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Steel-making process scheduling using Lagrangian relaxation

LIXIN TANGy*, PETER B. LUHz, JIYIN LIU§ and LEI FANGz

The steel-making process, including steel-making and continuous casting, is
usually the bottleneck in iron and steel production. E� ective scheduling of this
process is thus critical to improve productivity of the entire production system.
Unlike the production scheduling in the machinery industry, steel-making process
scheduling is characterized by the following features: job grouping and prece-
dence constraints, set-up and removal times on the machines, and high job wait-
ing costs. These features add extra di� culties to the scheduling problem. The
objective is to ensure continuity of the production process and just-in-time deliv-
ery of ®nal products. In this paper, a novel integer programming formulation with
a `separable’ structure is constructed considering all the above-mentioned fea-
tures. A solution methodology is developed combining Lagrangian relaxation,
dynamic programming and heuristics. After relaxing two sets of `coupling con-
straints’, the relaxed problem is decomposed into smaller subproblems, each
involving one job only. These subproblems are solved e� ciently by using dynamic
programming at the low level while the Lagrangian multipliers are iteratively
updated at the high level by using a subgradient method. At the termination of
such iterations, a two-stage heuristic is then used to adjust subproblem solutions
to obtain a feasible schedule. A numerical experiment demonstrates that the
method generates high quality schedules in a timely fashion.

1. Introduction
The metal-forming industry is an important link in the manufacturing chain,

supplying extrusions, tubes, plates and sheets to many major manufacturing enter-

prises, including the automobile, aircraft, housing and food services, and beverage

industries (Balakrishnan and Brown 1996). Iron and steel production includes sev-
eral process phases (iron-making, steel-making Ð continuous casting and steel roll-

ing), and is very extensive in investment and energy consumption. It is also
characterized by high-temperature high-weight material ¯ow with complicated tech-

nological processes. To accommodate customer requirements for di� erent types of
®nished products with ¯uctuating demands, di� erent rolling mills in the steel-rolling

phase are designed with su� cient production capacity. Since the steel-making pro-
cess (SP) phase needs expensive and energy-extensive equipment and runs in a con-

tinuous mode, its capacity is usually below the total capacity of the rolling stage.
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E� ective scheduling of SP resources is therefore vital, especially in today’s highly
competitive global steel market.

The steel-making process consists of three stages: steel-making, re®ning and
continuous casting. Each stage further includes parallel machines, as shown in
®gure 1. The following is a brief description of the production process.

In the steel-making stage, carbon, sulphur, silicon, and other impurity contents
of molten iron are reduced to desirable levels by burning with oxygen in a converter
(CF) or electric arc furnace. The output from this stage is molten steel with the main
alloy elements. The basic unit of steel-making production is a charge, which is
de®ned as a `job’ in SP scheduling. It refers to the concurrent smelting in the same
converter. The set-up and maintenance times at the steel-making stage are compara-
tively short. The steel in one charge may be cast into di� erent slabs that are used to
produce ®nished steel products for di� erent customer orders. Charges must be so
designed that (1) the orders in the same charge have identical steel grade and gauge;
(2) the slab widths for these orders should be within certain limits; (3) delivery dates
of the orders are close to each other; and (4) total slab weight ranges from 95% to
100% of the furnace capacity.

The molten steel from the steel-making stage is poured into ladles that are trans-
ported by a crane to a re®ning furnace (RF) for re®ning. The operation at this stage
further re®nes the chemicals and eliminates impurities in the molten steel or adds the
required alloy ingredients. If no RF is available when a new charge arrives, the
charge has to wait until one of the RFs becomes available. The waiting time of a
charge causes the charge temperature to drop, and reheating is needed. Energy
consumption thus grows as the waiting time increases. The duration of the operation
at the re®ning stage is usually similar to that of the operation at the steel-making
stage. After re®ning, molten steel is poured into a tundish for casting.

In the casting stage, molten steel ¯ows down from a hole at the bottom of the
tundish into the crystallizer, the input unit, of a continuous caster. The molten steel
continuously solidi®es into slabs at the bottom of the caster. A sequence of charges
that are consecutively cast on the same intermediate ladle and on the same contin-
uous caster using the same crystallizer is called a cast, which is de®ned as a `job
group’ in SP scheduling. Charges in the same cast need to satisfy the following
technological constraints . (1) Steel grades for adjacent charges have to be identical
or similar. (2) The slab gauge of di� erent charges has to be identical. (3) The charges
in the same cast must be sequenced so that their slab widths are in descending order.
(4) The di� erences in slab widths of the charges in the same cast must be within a
certain limit and the width jump between adjacent charges cannot exceed a given
maximum value. (5) The total number of charges in a cast must be between a given
lower bound and an upper bound that is determined by the life span of the inter-
mediate ladle. (6) Delivery dates of di� erent charges in the same cast should be as
close as possible.

