have the following two 

theorems. 

Theorem 2.1 
The optimal solution of problem (P-H) is a unique saddle point. 

Theorem 2.2 . 
Problem (P-H) and problem (P) are equivalen~ in the se~se that if (A*, z*) IS th~ 

optimal solution of (P-H), then X*(A *, z*) is th~ optlmal solutlOn of (P). ;o~ve~se~, ~ 
x* is the optimal solution of (P) then there eXIsts a (A*, z*) such that x (A , z ) - x 
and (A*, z*) is the optimal solution of (P-H). 

The proofs of Theorems 2.1 and 2.2 are included in Appendix A. . . 
To update high-level variables, we note that the first-order necessary condltlOns of 

problem (P-H) are 
(2.9) 

which results in 

(2.10 a) 
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Therefore one updating scheme, as suggested in Singh (1978) and Jamshidi (1983), is 

(2.11 a) 

and 

(2.11 b) 

for i = 1, ... , Q, where k is the iteration index. Equation (2.11) will be called 'the simple 
updating (SU) scheme'. 

In many cases, we need a slightly different solution procedure where the local 
constraints (2.4) are not relaxed at the very beginning. In this case (P) becomes 

(PI): max min L' subject to (2.4) (2.12) 
A zx 

where 

(2.13) 

Low-level problem (P-i) becomes 

(P-i'): 

(2.14) 

This formulation will be utilized in subsequent sections when needed. 

3. Convergence analysis of the simple updating scheme 
Equation (2.11) is simple and easy to implement. But does it converge? If it 

converges, what is the convergence rate? These are unsettled issues to the best of the 
author's knowledge (Jamishidi (1983), p. 180). We shall address these two issues in this 
section. To do this, we first note that this simple updating scheme is not exactly a 
gradient method; rather, it is a kind of direct iteration. This direct iteration can be 
regarded as an iterative procedure in solving simultaneous non-linear equations. It 
will be shown that under appropriate conditions, this simple updating scheme 
converges to the optimal solution linearly by using the fixed-point theorem. 

From (2.7), it is clear that solutions for problem (P-i), ~i and f3i, are functions of Zi 
and ),. Thus (2.10) can be rewritten as 

Q 
z,- )' p- .. (fb . .l. L I'J 1 ~\ 
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For notational simplicity, define 
(3.2 a) 

¢it = - {3gi(Zi, Ai, Az, ... , AQ) 

(3.2 b) 

YiZ =Zi 

Then (3.1) can be rewritten as 
_ ,I.. (y y YQ) for i = 1, 2, ... , Q 

Yi - 'l-'i l' Z, ... , 

or 
Y = ¢(y) 

(3.4) 

. . twice continuously differentiable and 
Under the assumptIOns thatf(x) .IS cohnve.x, l' 't function theorem that ¢(y) is 

. b h by usmg t e Imp ICI . 
g is linear, It can e sown . Q RZm) derived from the mappmg (3.3). 
conti~uously diffe~entiable on a regI~:s b~~s down to solving (3.4) iterati.vely. To 
The SImple updatmg scheme (2.11) t h 1 ant propositions with then proofs 
show its convergence, we ~r~t prese~t t refet~:s:v propositions can' be found in Wang 
included in Appendix B. SImIlar verSIOns 0 

(1979). 

Proposition 3.1 "cr . bl tOE Q Then for any e > 0, there 
,1... Q RZm ---+ RZm IS dwerentla e a y. . 

Suppos.e that '1-" C f 0 h that for any Y E'¥, the followmg holds: 
exists a neIghbourhood 'I' c Q 0 Y suc 3 5 

11¢(y)-¢(l)Jl::S;(IID¢(l)ll+e)lly-lll (.) 

where D¢(y) is the jacobian of ¢(y): 

8¢1 8¢1 

8Yl 8YQ 

D¢(y) = 
(3.6) 

8¢Q 8¢Q 

8Yl 8YQ 

Proposition 3.2 2 t' A and any e > 0 there exists some norm in RZm such that 
For any 2m x m rna fIX ' 

IIAII ::s; p(A) + e (3.7) 
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Proposition 3.3 

If there exists a neighbourhood <D = {y Illy - y* II < 6, 6 > O} of y* and a constant 
p (0 < p < 1) such that 

11¢(y) - ¢(y*)11 ::s; plly - y*11 (3.8) 

for all y E <D, then for any yO E <D, the sequence {I} formed by 1+ 1 = ¢(/) converges 
to y* linearly. 

Based on these three propositions, we have Theorem 3.1 below. 

Theorem 3.1 

Suppose that y* E Q is the solution to (3.4). Assume that 

p( D¢(y*)) < 1 (3.9) 

then there exists an open ball <D = {yl II Y - y* II < 6, 6 > O} c Q such that for any 
yO E <D, the sequence {I} formed by 1+ 1 = ¢(/) E <D converges to y* linearly. 

