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Abssham-In thh paper we study the impact of storage on load manage- 
mentbyelecMcutllities.Tberesultswehaveobtainedarebrsedwa 
simple model with hear storage costs and quadratic generating costs 
MkiencyofstorageisaparameterinthemodeLAnoptimalrootrd 
problem, with state variable and control variable inequality conslraints, is 
formulated It is shown that the optimal storage/rebieval strategies may 
besummarizedin~da”peakline,”above~theloadnvvewlll  
beshavedoffanda~eylin~~belowwhirfitheloadcurvewillbefil led 
The control strategy, albeit based on a simple dl, makes explicit the 
role of storage and generation  parametem in the planning for the opxtion 
of the system 

I. IN~~ODUCTION 

The electric  utilities’ in the United States face the peak load problem. 
This problem arises because the utility  must  meet the demands due to a 
fluctuating load instantaneously, thus innuring idle capacity cost, while 
capacity expansions  require a fairly long gestation period. Most  utilities 
use additional peaking generators (which  have  low capital cost to offset 
their idle time but high running cost) to satisfy the excess loads during 
the short duration peak periods. The unit cost of electricity production 
during the peak periods is thus higher than that in the off-peak  periods. 
The producers (utilities)  may pass on the increased  cost to the consumer 
by  some  peak-load pricing schemes  using various criteria such as maxi- 
mizing  social  welfare,  etc. [1]-[3]. 

In this paper we investigate  how the use of storage may help a utility 
to offset  some of the problems associated with  peaking  loads. In particu- 
lar, we investigate how storage may be used as a load management tool 
-to shape the load curve by filling  valleys and shaving off peaks. Our 
purpose here is primarily to study the qualitative aspect of the interac- 
tion of storage with generation dispatch schedules. To this end, we 
assume  a  simple deterministic and aggregated  model for storage and 
generation. We are fully  cognizant of the many complicating conditions 
that obtain in the real world, e.g., the random nature of the load, the 
forced outage of generators, and the inherent discreteness and distribu- 
tive nature of generation and load in a power  system [4]. Ignoring these 
complications enables us to obtain an explicit  solution, and, thus,  make 
precise the role of certain parameters in the problem.  Before actual 
implementation,  these considerations must no doubt be  incorporated, 
guided by the insights that we have  developed  here. In this sense, our 
results  may  be  more  useful in the planning (as opposed to operational) 
stage of the system. 

The study of combined storage and generation is not new. McDaniel 
and Gabrielle [SI have  described  a  specific  scheduling problem involving 
pumped hydro storage in combination with steam generating  capacity. 
Many practical complications are included in their treatment. Their 

Paper recommended  by I. D. Glover, chainaan of the Energy Systems Committee. This 
Manuscript received  April 2, 1979; revised September  10,  1979,  and February 25, 1980. 

work was supported by  the  Department of Energy, U.S. Government,  under  Contract 
ET-7&co1-3252. 

R Muralidharan is with Bolt Beranek and Newman h c ,  Cambridge, MA 02138. 
Y.-C Ho and P. E. Luh are. with  the Division of Applied Sciences, Harvard Univasity, 

Cambridge, MA 02138. 

we& but we shall focus the discussion on electric utilities to kccp the terminology simple 
‘The problem addressed in this paper is common to many otha  public enterprixs BS 

and unambiguous. 

strategy is to retrieve  whenever the system lambda exceeds the incremen- 
tal cost  (assumed to be a constant) of the pumped storage hydro.  Only 
the retrieval part of the operation is  considered, and no optimality in a 
strict sense is claimed- Cobian [6] deals with another specific problem of 
obtaining the optimal scheduling of a  pumped storage hydroelectric 
plant in combination with  several interconnected power system. 
Numerical solutions are obtained by the dynamic programming  method. 
The contribution of our paper is to make explicit the influence of the 
cost and efficiency of storage in the generation dispatching schedule, Le., 
when to store and retrieve as a function of system  parameters. This is 
accomplished via the  (nonnumerical) solution of an optimal control 
problem  subject to state and control variable inequality constraints. 