Set-up time on the caster is not needed between adjacent charges in the same cast.
However, a relatively long set-up time is required between two casts on the same
caster for changing the crystallizer. A removal time is also needed to clean equipment
and tools, after a cast is ®nished. Both set-up and removal times are considered
separate from the duration of operation because set-up and removal processes
engage the equipment only, not the jobs.

As mentioned earlier, charges are `jobs’ and casts are `job groups’ in SP sched-
uling, and are de®ned at the lot planing level. After lot planning, the orders in each
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charge and their sequence are ®xed. The charges in each cast and their sequence are
also ®xed. SP scheduling is then to decide the schedule of these jobs on the machines.

Planning and scheduling problems in iron and steel production have not drawn

as much attention of the production and operations management researchers as

many other industries, such as metal cutting and electronics manufacturing. A

review of research on the integrated steel production planning and scheduling can

be found in Tang et al. (2001).

Because steel-making scheduling with practical constraints is extremely complex,
most approaches to SP scheduling treat the problem at three levels (Numao and

Morishita 1991): (1) sub-scheduling, which ful®ls the scheduling of individual charge

sets; (2) rough scheduling, which merges sub-schedules; and (3) optimal scheduling,

which eliminates machine con¯icts. In our previous work (Tang et al. 2000), the sub-

scheduling and rough scheduling were realized through human-compute r inter-

action, a nonlinear mathematical model was built for the machine con¯ict problem,

and the model was then converted into a linear programming model for easy sol-
ution. Kalagnanam et al. (2000) addressed the problem of satisfying customer orders

in an order book with surplus slab inventory before scheduling the production for

the remaining orders. The problem was formulated as a bicriteria multiple knapsack

problem with additional constraints and was then solved by using a network-based

heuristic. Cowling and Rezig (2000) developed a mixed integer programming model

and a heuristic for integrated production planning of a steel continuous caster and

hot strip mills. Signi®cant savings from the implementation were reported. Chang et
al. (2000) studied the lot planning problem to group charges into casts for a con-

tinuous slab caster in an integrated steel mill. An integer-programming model and an

e� cient heuristic were developed employing the column generation approach com-

bined with a simple round-o� scheme.

As can been seen from ®gure 1, the structure of the production system for the SP

is similar to a hybrid ¯ow shop (HFS). For many years, scheduling in HFS did not

receive much attention, compared with that for the general ¯ow shop and job shop
environments. Gupta (1988) demonstrated that the two-stage HFS scheduling prob-

lem with the objective of minimizing the makespan is NP-complete. Vignier et al.
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(1999) gave a review on HFS scheduling problems. Most studies solve HFS sched-
uling problems by using the branch-and-bound method (e.g. Brah and Hunsucker
1991, Rajendran and Chaudhuri 1992, Portmann et al. 1998, Moursli and Pochet
2000) or heuristics (e.g. Rajendran and Chaudhuri 1992, Guinet and Solomon 1996,
Gupta and Tunc 1998). Guinet and Solomon (1996) also gave a mixed integer
programming formulation. However, these results cannot be used for SP scheduling
for two main reasons: (1) SP has a number of additional practical constraints such as
job groups and precedence that are not considered in HFS. (2) The scheduling cri-
teria for SP are much more complex, involving waiting times and due dates, while
HFS scheduling usually tries to minimize the makespan only.

In this paper, we develop an integrated model for the SP scheduling problem
including all three SP stages, and present a Lagrangian relaxation method to solve it.
The steel-making plant in Shanghai Baoshan Iron and Steel Complex (BaoSteel) is
taken as the research background, and the goal is to generate daily schedules for SP
and help BaoSteel planners to make better short-term (for a shift) scheduling deci-
sions. The rest of the paper is organized as follows. Section 2 ®rst summarizes the
special technological features of the SP and outlines the requirements on the sched-
uling model. An integer programming formulation of the scheduling problem is then
presented. Section 3 describes the solution methodology that combines Lagrangian
relaxation and backward dynamic programming. Computational results on data
abstracted from practical applications are reported in section 4.

2. Mathematical formulation of the problem
2.1. The problem characteristics and modelling requirements

After the charges and casts are de®ned by lot planning, the task of SP scheduling
is to determine when and where (on which device) each charge should be processed at
each production stage. The following general assumptions usually made in HFS
scheduling are also viable for this problem.