The proof of Theorem 3.1 is also included in Appendix B. 
As a result (2.11) generates a linearly converging sequence if the absolute values of 

all eigenvalues of D¢(y) are less than 1. Furthermore, solution y* is locally unique 
since (3.4) in this case is actually a contraction mapping. Though the jacobian matrix 
D¢(y) may not be easy to obtain and the condition of Theorem 3.1 may not be easy to 
check, we do have a way of getting the jacobian matrix, as will be described in the next 
section. 

4. High-level hessian information and the modified Newton iteration 
From Theorem 2.2 we know that problems (P-H) and (P) are equivalent. Thus the 

convergence of the overall algorithm boils down to the convergence of the high-level 
approach. In § 3, we proved the linear convergence of the simple updating scheme. 
However, fast convergence is essential for the method to be practical. The reason is 
that under the two-level structure, a high-level function evaluation generally implies 
solving all low-level subproblems once, and is very expensive. The simple updating 
scheme requires many high-level function evaluations, and thus is not efficient. To 
obtain faster convergences, the modified Newton method (Luenberger 1984) is 
adopted at the high level. The modified Newton method is a modification of the 
standard Newton method with line searches incorporated so that it can be applied to 
problems with initial conditions not close to the optimal solution. The method 
updates variables according to 

( 4.1) 

where H is the hessian of L, V L is the gradient of L, and 0 ::s; rxk ::s; 1 is determined by an 
appropriate line search procedure. With the modified Newton method adopted at the 
high level, the convergence of the two-level approach is apparent. We now turn our 
attention to the finding of the hessian matrix of L. 

From (2.9) and (3.1), we get 
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OZ L \ Q Ogij O~j 
OAiOAk k*i = - j~1 O~j OAk 

j*i 

OZ L O{3gi 

Ozr = OZi 

Ogik( ~k) O~k 

O~k OZk 

In general, we have the hessian matrix of the following form: 

oZL oZL oZL oZL 

OAI 
I 

OAiOAZ OA1 0ZZ OA1 0ZQ 

oZL oZL 
0 I 

oZI OZ1 0AZ H= 

oZL oZL 

OZZ 
Q 

(4.2 b) 

(4.2 c) 

(4.2 d) 

(4.2 e) 

(4.2f) 

(4.3) 

Equation (4.3) looks complicated. However, the hessian matrix is with respect to high
level coordination variables only, whose dimension is generally much lower than the 
dimension of the original problem. Furthermore, in many cases of interest, there is not 
much interaction among subproblems. Therefore, most of the components in Hare 

zero. 
To evaulate the components of H, we need to have 

O~i O~i and O{3gi 
OAj' OZi OZi 

They are obtained by using a kind of sensitivity analysis based on the derivations of 
Armacost and Fiacco (1974) and Fiacco (1976). Consider subproblem (P-i') and use 
the penalty function formulation as follows. Define 

_ ~ T c,!: )IZ 
Wi( C ai) =!;( ~i) + AiZi - jf-1 Aj gji(~;) + "2lgi( <'i' Zi ( 4.4) 

j*i 

where ai == (Zi' A1, AZ' ... , AQ)' c is the penalty coefficient updated according to an 
appropriate rule satisfying ck+ 1 > ck (k is the iteration number), and Igi IZ == gT gi' The 
first-order necessary condition of the penalty method requires that 

V~i Wi(~f*, ai) = 0 (4.5) 
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Applying the chain rule to (4.6) "we have 

V~iai WiW*, a;) + V~i~i Wi(~f*, a;) O;f* = 0 
vai 

(4.7) 

Based on our convexity assumption, the matrix V ~i~i Wi is invertible if ck is large 
enough. Therefore 

( 4.8) 

Since ~f* approaches ~t (true solution of (P-i')) as ck approaches infinity (Fiacco 1976, 
p. 301), we finally have 

lim o~f* = o~t 
ck -> 00 oai oai 

(4.9) 

In practice, we can choose c large enough. It should be noted that we do not need to 
solve problem (P-i'). We only use the penalty function formulation to find the 
expression for O~f* / oai. In fact, one can use any method to find ~t , then use (4.8) and 
(4.9) to calculate o~t/ oai. 

To calculate o{3t1oai, recall that gi is linear (or affine) in ~j for j = 1, ... , Q as 
assumed at the very beginning. It can be shown that {3t can be expressed explicitly in 
terms of ~i and a;, i.e. 

{3t = M(~i(a;), a;) ( 4.10) 

For details of the derivation, see Appendix C. Therefore 

(4.11) 

Note that the dimension of subproblem (P-i) (or (P-i')) is relatively small, thus the 
evaluation of (V ~i~i Wi) -1 in (4.8) should not pose much difficulty. Note also that once 
the above derivatives are obtained, the jacobian matrix D¢(y) mentioned in Theorem 
3.1 is readily available. The following example illustrates the decomposition pro
cedure, the derivation of the high-level hessian matrix and the jacobian matrix. 