11. PROBLEM FOFMULATION 

A. The Load C u m  

The utility is required to cater to an aggregate load due to a large 
number of customers.  Fig. 1 is an example of a typical  daily load curve 
(a plot of the kilowatt demand versus the time of the demand) for a large 
eastern summer peaking  utility.  Although the exact load curve is unpre 
dictable as it will also depend on the random elements  such as weather, 
etc., the  average load does fluctuate in a predictable way. The example 
load w e  of Fig.  1 has a peak over the late afternoon hours and a valley 
over the early morning hours. In our model, the load curve q(t) is 
assumed to be known for the planning period [0, a which  may be a day, 
a week, or a year,  etc. It is assumed to be deterministic,  piecewise 
continuous, and periodic  with q(0) = q( T )  by definition. 

B. Cost of Generation 

The cost function for electricity production has received  considerable 
attention in recent  research.  Widely adopted is a multitechnology  model 
where each technology  would incur a capacity cost and a linear operat- 
ing  cost. The system running cost is then a piecewise linear function. We 
shall adopt a  simple quadratic function to reflect the cost of generation. 
Such  a quadratic function may  be  viewed as an approximation to the 
piecewise linear cost for the multitechnology  model. Note that utilities 
do use  a quadratic cost function in other contexts [8]. The generation 
cost function is  assumed to be 

where g(t) is the actual generation level  (kilowatts) at time t ,  and a, are 
parameters2 assumed to be known. 

C. Cost of Storage 

It is assumed that some  facility for storage is available to the utility. 
Storage may be of different types: for example,  batteries,  compressed 
gas, or pumped hydro [9]. Irrespective of its type, we shall  model storage 
in terms of a “round trip”  efficiency factor e and a storage cost SC. The 
efficiency factor e(O<e< 1) denotes the fact that when 1 kwh of 
electricity is stored only e k w h  can be retrieved to meet later demand 
This affects the load flow equation (4) below. The storage cost SC is 
assumed to be of the  following  form: 

o, > 0 as it rcflaxa the capacity cost. The marginal e cust (uzg+ 0,)  is positive and 
*We shd take a, to be constant over time to keep our discusmion simple.  Note that 

ma-easmg (linearly) with g, I L ~  leas cffiaenicnc gcnctahon UI brought mto dcc W e  also 
assume that uz > 0. 
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SC=J’(b,x+b,Jdt 0 (2) 

where x( t )  denotes the amount of electricity in storage at time t? The 
hear term in the integrand of (2) can be interpreted in different ways. 
For example, it may  reflect in average terms the  increasing cost of 
storage capacity, or it may represent the operating cost of retrieving  the 
stored energy. 

D. The Qntim’zation Problem 

The problem  facing the utility is to detemine the  best way to meet  the 
load demand using available generation and storage facilities. We shall 
next formulate this problem as an optimal control problem. It will be 
assumed that the utility is interested in determining  a storage dispatch 
strategy to minimi7e the total cost of generation and storage. The 
dynamic equation governing the stored quantity x(t )  (in kilowatt  hours) 
is 

i( t )  = u( t )  - u( t )  (3) 

where u(t) is the rate of storage and o(t) the rate of retrieval. The 
generation g(t) together  with the amount of retrievable from storage4 
m(t) must be sufficient to meet the aggregate demand q(t) from the 
consumers, in addition to providing for storage at the rate u(t). That is 

g(t )  + 4 0  = u(t )  + d o .  (4) 

Important constraints on the storage variables that will be included in 
our model are’ 

u( t )  > 0 ( 5 )  
u ( t )  > 0 (6) 
x( t )  > 0. (7) 

In the present  model, the capacity constraints on g(t) and x ( i )  and the 
nonuegativity constraint on g(t)  will be neglected! 