(a) All charges follow the same process route: steel-making, re®ning, and then
continuous casting. At each stage, a charge can be processed on any one of
the machines at that stage, and the parallel machines at that stage are
identical.

(b) A machine can process at most one job at a time.
(c) A job can be processed on at most one machine at any time.
(d) Job processing is non-pre-emptive .

However, it is clear from the introduction that the problem has some special
features as compared with the scheduling in a general HFS. These features are
summarized as follows.

(1) The number of charges to be scheduled within a shift is not large. However,
each charge contains more than 100 tons of molten steel at high temperature.
Transfer times between stages needs to be considered.

(2) Some speci®ed charges (a cast) must be processed as a group on the same
caster and there are precedence constraints among the charges within a
group at the casting stage.

(3) Set-up and removal times are required, respectively, before and after a whole
cast is processed on a caster. These times are separated from the processing
times.
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(4) Idle time on the caster between charges within a cast (cast break) is undesir-
able and involves cost.

(5) Waiting time of charges between the processing at different stages causes a
temperature drop and results in cost for heating.

(6) Both earliness and tardiness on job completion lead to cost, e.g. for inven-
tory or compensation to customers.

The above problem characteristics form the basis for developing a mathematical
model. The modelling requirements are outlined below.

The objective is to ensure continuity of the production process and just-in-time
delivery of ®nal products through minimizing a cost function consisting of the
following terms.

(1) Cast break loss penalties to discourage charges in the same cast being sepa-
rated.

(2) Molten steel temperature drop cost due to job waiting between operations.
(3) Earliness/tardiness penalty used to ensure that slabs in each charge are

delivered as punctually as possible.

The general assumptions and special characteristics presented above must be
considered in the model to guarantee schedule feasibility.

(a) For the two consecutive operations for the same charge, only when the
preceding operation has been ®nished can the immediate next one be started.

(b) For two consecutive charges processed on the same machine, only when the
preceding charge has been ®nished can the immediate next one be started.

Set-up time is required from cast to cast on the same continuous caster. Set-up
time must be considered before a new cast is to be processed.

Removal time is required for a caster after a cast has been ®nished on that caster.

2.2. Notation
To model the problem, the entire planning horizon (e.g. a shift) is divided into

small time units, such that all the time parameters, for example processing, set-up,
removal and transfer times, are of integer time units. The steel-making, re®ning and
continuous casting stages are referred to as stages 1, 2 and 3, respectively. The model
and solution methodology below can be easily modi®ed for systems with more
stages. The following symbols are used for de®ning the problem parameters and
variables.

Parameters

« set of all charges, « ˆ f1; 2; . . . ; Ng, where N is the total number of pro-
duction charges,

«g set of all charges in the gth cast, g 2 f1; 2; . . . ; Mg, where M is the total
number of casts. «h \ «g ˆ 1, for any h, g 2 f1; . . . ; Mg and h 6ˆ g.

«1 [ «2 [ . . . [ «M ˆ «,
sgp pth charge in cast g, according to the charge sequence de®ned by lot

planning, p ˆ 1; 2; . . . ; j«gj. This notation simpli®es the model presenta-
tion,

di due date of charge i. It is a time point (the ending point of a time unit),
C1g coe� cient of cast break loss penalty for cast g,
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C2ij coe� cient of penalty cost for the waiting time of charge i after being
®nished at stage j,

C3i coe� cient of penalty cost for the production of charge i being completed
before its due date,

C4i coe� cient of penalty cost for the production of charge i being late with
respect to its due date,

Tij processing time (duration) of charge i at stage j,
tj; j‡1 transportation time (duration) from stage j to stage j ‡ 1,

Sij set-up time (duration) for charge i on a machine at stage j. When i is the
®rst charge in a cast and j ˆ 3, this is the required set-up time for the cast
on a caster. For all other i, j, Sij ˆ 0,

Rij removal time (duration) after processing charge i on a machine at stage j.
When i is the last charge in a cast and j ˆ 3, this is the required removal
time of a caster after processing the cast. For all other i, j, Rij ˆ 0,

Mjk number of machines available at stage j in time unit k,
K total number of time units in the planning horizon.

Decision variables

¯ijk ˆ
1 if charge i is processed at stage j in time unit k

0 otherwise;

»

i 2 «; j ˆ 1; 2; 3; k ˆ 1; 2; . . . ; K ,
Cij completion time of charge i on operation j, i 2 «; j ˆ 1, 2, 3. It is a time

point (`Cij ˆ k’ means that the operation completes at the end of time unit
k).

2.3. The model
Using the above symbols, the SP scheduling problem is formulated as follows.

The objective function is to minimize the total cost due to cast breaking, job waiting
and earliness/tardiness over the entire planning horizon, i.e.