Example 4.1 

(T1 ): minf(x) = !(xI + x~) + 1O(x~ + x~ + x~) + x~ 
x 

subject to 0'5x 1 + X z 1 = 0 

2xz + X3 + X4 - 1 = 0 

0'5x4 + Xs - 1 = 0 

0'5xs + X6 - 1 = 0 

( 4.12) 

Let ~1 = (Xl' Xz, X3)T and ~z = (X4' X S , X6)T so that the problem is mapped into 
the structure of 2.2 as follows: 
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and 

( 4.15) 

( 4.16) 

Note that there is only one interaction variable X4 between the two subproblems. 
Following equation (2.3), we let 

( 4.17) 

and rewrite constraint gl as (see (2.4» 

( 4.18) 

By relaxing constraints (4.17), (4.18) and (4.16), we have 

max min L= f1 (~1) + fz(~z) + f3Ig1 + f3igz + A(Zl - x 4 ) (4.19) 
l,p X,Zl 

where A is the Lagrange multiplier. Select A and Z 1 as high-level variables, (T 1) can 
then be decomposed into two subproblems. 

(Tll): maxminL1=f1(~d+f3Ig1+AZ1 (4.20) 
P, ~, 

max min L z = fz(~z) + f3igz - AX4 ( 4.21) 
P2 ~2 

The high-level hessian matrix can be obtained as follows. According to (2.8), we 
have the high-level problem 

max minL 
l Zl 

The first-order necessary conditions of the high-level problem are 

oL _ * _ 0 ar - Zl -X4-

oL 
- =,1,+ f3*1 =0 
OZl g 

(4.22) 

(4.23 a) 

(4.23 b) 

where x! and f3i1 are the low-level solutions given A and Z l' Therefore, the off
diagonal components of the hessian matrix are 

OZ L OZ L 
--=--=1 
OAOZ 1 OZ1 0A 

( 4.24) 

and the diagonal components of the hessian matrix are 

Mixed coordination method for non-linear programming problems 

and 

following equation (4.11). 
To find oxVoA and OX!jOZ1, we use equation (4.4). Let 

then 

Obviously 

and 

l Xl + 0'5c(0'5x1 + Xz - 1) J 
V~l W1 = Xz + C(0'5X1 + X z - 1) + 2c(2xz + X3 + Zl - 1) 

20X3 + c(2xz + X3 + Zl - 1) 

From (4.8) and (4.9), one obtains 

oX3 

OZl 

and from (4.26), one also gets 

1'25cz + c 

21·25cz + 106c + 20 

0f3i1 = -20 lim oX3 = 1.17647 
OZl c--+co OZl 

Similarly, oxVoA can be obtained as 

ox! . oX4 - = hm - = 0·0398 
0,1, c--+co 0,1, 

The high-level hessian matrix is therefore 

[

-0,0398 1 ] 

H = 1 1.17647 

The jacobian matrix can be shown to be 

-0,0398 0 
D V = 

1471 

( 4.26) 

( 4.27) 

( 4.28) 

( 4.29) 

( 4.30) 

( 4.31) 

( 4.32) 

( 4.33) 

( 4.34) 

4.35 
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One may notice that H in the above example is not positive-definite or even 
positive semidefinite. In fact, it is an indefinite matrix since we are actually finding the 
saddle point of L(A, z) (see Theorem 2.1). In this case, if a line search is needed in 
updating A and z along the Newton direction at the kth iteration, what should be the 
termination criterion for the line search? How are we going to compare L(Ak+ 1, zk+ 1) 
with L(Ak, Zk)? To answer these questions, we note that the high-level first-order 
necessary condition is given by (2.9), or equivalently by (3.4), We can think of (3.4) as 
a set of simultaneous non-linear equations, and the goal of the high-level optimization 
is to reduce to zero the error defined by 

e(y) == y - ¢(y) ( 4.36) 

This in turn is equivalent to the finding of the global minimum of !e(y)Te(y), i.e. 

min h(y) with h(y) == !e(y) T e(y) ( 4.37) 
y 

Therefore, one reasonable line-search stopping criterion is to check the value of h(y). 
This works if h(y) has no other local minimum (Dennis and Schnabel (1983), pp. 
149-151), which is the case here as indicated by the following proposition. 

Proposition 4.1 

h(y) has a unique minimum. 

The proof is given in Appendix D assuming that 82 L/8z2 is positive definite and 
82 L/8A2 is negative definite (recall that problem (2.1) is a convex programming 
problem). It should be emphasized that we do not need to solve problem (4.47). 
Rather, the value of h(y) is used to check for the stopping of the line search routine. In 
other words, if 

h(yk+ 1) ~ h(l) 

is satisfied, then the line search is stopped. 

5. Numerical results 

( 4.38) 

Five functions are tested. In all the testings, low-level subproblems are solved by 
using the Daviden-Fletcher-Powell (DFP) method (Luenberger 1984) for a given [3, 
and [3 is updated by using the modified Newton method. For the high level, the 
modified Newton method is used to update A and z with the hessian matrix derived 
according to § 4. In both Newton iterations, a simple line search routine is employed. 
The step size is initially set to 1, and reduced by half as needed until the function value 
decreases (or increases). The Figure shows the schematic of our algorithm. 