The total cost of generation and storage is obtained by summing  (1) 
and (2). Using (4) this total cost is 

J = L ‘ [  ~ ~ ( p + u - m ) 2 + a l ( q + u - e u ) + a o + b , x + b o  1 dt. (8) 

Note that J will depend on the state x(0) of initial storage as well as the 
storage and retrieval  functions. 

The  optimization  problem  facing the utility is then as follows:  de- 
termine the storage function u( .), retrieval function u( -), and the level of 
initial storage ~(0) ’  so as to minimize the total cost of J in (8). The 
constraints are the dynamic state equation (3), the inequality constraints 
on the control variables ( 5 )  and (6), and the s t a t e  variable inequality 
constraint (SVIC) (7). In addition, we shall  require that x( T )  = x(0) so 
that the same control functions will continue to be optimal for the  same 
load curve  over  successive periods of time. In view  of  (3), this periodicity 
constraint translates to the  “isoperimetric” constraint 

~‘(u(r)-u(t))ru=O. (9) 

This optimization  problem is a standard one in optimal control theory 

nonnegative constants 
)A more general  form of (2) is treated in Section IV later. The bi here are sssumcd to be 

the  storage cost is linear in x(r), wc have lumped the efficiency factor e with v(r) (sa also 
‘For convenience we have introduced a storage rate u(r) and  a retrieval rate dt). Since 

Section IV for a more general model). 
51n Section IV we shall incorporate maximum power flow constraints on u and 0. 

consider to be more important. Note chat, if sufficient  generating  and storage capacities 
%is is &ne to simplify our derivations and to focus our attention on other things we 

are availabls then the capacity constraints can be ignored. Also, since we expcct dt) to 
be small compared to q(r), (4) would imply that g ( r )  would  indeed be positive. Note that 
neglecting the capacity constraints makes the capacity cast parameters %bo irrelevant in 
our problem  formulation.  However,  capacity  constraint on generation can always be 
studied  parametrically  using the solution to the procedure p a d  here. 

’The parameta  x(0) influences  the  time at which x ( r )  reaches  the  constraint boundary (7). as well as the  duration  for  which x(t) s t a y s  on this boundary. Thw 4 0 )  is a 
legitimate optimization parameter. If desired, 4 0 )  may be chosen to keep x(r) above 
some specified positive value  [instcad of zem as in 01, to allow for seeurity against 
random  unexpected  changes in the  demand level q(r). 

(see [lo], ch. 3). The optimality conditions are summarized in the next 
section. 

E. Q n t i d i @  ConaYtions 

It is convenient to define the Hamiltonian function: 

H(t)=Zu*(q(r)+u(t)--ea(t))2+al(q(f)+u(r)-en(f))+ao 1 

+b,x(t )+bo+(A(t ) -p(t )+?)(u(t ) -U(t ) ) .  

Note that H is a function of the storage (state) variable x(t), the storage 
rate (control) variables u(t) and u(t), and the Lagrange  multipliers A(t), 
dl), and 7. The multiplier function A(t )  accounts for the dynamic 
constraint (3),  the  multiplier function p(t) accounts for the SVIC 0, and 
the constant multiplier 17 accounts for the isoperimetric constraint (9). 

The optimality conditions are as follows: 

u(t)Hu=O, u(t)>O,  H,>O (10) 

o(t)Ho=O, u(t)>O,  H,>O (1 1) 
p( t )x ( t )  =o, A t )  > 0, x ( t )  > 0 ( 1 w  

i ( f ) = u ( t ) - u ( t ) ,  i ( t ) = O  ontheboundary (12b) 

A ( t ) =  - H,, A(O)=O, A(T)=O. (134 

A ( t )  is discontinuous at the “entry point” of the SVIC boundary where 
x ( f )  just becomes  zero.  (13b) 

LT(u(t)-u(r))dt=O. (14) 

From (13) A ( t )  is a  piecewise continuous linear function of the form 
A(t) = b(k - t), where the constant k will be determined  by the discon- 
tinuities in A. In particular, the sum of all jumps in A(t) equals bT. 