Minimize Z; with Z ²
XM

gˆ1

Xj«gj¡1

pˆ1

C1g…Csg; p‡1;3 ¡ Tsg; p‡1 ;3 ¡ Csgp3†

‡
XN

iˆ1

X2

jˆ1

C2ij…Ci; j‡1 ¡ Ti; j‡1 ¡ tj;j‡1†

‡
XN

iˆ1

C3i max…0; di ¡ Ci3† ‡
XN

iˆ1

C4i max…0; Ci3 ¡ di†: …1†

Subject to

Cij ‡ tj;j‡1 µ Ci; j‡1 ¡ Ti; j‡1; i 2 «; j ˆ 1; 2: …2†

Csgp3 µ Csg; p‡1 ;3 ¡ Tsg; p‡13; p ˆ 1; 2; . . . ; j«gj ¡ 1; g ˆ 1; . . . ; M: …3†

XK

kˆ1

¯ijk ˆ Tij ‡ Sij ‡ Rij ; i 2 «; j ˆ 1; 2; 3: …4†
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k¯ijk µ Cij ‡ Rij ; i 2 «; j ˆ 1; 2; 3; k ˆ 1; 2; . . . ; K : …5†

Cij ¡ Tij ¡ Sij ‡ 1 µ k ‡ K…1 ¡ ¯ijk†; i 2 «; j ˆ 1; 2; 3; k ˆ 1; 2; . . . ; K : …6†

X

i2«

¯ijk µ Mjk; j ˆ 1; 2; 3; k ˆ 1; . . . ; K : …7†

¯ijk 2 f0; 1g; i 2 «; j ˆ 1; 2; 3; k ˆ 1; . . . ; K : …8†

Cij 2 f1; 2; . . . ; Kg; i 2 «; j ˆ 1; 2; 3: …9†

Each term in (1) represents one type of cost. Constraints (2) de®ne operation

precedence among the stages for a charge and ensure that a charge will not appear at

more than one stage at the same time. Constraints (3) de®ne the precedence in terms

of (g; p) for charges within a cast to be processed on a caster. Constraints (4) impose
the total time requirements, including set-up and removal if needed, for jobs on

machines at each stage. Constraints (5) and (6) de®ne the time interval for which

a charge requires a machine at a stage. Together with constraint (4), they specify the

requirement of a charge for a machine at each stage for the required continuous time

period. Constraints (7) are machine capacity constraints, and (8) and (9) de®ne the
value range of the variables.

3. Solution methodology

Lagrangian relaxation (LR) is one of the e� cient methods to solve large-scale

integer programming problems (Fisher 1981). It introduces the `coupling con-
straints’ into the objective function by using a vector of Lagrangian multipliers

to form a relaxed problem of the primal problem. For a given value of the vector

of Lagrangian multipliers, the relaxed problem is usually much easier to solve

than the original problem. The optimal values of the Lagrangian multipliers are

searched through solving the Lagrangian dual problem by using a subgradient

algorithm. The LR method has been successfully used in solving job shop
scheduling problems in Hoitomt et al. (1993) and Luh et al. (1998) . Based on

the ideas of these two papers, the method presented in this section is utilized, as

the problem involves a large number of integer variables and is di� cult to solve

directly.

3.1. Lagrangian relaxation

The problem formulation presented in section 2.3 shows that only constraints (3)

and (7) couple di� erent jobs. They are called the `coupling constraints’. If they are

relaxed, the problem can be decomposed to smaller subproblems, each involving

only one job. Therefore, we form the following relaxed problem by introducing
these two sets of constraints to the objective function through non-negative

Lagrangian multipliers fuig and fvjkg, respectively:
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(LR)

Minimize ZLR; with ZLR ²
XM

gˆ1

Xj«g j¡1

pˆ1

C1g…Csg; p‡1 ;3 ¡ Tsg; p‡1 ;3 ¡ Csgp3†

‡
XN

iˆ1

X2

jˆ1

C2ij…Ci; j‡1 ¡ Ti; j‡1 ¡ Cij ¡ tj;j‡1†

‡
XN

iˆ1

C3i max…0; di ¡ Ci3† ‡
XN

iˆ1

C4i max…0; Ci3 ¡ di†

‡
XM

gˆ1

Xj«g j¡1

pˆ1

usgp
…Csgp3 ¡ Csg; p‡1 ;3 ‡ Tsg; p‡1;3†

‡
XK

kˆ1

X3

jˆ1

vjk

X

i2«

¯ijk ¡ Mjk

Á !
…10†

subject to constraints (2), (4), (5), (6), (8), (9), and

usgp
0; p ˆ 1; 2; . . . ; j«gj ¡ 1; g ˆ 1; . . . ; M: …11†

vjk 0; j ˆ 1; 2; 3; k ˆ 1; . . . ; K : …12†

For given values of fuig and fvjkg, the relaxed problem can be decomposed into
subproblems, each for one job. The subproblem for job i, i 2 «, is given as follows:

(LRi)

Minimize ZLR…i†; with ZLR…i† ²
X2

jˆ1

C2ij…Ci; j‡1 ¡ Ti; j‡1 ¡ Cij ¡ tj; j‡1†

‡ C3i max…0; di ¡ Ci3† ‡ C4i max…0; Ci3 ¡ di†

‡
XK

kˆ1

X3

jˆ1

vjk¯ijk ‡ ’…i† …13†

subject to constrains (2), (4), (5), (6), (8), (9), where i is ®xed for the ith subproblem
and ’…i† is de®ned, depending on the value of i, as shown below:

’…i† ² …usgp
¡ C1g†Csgp3; for sgp ˆ i and p ˆ 1: …14†

’…i† ² …usgp
¡ C1g†Csgp3 ‡ …C1g ¡ usgp¡1

†…Csgp3 ¡ Tsgp3†;

for sgp ˆ i and p ˆ 2; . . . ; j«gj ¡ 1: …15†

’…i† ² …C1g ¡ usg;p¡1
†…Csgp3 ¡ Tsgp3†; for sgp ˆ i and p ˆ j«gj: …16†

In formulas (14) to (16), g and p correspond to a particular charge, i.e. charge i.
Cast g is the cast that charge i belongs to, and p is the position of i in the cast, i.e.
sgp ˆ i. Recall that i is the charge index in the charge set «, cast «g is a grouping of
charges with precedence constraints on them, and sgp is the pth charge in «g. Since

«j \ «g ˆ 1 for h, g 2 f1; . . . ; Mg and h 6ˆ g, and «1 [ «2 [ . . . [ «M ˆ «, there is
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a one-to-one correspondence between i and sgp. For example, if there are ten charges
in the problem, « ˆ f1; 2; . . . ; 10g, and the charges belong to three casts,
«1 ˆ f2; 3; 7g, «2 ˆ f1; 4; 5; 10g, and «3 ˆ f6; 8; 9g, then the unique relationship
between i and sgp can be represented in the form below:

i ˆ sgp 1 2 3 4 5 6 7 8 9 10

g 2 1 1 2 2 3 1 3 3 2

p 1 1 2 2 3 1 3 2 3 4

From such a form, the two notation systems can be easily converted to each other
in the algorithm implementation. Variables using them as subscripts can be deter-
mined accordingly, e.g. for g ˆ 2 and p ˆ 4, it is clear that i ˆ sgp ˆ 10 and
Csgp3 ˆ Ci3 ˆ C10;3.

3.2. Dynamic programming for subproblems (LRi)
The backward dynamic programming (DP) is used to solve the subproblems. The

DP stages correspond to SP production stages, and the states at each stage corre-
spond to possible job (charge) start times at that stage. Figure 2 shows a schematic of
the backward DP. A line connecting two consecutive stages indicates a backward
sweep route. For every node at Stage 1 or 2, there exist at most K lines connecting to
K nodes at the immediate subsequent stage, and the connection is subject to opera-
tion precedence constraints (2). A solid line indicates the partial shortest path from a
current node to the immediate subsequent stage.

The DP procedure starts from the last stage and proceeds to the ®rst stage,
moving in the direction opposite to the process ¯ow direction. The cost for node i
at the last (third) stage is given by:

Vi3…Ci3; ¯i3k† ˆ C2i2…Ci3 ¡ Ti3† ‡ C3i max…0; di ¡ Ci3†

‡ C4i max…0; Ci3 ¡ di† ‡
XK

kˆ1

v3k¯i3k ‡ ’…i†; …17†

where ’…i† is de®ned in (14) to (16).
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The cumulative cost for the second stage is given by

Vi2…Ci2; ¯i2k† ˆ C2i1…Ci2 ¡ Ti2† ¡ C2i2…Ci2 ‡ t2;3†

‡
XK

kˆ1

v2k¯i2k ‡ min
fCi3 ;¯i3kg

fVi3…Ci3; ¯i3k†g: …18†

The cumulative cost (total cost) for a node at the ®rst stage is then

Vi1…Ci1; ¯i1k† ˆ ¡C2i1…Ci1 ‡ t1;2† ‡
XK

kˆ1

v1k¯i1k ‡ min
fCi2;¯i2kg

fVi2…Ci2; ¯i2k†g: …19†

The optimal subproblem cost is obtained as the minimal cumulative cost at the
®rst stage. Finally, an optimal solution to subproblem (LRi) can be obtained by
tracing forwards the stages. The computational complexity of this DP procedure is
O…K2).