The five test functions are given below. Some of them are modifications of well 
known test functions. The modifications are done so that the resulting functions are 
separable, satisfying equation (2.2). The initial conditions used are given in Table l. 

(T 1): A quadratic function: 

minf(x) = !(xi + xD + 1O(x~ + x~ + x;) + x~ 

< + ,- = 

Mixed coordination method for non-linear programming problems 

Update A, Z 

High level 
(Newton) 

x-: ~ 

~. Z ~ 1 i 

1;1 A I; i A. I;Q AQ 1 1 

/N "" 
Update ~1 Update .. ~i Update ~Q 

(Newton) (Newton) (Newton) 

~ ~ 

Low level I; 1 ~1 I;i ~i I;Q 

r r 

Update I; 1 . . Update I; i .. Update I; 

(DFP) (DFP) (DFP) 

'---------~ 

Algorithm schematic. 

The optimal solution is 

x* = (1,28833, 0'35582, -0'05552,0'34386,0'82807,0'58596) 

with the corresponding cost 

f* = 9·30676 

~Q 

Q 

1473 

(T 2): A fourth-order polynomial. This function is a modification of (T d by 
replacing xi with xi and x~ with x~: 

x* = (1-14306, 0'42847, -0·13864,0'28167,0'85914,0'57025) 

f* = 9·41791 

(T 3): This function is a modified Powell function: 

minf = (Xl + 1Ox2)2 + 5(X3 + X4)2 + 1O(xl - X2)4 + (X3 - 2X4)4 

subject to 2Xl + X2 - 2 = 0 

X2 + X3 + 4X4 - 1 = 0 

x* = (0'94839, 0'10336, -0'08899,0'24632) 

f* = 9·26552 

(T 4): This function is a modified Wood function: 

minf = 100(xi - X2)2 + (Xl - 1)2 + 90(x~ - X4)2 + (X3 - W 
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(T 5): This is a non-convex problem with a quadratic cost function but non-linear 
equality constraints. It is obtained by modifying the one in Rosen and Suzuki (1965, p. 
113) following the modification of Tanikawa (1985, 1987). It can be shown that this 
problem has a unique solution (Javdan 1976). 

minf = xi + x~ + 2xj + x~ - 5x l - 5x2 - 21x3 + 7X4 

subject to 2xi + x~ + xj + 2Xl - X2 - X4 - 5 = 0 

xi + x~ + xj + x~ + Xl - X2 + X3 - X4 - 8 = 0 

x*=(O, 1,2, -1) 

f* = -44 

Each of the five test functions is decomposed into two subproblems as its structure 
suggests. The decomposition of (T 1) has been demonstrated in Example 4.1. The 
testings were performed on an IBM 3090 mainframe computer on MVS. Table 1 lists 
the initial conditions. Table 2 provides the stopping criteria used for all the test 
functions, where gradient is used as the stopping criteria for A and z, and gradient and 
function values are used as the stopping criterion in updating [3 and (. Simple line 
search routines are employed in updating A, z and [3. Adaptive stopping criterion is 
used for the line search routine in updating (. Lf and Lf are function values 
corresponding to step sizes a and h. The parameters 0·01, 0·001 and 0·0001 are picked 
based on numerical experience. Table 3 summarizes the test results and compares our 
approach with the simple updating (SU) scheme of equation (2.11). 

From Table 3, we see that our approach performs much better than the SU 
scheme. In applying the SU scheme to (T 5), overflow occurs at the second high-level 
iteration. This may be caused by the fact that not all the eigenvalues of D¢(y) are in 
between -1 and 1 (one of the four eigenvalues equals 39·7 at the second iteration). 
Consequently, the iteration yk+ 1 = ¢(l) is not a contraction mapping. 

High level 

Initial 
condition 

(Td Zo = 0·5 
.1.0 = -0·5 

(Tz) Zo = 0·5 
.1.0 = -0·5 

(T3) ZO = 1·5 
.1.°=1·5 

(T4) zO=.1.°=0·5 

(T. ) .A 
Zo = (2·5, 0·5)T 

Subproblem 1 

Initial 
condition 

(~= (0, 0, O)T 
f3~=(1, W 

(~=(O, 0, W 
f3~=(1, W 
(~= (0, O)T 

f3~ = 1 

(~=(1, W 

Low level 

Subproblem 2 

Initial 
condition 

(~=(O,O,W 
f3~=(1,W 

(~=(O, 0, W 
f3~ = (1, W 
(~=(O, W 

f3~ = 1 

(~=(O, W 
f3~ = 1 

(~=(1,W 

Mixed coordination method for non-linear programming problems 1475 

... 
0 
0 

..c: VI 0 
u 6 ..... ... ell ~-<1.l 0 
<Il .. - 0 

D-'" <1.l ~ 0 
Q I 6 

:=: + ... 
.<>.- 0 ..... ~ 0 

0 ::s 8 ~ 
'V Q 

<1.l ·s ..... 
ell 

'"d 
P, 

0 ... ... 0 
0 0 6 

~ 
0 
0 VI ~ 6 '"d Q VI Q ~ ... 

ell + 0 ..... ..,.- 6 0 ...:r ~ ~ + 
D-"" I 

~ ~ ~-;> 
..!:l 
i:: 
0 

.....:I 

fl ..... ..,.-
ell ~ <1.l 
<Il 11\ 
<1.l 

~ o:i 
E + .;::: 

~- <1.l ..... ..... .;::: 0 
~ u 

co.. bIl 
.S <1.l ..... P, ell P, '"d 0 P, Q ..... 