111. REsULrs 

In this section we analyze the  implications of the  optimality conditions 
stated in Section 11-E. 

A. Implications of Storage I n e f i i e q  

If storage is not perfectly  efficient (that is, e < I), then it is not optimal 
to have  simultaneous storage and retrieval. This intuitively  obvious 
result,  which prohibits “redundant flow in the generator-storage loop,” 
is8 

Proposition I :  If e< 1  then u(t)u(t) =O. 
Proof: Let u(t) > 0. Then from  (10) Hu = 0, which together  with e < 1 

yields Ho > 0, and hence u(t)  = 0 by (1 1). Similarly, we can prove that 
u(t)=O whenever u(t)>O. 

B. Implications of Nonzero Storage Cost 

If storage is not free, then it appears intuitively  clear that the optimal 
storage strategy must be such as to prohiit “residual  storage”  over the 
entire period [O,T]. That is, the storage must be in an empty state at 
some instant during the period [0, TI. This is: 

Proposition 2: If b, >O then x(r)=O for some r in [O,T]. 
Proof: By  way  of contradiction let x(t) > 0 for all t in [0, T] so that 

x ( t )  never enters the boundary of the inequality constraint (7). The 
absence of entry points and (13b)  imply that A(t )  is continuous. Since 
H,= 61>O, there  exists no A which can satisfy (13a). Thus, we  have  a 
contradiction and the proof is complete. 

Since the criterion J is strictly  convex and all constraints and dy- 
namics are linear, the solution to the optimal control problem  facing the 
utilityisunique[11]whene<landb,>O.Whene=land/orb,=Othe 
solution is no longer  unique.  However, it can be shown that there exists a 
solution  which has the  desirable properties of “no redundant flow” and 
”no  residual  storage.” Henceforth, we shall consider only such  a  solution 
which  would  satisfy the following conditions: 

B O f  course, in practice,  other  considerations  such as “load following” may dictate 
redundant flow. 
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t in Hr 

Fig. I .  Typical  daily  load  curve for a large eastern summer  peaking utility (adapted 
from [3D. 

u(t)n(t)=O for all t in [O,T] 

x(t)=O for some t in [0, TI. 

C. Control  Strategv 

Recall that intuitively the problem facing the utility was to determine 
the optimal storage strategy to shave off system load peaks and fill 
system load valleys. In this section we shall show that the optimal 
storage/retrieval within each cycle  of storage operation indeed has this 
simple character. 

In terms of the peak and valley  lines, to be defined  below, the control 
of storage can be simply stated as 

1) store whenever the load falls  below the valley line and let genera- 
tion follow the valley line; 

2) beyond the exit point (where x ( t )  just leaves  the SVIC boundary), 
retrieve  whenever the load rises above the peak line and let generation 
follow the peak  line. 

3) When load curve is above the valley  line but below the peak  line, 
let generation  follow the load curve and no storage or retrieval is to be 
done. 

The derivation of this control strategy is based on two propositions 
which  we shall state below after establishing  some notations and d e f i -  
tiom keyed to Fig. 2. Proofs are given in the Appendix. 

By Proposition 2, there exists at least one entry point in each planning 
period.Ift,isanentrypoint,thent,+TisalsoanentrypoinLThusthe 
interval [0,2T) always contains at least a pair of entry points.  Let t l ,  r3 
denote any consecutive entry points,'o  with O < t l  <t3<2T. Then we 
define the storage cycle as the interval ( f l , r 3 ]  between two consecutive 
entry points.  Let r2, with t1 <t2<r3, be the exit point.  Over the storage 
cycle (t l , t3],  define  valley line as the straight line  with slope b,/% and 
intercept c l = - ( b , k - b l t l + q + a l ) / ~  at t = t l ,  where the constant k 
accounts for the jumps in x(t) [recall footnote keyed to (13b)l. Define 
peak line as the straight line with slope bl/ (eud and intercept c2= -(b,k 
-b l t ,+q+eu l ) / ( euda t t= t l .  