3.3. Obtain a feasible solution to the original problem
A solution to the relaxed problem is generally infeasible for the original problem

because the precedence constraints (3) and capacity constraints (7) have been
relaxed. A two-phase heuristic has been developed to construct a feasible solution
based on a solution to the relaxed problem. In the ®rst phase, the solution is adjusted
to ensure that the precedence constraints between jobs (charges) at the last stage are
satis®ed without considering machine capacity constraints. In the second phase,
machine con¯icts are resolved to produce a feasible solution to the original problem.

Let the solution of the relaxed problem at the nth iteration be denoted as
Sn ˆ fCn

ij , i 2 «; j ˆ 1; 2; 3g. The starting times of operations can be expressed as
Bn

ij ² Cn
ij ¡ Tij , i 2 «; j ˆ 1, 2, 3. Note that `Bij ˆ k’ means that time unit (k ‡ 1) is

the ®rst time unit for operation (i; j). The ®rst phase of the heuristic algorithm is as
follows.

Step 1. Set g ˆ 1.
Step 2. For cast g, check the feasibility of job precedence constraints for the casting

operation (3). If the constraints are satis®ed, go to step 5.
Step 3. Let Bn

sg13 ˆ minj2«g
fBn

i3g; Bn
sgp3 ˆ Bn

sgp¡13 ‡ Tsgp¡13, p ˆ 2; . . . ; j«gj. This step
®rst ®nds the earliest starting time of the charge in cast g in the relaxed
solution, lets this time be the staring time of the ®rst charge in the cast,
and then determines the starting times of other charges in the cast according
to their de®ned precedence. In this way the starting time of the cast for the
casting operation is not changed but any violation of precedence constraint
is removed.

Step 4. Based on the starting time for the last operation of a charge, Bn
i3; i 2 «g,

obtained in step 3, determine in a backwards fashion the starting times of the
second and then the ®rst operations of the charge, Bn

i2 and Bn
i1, based on the

required processing times, without considering capacity constraints.
Step 5. g ˆ g ‡ 1; if g µ M , go to step 2; otherwise, proceed to the second phase.

Let [i] denote the ith position in the sequence, and ºj the set of unscheduled jobs
at stage j. The second phase of the heuristic is as follows.

Step 1. Set j ˆ 1, M1kj ˆ Mjk for k ˆ 1; . . . ; K :
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Step 2. Index the charges according their starting times, and then schedule them on
stage j sequentially: for i from 1 to N, do the following sequentially. Let
Bn

‰iŠj ˆ mini12ºj
fBn

i1; jg; ®nd k ˆ minfk 0jM1k 0 j 6ˆ 0 and k 0 Bn
‰iŠjg;

schedule charge [i] to begin processing at stage j immediately after time
point k, i.e. Bn

‰iŠj ˆ k, set M1k1; j ˆ M1k1; j ¡ 1 for k1 ˆ k ‡ 1; . . . ; k ‡ T‰iŠ;j;
ºj ˆ ºj ¡ f‰iŠg.

Step 3. Update the charge starting times for the intermediate stage: let j ˆ j ‡ 1;
if j < 3, recalculate Bn

ij ˆ maxfBn
i;j¡1 ‡ Ti;j¡1 ‡ tj¡1; j; Bn

ijg for i 2 «, go
to step 2.

Step 4. Update the starting times of the ®rst charges in all casts for the last stage
such that the idle time on the caster between charges within a cast is as small
as possible: Let B1ij ˆ maxfBn

i;j¡1 ‡ Ti;j¡1 ‡ tj¡1; j; Bn
ijg for i 2 «, and

Bsg1 j ˆ Bsg1 j ‡
P

i12«g
maxfB1i1; j ¡ Bn

i1; j; 0g; g ˆ 1; . . . ; M
Step 5. Index the casts according their starting times, and then sequentially schedule

the casts for the last stage: for g, from 1 to M, do the following sequentially.
Let Bs‰gŠ1;j ˆ minsg 012ºj

fSsg 01;j ‡ Bsg 01 ;jg; ®nd k ˆ minfk 0jM1k 0 j 6ˆ 0 and
k 0 Bs‰gŠ1 ;jg; schedule the ®rst charge in cast [g] to start processing at
stage j (the current casting stage) immediately after time point k and
schedule the starting of other charges in the same cast at this stage
accordingly, i.e. Bs‰gŠ1; j ˆ k, Bs‰gŠp ; j ˆ Bs‰gŠp¡1 ; j ‡ Ts‰gŠp¡1; j, p ˆ 2; . . . ; j«‰gŠ|; set
M1k1; j ˆ M1k1; j ¡ 1 for k1 ˆ k ‡ 1; . . . ; k ‡ S‰gŠ1 ‡

P
i2«‰gŠ

Tij ‡ R‰gŠj«‰gŠ j;

ºj ˆ ºj ¡ «‰gŠ:
Step 6. Stop. {Bn

ij} obtained above de®nes a feasible schedule.