0 0 ... (/l 
• .;::J ... 0 

0 ell 0 0 <"'i ..... 0 <1.l 0 6 <1.l ."';:: 
6 VI ::0 Q VI .... 

~ 
ell 0 0 E-< ..... 

i:: ~- I <1.l 

Z '" ~ 

D- + ..... 
~-0 

~ 

..c: ~ 

u " ..... ~ ?- ',::: ',::: ell ~ <1.l . "0.. 'V <Il VI .• ~ 0 0 <1.l ~ ~ --E o~uu + .....-; ~ (]) v ..... .., 
~E~~ 0 ~ 

N ~ ~ ~ ~ ~ ~ 
~ 

~2S~~ ;> ~o 

..!:l <1.l i:i p. :;r; :;r; ~ 

..c: ..... :B.g -..1--..1-:;t ell 
bIl '"d Q C\! (/) '- ~ i p, .;:: bbC;oo$ ;::l ..... 

~a~~~ ell ... .... 0 
.~ 0 ] '5b ~ :.a ~ 

0 ~ @ ~ ~ ~ Q 6 01)1-<0.001) 
0 VI :.a ~ .:. .:::.~ 
~ .~ '-l '-l~ 

" .~ ,; .. 



1476 Jianxin Tang et al. 

Vl 0 on 
t-- 00 on 0 

:::J 888GJ"'" 
~ 

Vl 6666 
0) 

S 
'p 

U ::: 0) 
0 '1" 00 

>< ... N-t--Ot--
~ ~ O~O('""l~ 

00000 0) 
66666 Z 

C3$ 
<-<:::J 

J5Vl ;:!;~~e:;"," 
s~ 

N ;::l '" 

s Zt: 
0) 

:D 
0 
<-< 
0- 13' ..0 '-
;::l 0 0 

Vl i:i~ 
..0 0) on N 0 \0 t--

SZ ,.......~~("I") 

;::l~ 

v Z~ 
:> ...... 
~ 
~ 
0 

.....l 0$ 
.... :::J 

J5Vl ~~;:!;::6"," 
s~ 

;::l '" 

s zt: 
0) 

:D 
0 .... 
0- 13' ..0 '-
;::l 0 0 

Vl i:i~ 
..0 0) '1"00\0\0\ 

SZ - - '1" 
;::l~ 

Z~ ...... 

0$ 
<-<:::J 

J5Vl \0 \0 t--O\+-
s~ N"," 

;::l '" 

v zt: 
:> 
~ 
..c: 
btl 

tE '- 13' 
0 0 

i:i~ 
..0 0) ~NN",,"~ 

SZ 
;::l~ 

Z~ ...... 

'" ... 
::l 
bJJ 

~ 
<l.) 

{'i 
<l.) 

~ <l.) 

~ s 
P- O) 

0 ..c: 
..s u 

'" 
" :::J :> Vl <l.) 

1 0) 

..c: ..s ... 
<l.) ..c: ... {'i .~ 

..c1 
bJJ ::: 
::l 0 
0 '" ... .;::: 

{'i o:! 
bJJ 0-
::: S '0 0 
bJJ U 

.S '"0 
en ::: 
<l.) o:! 
S '" ... 'p "3 '-
0 '" ... 0) 

<l.) 
.... 

.n btl 
S 'E ::l 
::: '" 0) 
<l.) E-< {'i 

.:!l «"i 
en 

0) ::: 
0 :D 
.~ o:! ... E-< 
.~ 

" :> 

--¥ 
~ ..s 
'-
0 ... 
<l.) 

.n 
s 
::l 
::: 
<l.) 

'" ..c1 bJJ E-< ... 
~<l.) 

I'i 
:> ::: 

0 0 ':g u 

... .s <l.) 

.t:: ~ 

Mixed coordination method for non-linear programming problems 1477 

As pointed out in § 1, low-level subproblems are independent of each other and 
can be solved in parallel. We now briefly examine the effects of parallelization. 
Because no parallel processor is available at this moment, we implemented our 
algorithm in a simulated parallel-processing environment. Assume for simplicity one 
processing element for each subproblem, and zero communication time among 
processors. Computation of individual subproblems are assumed to be synchronous, 
therefore the low-level CPU time at each iteration is calculated as the longest CPU 
time in solving individual subproblems for that iteration. The total parallel CPU time 
Yv is then taken as the high-level CPU time plus the sum oflow-Ievel CPU times for all 
iterations. To see the significance of parallel processing, we compare it with the 
one-level Lagrange relaxation method (i.e. using the low-level method to solve a 
problem as a whole without decomposition). The performance measure speed-up (Sp) 
is adopted here. It is defined as Sp == T,/Tp , where T, is the one-level sequential 
execution time and Tp is the two-level parallel execution time. It measures the 
improvement in computation time by using the parallel two-level algorithm over the 
sequential one-level algorithm. The comparison is summarized in Table 4. 

Exec. time (s) 

Two-level with 
Q One level parallel processing Spt 

(Td 2 0·0019 0·0014 1'357 
(T 2) 2 0·011 0·007 1·571 
(T3) 2 0·006 0·0046 1·304 
(T4) 2 0·023 0·012 1'917 
(Ts) 2 0·015 0·010 1·500 

t Speed-up: defined as the ratio of the one-level sequential execution time and the two-level parallel 
execution time. 

Table 4. Comparison of execution time between one-level and two-level with parallel 
processing. 

It can be seen that Sp > 1 for all the test functions, implying that our two-level 
algorithm with parallel processing performs better than the one-level Lagrange 
relaxation method. The reason for the high speed-up for (T 4) is that the function 
without decomposition is a modified Wood function. With decomposition, each 
subproblem becomes a Rosenbrock-type function, which requires much fewer 
iterations than those of the Wood function in updating ~ at the DFP level (see the 
Figure). From Table 4, the average speed-up is 1·53 for Q = 2. We believe that more 
reduction in execution time can be achieved by using parallel processing as . Q 
Increases. 

In the above tests, the high-level initial conditions are arbitrarily chosen. However, 
there should be a systematic way in selecting the high-level initial conditions. This 
issue is currently under investigation and will be reported in Tang et al. (1990). 
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convex and g may not be linear. We first consider the case where each subproblem 
interacts only with one other subproblem as specified by 

Zi=gi(i+l)(~i+l) (6.1) 

By adding quadratic convexification terms to (2.13) we have 

A _ ~ [T C 2J L= if-l /;( ~i) + Ai (Zi - gi(i+ 1)( ~i+ 1)) + "2IZi - gi(i+ 1)( ~i+ dl (6.2) 

The standard approach of selecting {AJ as high-level variables, unfortunately 
destroys the separabilitty of the original problem, as the cross-product term 
Z[ gi(i+ 1)( ~i+ d appears. By selecting Ai and Zi as high-level variables, the separability 
of the original problem is preserved. Problem (6.2) can then be decomposed into the 
following Q subproblems: 

A A _ T T C 2 (J: ) 2) minLi with Li=/;(~J+AiZi-Ai_lg(i-l)i(~J+-2(lzd +Ig(i-l)i Si I 
~i 

- CZi -lg(i-l)i( ~J 

subject to gi( ~i' zJ = 0 (6.3) 

with i = 1,2, .. , Q, and ,.1.0 == Zo = O. Note that in the above procedure, only the high
level problem is convexified. Each subproblem is still a non-convex problem 
in general, except when all the components of ~i are present in g(i-1)J~J for 
i = 1,2, ... , Q. However, these non-convex subproblems can be solved by using 
existing non-convex optimization methods (such as the multiplier method). For 
problems where a subproblem interacts with more than one subproblem, we can, in 
principle, create a high-level variable for each interaction as follows: 

Zil =gil(~l) 

Zi(i-l) = gi(i-l)(~i- d 

Zi(i+ 1) = gi(i+ 1)( ~i+ 1) 

ZiQ = giQ( ~Q) 

(6.4) 

The original problem can thus be convexified and decomposed by following a similar 
procedure. This certainly increases the complexity of the high-level problem. Many 
practical 'large' problems have the nature of 'loose' interactions, thus can be 
structured so that each subproblem interacts only with a small number of other 
subproblems. For problems with strong interactions, decomposition and coordina
tion may not be a good approach anyway. 

Other issues, such as the theoretical analysis on convexification effects, conver
gence rate, and numerical results, etc., are currently under investigation and will be 
reported in the near future. 
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high level is a saddle point, and the two-level problem is equivalent to the original 
problem. Convergence analysis for the simple high-level updating scheme is presented. 
More importantly, we provide a mechanism to derive the high-level hessian informa
tion and also overcome the difficulty when a line search is needed during the high-level 
Newton iteration. Consequently, the modified Newton method can be employed at 
the high level. Since every high-level function evaluation generally implies solving all 
low-level subproblems once, the improvement on convergence rate is therefore 
significant. Numerical results show that our approach performs much better than the 
SU scheme. Furthermore, since the low level consists of a set of independent 
subproblems, the method is well suited for parallel processing. Simulated parallel
processing results with Q = 2 show that our approach outperforms the one-level 
Lagrange relaxation method for all the test functions. As Q increases the reduction in 
CPU time should be more significant. Also as convexification terms can be added 
while maintaining the separability of low-level SUbproblems, the approach can be 
extended to non-convex optimizations. We therefore believe that this method is very 
promising for large-scale non-linear programming problems with separable 
structures. 