3.4. Updating Lagrangian multipliers
The optimal values of the Lagrangian multipliers fui; vjkg are searched through

by solving the Lagrangian dual problem:

(LD)

Maximise ZD…ui; vjk†; with ZD…ui; vjk† ² min ZLR

Subject to

usgp
0; p ˆ 1; 2; . . . ; j«gj ¡ 1; g ˆ 1; . . . ; M;

vjk 0; j ˆ 1; 2; 3; k ˆ 1; . . . ; K :

A subgradient algorithm is applied to solve this dual problem. Lagrangian multi-
pliers are updated at each iteration according to the feasible solution obtained from
modifying the relaxed problem solution of the previous iteration. For a minimization
problem, the solution to the Lagrangian dual problem provides a lower bound to the
optimal primal cost and the feasible solution provides an upper bound. The pro-
cedure for solving the relaxed problem is as follows. Here tn is the step size for
updating the multipliers and tn is a factor for adjusting the step size at the nth
iteration.

Step 1. Initialization: n ˆ 0; ¬0 ˆ 2; ZU ˆ ‡1; ZL ˆ ¡1; u0
sgp

ˆ 0;
p ˆ 1; . . . ; j«gj ¡ 1, g ˆ 1; . . . ; M ; v0

ij ˆ 0, j ˆ 1; 2; 3, k ˆ 1; . . . ; K .
Step 2. Solve the relaxed problem by decomposition and DP as described in section

3.2. If the optimal objective value ZD…un;vn† > ZL, then ZL ˆ ZD…un ;vn†.
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Step 3. Based on the solution of step 2, construct a feasible solution to the original
problem P by using the heuristics presented in section 3.3. If the objective
value Zn < ZU , then ZU ˆ Zn.

Step 4. If one of the following conditions is satis®ed, then stop; otherwise go to
step 5.
(1) (ZU ¡ ZL†=ZU < ¯, where ¯ > 0 is a very small number;
(2) Step size parameter ¬n µ 0:0005;
(3) Number of iterations n > the maximum iteration number chosen by the

user;
(4) jj®njj < °, where ®n is the subgradient at iteration n and " > 0 is a very

small number.
Step 5. Lagrange multipliers are updated as follows:

®n…un
sgp

† ˆ …Cn
sgp3 ¡ Cn

sgp‡13 ‡ Tn
sgp‡13†; p ˆ 1; . . . ; j«gj ¡ 1; g ˆ 1; . . . ; M ;

®n…vn
jk† ˆ

X

i2«

¯ijk ¡ Mjk; j ˆ 1; 2; 3; k ˆ 1; . . . ; K ;

tn ˆ ¬n…ZU ¡ ZD…un; vn††=k®n…un; vn†k2;

un‡1
sgp

ˆ Max f0; un
sgp

‡ tn®n…un
sgp

†g; p ˆ 1; . . . ; j«gj ¡ 1; g ˆ 1; . . . ; M ;

vn¡1
jk ˆ Max f0; vn

jk ‡ tn®n…vn
jk†g; j ˆ 1; 2; 3; k ˆ 1; . . . ; K ;

»n ˆ 0:15*‰n=20Š; ¬n‡1 ˆ ¬*n exp…¡0:5»2
n†;

n ˆ n ‡ 1; go to step 2:

4. Computational experience
To test the performance of the method and to study the characteristics of the

solutions, a computational experiment has been carried out on randomly generated
problem instances, which were designed to re¯ect practical situations in iron and
steel industries.