ACKNOWLEDGMENTS 

The work was supported in part by the National Science Foundation under 
Grants ECS-8513163, ECS-8512815, ECS-8717167 and ECS-8717235. The authors 
would like to thank Professor H. Mukai of Washington University and Professor Shi
Chung Chang of National Taiwan University for valuable inputs. 

Appendix A 

Proofs of Theorems 2.1 and 2.2 

A.L Proof of Theorem 2.1 

We first consider the variable Z in (P-H) (with A fixed), and show that L is convex 
in z. Since the cost function in (P-H) is of additive form as given by (2.6), it is sufficient 
to show that L{'(A, zJ is convex in Zi with A fixed, where L{'(A, zJ is the solution of 
(2.7). 

From (2.4) we know 

(A 1) 

where Cii is an Si x Si matrix. Then 

(A 2) 

Define the set 

(A 3) 

Since ~i E 3 i, with :::'i being a convex set, Zi E Zi is therefore also a convex set 
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for an arbitrary rx E [0, 1] and arbitrary zt and zf. Let ({1 and ({2 be the optimal 
solution of (P-i') for the given zt and zf, respectively. Note that zt and ({1 satisfy 
(A2). Similarly for zf and (72. Then define 

(A 4 b) 

Note that z? E Zi, (? E 8 i, and they also satisfy (A 2). Let ({o be the optimal solution 
of (P-i') for the given z? To show that L{(A, zJ is convex in Zi, we need to show 

This can be shown as follows: 

~ rx/;(({l) + (1- rx)/;(({2) + Aj(rxzt + (1- rx)zf) 

Q 

- I AJ(rxgji (({1)+(1-rx)gji(({2)) 
j= 1 
j*i 

(A 5) 

The first inequality holds because ({o is the minimum point given z? The second 
inequality holds because of the convexity of /;. Since Li* is convex in Zi and the 
constraint relaxed by using A is linear in Zi (equation (2.3)), we thus conclude that the 
optimal solution of (P-H) is a unique saddle point. 0 

A.2. Proof of Theorem 2.2 
Problem (P) is equivalent to minimizing (2.2 a) with respect to z and x subject to 

constraints (2.3) and (2.4), i.e. 

(P"): 

Q Q 
min I/;( (d subject to Zi - I gij( U = 0 (2.3) 

z.x i=l j=l 
j*i 

gJ(i,ZJ=O, i=1, ... ,Q (2.4) 
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relaxing constraint (2.3) first, we have 

The outer maxmini problem is actually problem (P-H). From Theorem 2.1 we know 
that the optimal solution of (P-H) is a unique saddle point. On the other hand, since 
(P") is a convex programming problem it has a unique optimal solution. Therefore, 
solving problem (P-H) is equivalent to solving problem (P"), and consequently is 
equivalent to solving problem (P) in the sense that they have the same unique optimal 
solution. 0 

Appendix B 
Proofs of Propositions 3.1, 3.2 and 3.3 and Theorem 3.1 

B.L Proof of Proposition 3.1 

Define 

q(y) = ¢(y) - D¢(yO)y, y E Q (B 1) 

The function q(y) is differentiable at yO under the problem assumption. Furthermore 

(B 2) 

Consequently, for any a > 0, there exists some neighbourhood 'P c Q of yO such that 

Ilq(y) - q(yO) II ~ ally - yO II 

for all y E 'P. We therefore have 

¢(y) _ ¢(yO) = D¢(yO)y _ D¢(yO)yO + q(y) _ q(yO) 

The proof is completed by taking norm on both sides: 

11¢(y) - ¢(yO) II ~ (1ID¢(yO) II + a) Ily - yO II 

B.2. Proof of Proposition 3.2 

(B 3) 

(B 4) 

(B 5) 

o 

- in ular matrix P such 
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where 

A1 0 o 
0 A2 

A= 

0 

I1 0 o 
0 I2 

I= 

0 

Ai 0 o 
0 Ai 

Ai= 

0 

and 

o o 
o 0 1 

o o 
Let the matrix D be defined as 

D = diag (1,8, ... , 8n - 1 ) 

then 

We therefore have 

(PD) -1 A(PD) = A + 8I 

Letting S = PD and taking the I-norm on both sides, we obtain 

IIS- 1 ASl11 ~ peA) + 8 

On the other hand, let Ilxll = IIS- 1xI11' then the following holds: 

IIAII = sup IIAxl1 = sup IIS-1AxI1 1 
iixii=l iiS- 1xiil=1 

With y == S-l X we finally have 

(B 7) 

(B 7) 

(B 8) 

(B 9) 

(B 10) 
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B.3. Proof of Proposition 3.3 

From 

1483 

(B 12) 

we know that y1 belongs to the set <1>. If there exists some / in the set <1>, then from 

11/+1 - y*11 = 11q,(/) - q,(y*) II ~ pll/- y*11 ~ ... ~ pk+ 111yo - y*11 < 15 (B 13) 

we know that yk+ 1 belongs to the set <1>. Thus we have {yk} E <I> for all k?= O. Since 
0< p < 1, we then conclude that 

lim /=y* 
k-+ co 

Furthermore, from 

11/+1- y*11 ~pll/- y*11 
the sequence {yk} converges to y* linearly. 

B.4. Proof of Theorem 3.1 

(B 14) 

(B 15) 

o 

From Proposition 3.2, for any 8 > 0, there exists an appropriate norm in R 2m such 
that 

IIDq,(y*) II ~ p(Dq,(y*)) + 8 

holds. From Proposition 3.1, there exists an open ball 'P c n such that 

II q,(y) - q,(y*) II ~ (1IDq,(y*) II + 8) Ily - y* II 
for all y E 'P. Substituting (B 16) into (B 17), we have 

II q,(y) - q,(y*) II ~ (p( Dq,(y*)) + 28) II y - y* II 

(B 16) 

(B 17) 

(B 18) 

Since we can select 8 such that p = (p(Dq,(y*)) + 28) < 1, the proof is complete by using 
Proposition 3.3. 0 

Appendix C 

Derivation of expressions for oPr /oai 
To derive op{!oai, note that gi is linear (or affine) in ~j for j = 1, ... , Q as 

assumed. Equations (2.3) and (2.4) can respectively be rewritten as 

(C 1) 

and 

gi = [hi(~JJ + [OJ = [Gii~i + BiiJ + [OJ 
gii(~J Zi Zi 

(C 2) 

where 0 is an Si x 1 zero vector, and the dimensions of other matrices are as follows: 
Gii , Ii x ki; Bii , Ii x 1; Gij , ti X kj; and Bij , ti x 1. We now show that f3{ can be expressed 
explicitly in terms of a. First note that Li in (2.7) can be rewritten as 
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Differentiate it with respect to ~;, the first-order necessary condition of problem (P-i) 
requires that 

(C 4) 

where fJ( is part of the solution of Problem (P-i). As assumed in § 2 that h;( ~J and 
gu( 0 are linearly independent in ~;, we know 1; ~ k;. Two cases are discussed here. 

(1) 1; = k;. In this case Gu is a square matrix and is full rank, thus 

[3* - (GT)-l [~ GT A 8/;(~nJ - M (): () ) ; - u ~~t j; j-~ = 1 '0; a; ,a; (C 5) 

(2) I; < k;. This case occurs more often than case (1) because most problems of 
interest have loose interactions. Since fJ( and ~( are low-level solutions, the following 
k; + 1; simultaneous equations are satisfied: 

8L;(fJ(, ~n = 0 
8~; 

8L;(fJ( ,~n = 0 
8[3; 

(C 6 a) 

(C 6 b) 

We can therefore use any I; equations from (C 6 a) (or (C 4)) to express fJ( in terms of 
~(, i.e. 

Pt ~ (aD;' L~! (aJ,pj 

Jr) 

(C 7) 

where (G~)r-l, (GJ;)r and (8/;( ~nj8~nr are corresponding components of the I; 
equations chosen arbitrarily from (A 6 a) with dimensions 1; xl;, 1; x tj and 1; x 1, 
respectively. Therefore 

(C 8 a) 

or 

(C 8 b) 

o 

Appendix D 

Proof of Proposition 4.1 

Equation (4.47) can be rewritten as 

Ai + [31 Tr 1.+:. 
Q 

Zl - L gj Zl - I gj 
j=2 j=2 

1 A + • A + [3 
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=- --+--1[8L
T

8L 8L
T

8L] 
2 8,1 8,1 8z 8z 

(D 1) 

The first-order necessary conditions of problem (4.47) are 

8h = 8e ~(8L) + 8L
T 
~(8L) = 0 

8,1 8z 8,1 8z 8,1 8,1 8,1 
(D 2 a) 

8h = 8L
T ~(8L) + 8L

T 
~(8L) = 0 

8z 8z 8z 8z 8,1 8z 8,1 
(D 2 b) 

Equations (D 2) can be rewritten in matrix form as 

[
8L

T 
8LT] [~:~ :~~ 1 = 0 

8,1 8z 82 L 82 L 

8A8z 8Z2 

(D 3) 

Let 

(D 4) 

Comparing equations (D 4) with (4.3), we see that Hi is actually the high-level hessian 
matrix with some rows swapped and some columns swapped. The determinant of Hi 
is (Kailath 1980, p. 650) 

= 182LI182L _ 82LT(82L)-1 ~I 
IH 11 8Z2 8,1 2 8z8A 8Z2 8z8A 

(D 5) 

Under the assumption that 82 Lj8z2 > 0 and 82 Lj8A2 < 0, we have 

1

82LI 
8Z2 #0 

and 

Therefore IH 11 # o. Hi is full rank, and (D 3) equals zero if and only if 

(D 6) 

n 
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