4.1. Generation of problem instances
To generate representative problem instances, we examined the actual production

data from Baosteel Complex. Baosteel Complex is the largest and most advanced
iron and steel enterprise in China. Its annual production is over 18 million tons of
steel, and its auto sheet accounts for more than 60% of the domestic market share.
In the steel-making plant of Baosteel Complex, every workday is divided into three
shifts. Planners need to carry out SP scheduling in every shift for the next shift. The
SP schedule generally includes about 5±7 casts for each workday, and a cast consists
of 3-5 charges subject to technological constraints. The maximum number of charges
to be scheduled in each workday is about 35 (about 12 per shift). Based on the above,
the number of charges to be scheduled is set to be 12 for each instance. Since the
minimum scheduling time unit in the iron and steel plant is in an exact number of
minutes, the minute is taken as the basic time unit. The planning horizon is set to be
480 minutes, as this study intends to solve the SP scheduling problem for an eight-
hour shift. Two other parameters are chosen to represent the problem structure as
described below:
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(1) The number of casts is set to vary at three levels: 3, 4, and 6.
(2) The number of machines at each stage is set to vary at three levels: 3, 4,

and 5.

In order to reduce experimental cases, it is assumed that every stage has the same

number of machines. However, our method presented here can deal with practical

problems including di� erent numbers of machines for di� erent stages.

The combination of parameter levels gives nine problem scenarios, and for each

scenario, ten di� erent problem instances were randomly generated. Thus, a total of
90 problem instances were used in the experiment. According to practical data of the

steel-making plant of Baosteel Complex, the processing times were randomly gener-

ated from a uniform distribution [30, 50]. The penalty coe� cients for the cast break

were set to be 500 while the penalty coe� cients for the waiting time were randomly

generated from a uniform distribution [100, 110]. Penalty coe� cients for the ear-

liness and tardiness were randomly generated from uniform distributions [10, 15] and

[100, 120], respectively.

4.2. Computational results

The method was implemented by using Visual C‡‡, and the experiment was

carried out on a Pentium-II 400 MHz PC. Because Lagrangian relaxation cannot
guarantee optimal solutions, the relative dual gap (ZUB ¡ ZLB†=ZUB is used as the

measure of solution optimality, where ZUB is the upper bound to the original prob-

lem and ZLB is the lower bound. The optimality performance and running times of

our Lagrangian relaxation method against di� erent problem structures and against

di� erent problem sizes are presented in table 1. Figure 3 shows the evolution of the

relative duality gap in the solution process for problems with di� erent casts (the

number of machines at each stage is ®xed to 4), and ®gure 4 shows the duality gap
evolution for problems with di� erent numbers of machines (the number of casts is

®xed to 3).

From the results presented in table 1, ®gures 3 and 4, the following observations

can be made about our SP scheduling method.
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Optimality performances (%)
Problem Problem structures Running time

no. Casts Machines Worst Best Average (s)

1 3 3 4.68 0.42 2.73 148.60
2 4 3 4.82 1.74 3.02 188.40
3 6 3 18.41 15.07 17.10 221.20
4 3 4 1.81 0.68 1.19 118.20
5 4 4 5.45 0.50 2.30 134.80
6 6 4 11.39 9.61 10.20 183.20
7 3 5 0.50 0.46 0.49 23.60
8 4 5 1.83 0.60 0.87 105.70
9 6 5 12.20 7.14 9.89 145.40

Note: Initial step size = 0.5, maximum number of iteration =500.

Table 1. Optimality performances and running times of method.



(1) The overall average optimality performance is about 5.32% for 12 charges in
a shift. Since this performance is measured using the relative duality gap, the
actual relative distance to optimal solutions may be even smaller.

(2) As the number of machines increases, the optimality performance improves
and the computation time decreases. This is consistent with the intuition that
for a ®xed number of charges, when the number of machines is larger, the
resource is in less demand and the problem becomes easier to solve.

(3) The duality gap and the computational time increase as the number of casts
increases. This is because, when the number of casts increases, there are
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Figure 3. Duality gap for di� erent number of casts.

Figure 4. Duality gap for di� erent number of machines.



more precedence constraints on the charges. As a result, the problem size
increases and the problem becomes more dif®cult to solve.

5. Conclusions
In this paper, the SP scheduling problem was viewed as a hybrid ¯owshop prob-

lem with complicated technological constraints, and was formulated as an integer-
programming problem. The objective was to meet the requirements of just-in-time
delivery and production operation continuity while considering all practical features,
such as job set-up and removal times, job grouping and precedence constraints. A
solution methodology that combined Lagrangian relaxation, dynamic programming,
and heuristics was developed. A computational experiment on randomly generated
realistic problems showed that the solution method is e� ective and e� cient. The
average relative duality gap is 5.32% and the average computational time is about
140 seconds on a Pentium-II 400-MHz PC. The method can be modi®ed and
extended to other hybrid ¯owshop scheduling problems where some technological
constraints are removed or modi®ed. It may also be extended to hot rolling sched-
uling problems with speci®c modi®cations on the implementation.
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