Proposition 3: Over the storage cycle ( t l , t j ]  let t, with t l  < t2<tu be 
the first instant at which the load curve crosses the valley line from 
below." 

shal ldothis foraqeualkd case in Section IV. 
9oOr  result can be related to the  solution in terms of marginal cost obtained in 1.51. We 

''%at is, there is no other  entry point between r1 and f,. 
'lIn view of this proposition, z, as defined is indeed the exit point on the SVIC 

VL: VALLEY LINE 
PL: PEAK LINE 

0 6 12  18 24 6 12  18 
t in Hr 

Fig. 2. Peak and valley lines for a typical daily load m e .  

1) In (tl,r3], it is optimal to store whenever the load curve falls below 

2) In (t2,t3], it is optimal to retrieve  whenever the load curve rises 

3) The load curve q(t) crosses the peak line at t9 
Once the entry points t l , t3 are known, the above propositions  may be 

used to obtain the optimal control strategy in a straightforward manner. 
The only remaining task now  is to locate the entry points and the 
intersection  points  where q(t) crosses the peak and valley  lines. This can 
be done with the help of 

Propasition 4: If the load curve q( -) is continuous for some t then the 
optimal storage function u ( * )  and retrieval function u(*) are also con- 
tinuous at t .  

D. Algorithm for Determining the Qvfimal Control  Strategy 

the valley line and to let generation follow the valley  line. 

above the peak  line, and  to let generation follow the peak line. 

In this section we shall state the algorithm for the most prevalent case 
where there is only  a  single entry point in [0, TI. 

Step I: Guess  a  value for the multiplier 1) associated  with the isoperi- 
metric constraint (9). Draw a straight line L with slope b I / a 2  and 
intercept - (q + eal)/e% at t = 0. 

Step 2: Determine the point f l  where q(t) crosses L from above. Then 
tl  is a candidate entry point and the interval ( t l , t l +  T )  is a candidate 
storage cycle. (If tl is nonunique, then each of them  must be considered 
as a candidate entry poinL) 

Step 3: In ( t l , t l  + T1, draw peak and valley  lines and determine u(t) 
and o(r) according to Proposition 3. Since there is only one entry point 
in [0, T) ,  h(t)= b(k - I )= b(T- I )  beyond the entry point. 

Step 4: Adjust q such that the state variable nonnegativity constraint 
(7) and the isoperimetric constraint (9) are satisfied. 

The above algorithm is illustrated for a simple  example in the next 
section. 

E. Example 

Consider  a  typical eastern summer peaking  utility faced with the 
problem of satisfying an aggregate demand with load curve as shown in 
Fig.  1. Let the efficiency and cost parameters for the utility be as 
follows: 

e = 0.73 

a2=6x ($/kW-kwh) 

b1=4x ($/kW-kwh) 

al=Q=bo=O. 

Note that a, was chosen so that the average cost when q(r)= lob kW is 
3 cents/kWh. 

For the above parameter values, the slope of the valley line is 0.67X 
lod4 (kW/h) and the slope of the peak line is 0.91 X (kW/h). The 
optimal storage and retrieval strategies obtained by the algorithm d e  
scriied in Section 111-D are illustrated in Fig. 3. It is seen that the 

boundary. 
. .  optimal control strategy is as follows: 
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1) store during the hours of (roughly)  midnight until 7 AM. The 

2) no storage or retrieval to be done from 7 AM until about 9 AM 

3) retrieve during the hours of 9 AM until about 6 PM, the generation 

generation will follow  the  valley  line during this period; 

and again  from 6 PM until about midnight; 

will follow the peak line during this period 

Iv. SOME G-noNs 

The  model  described in Section I1 can be generalized to include the 
following additional features without changing the  essence of the results: 

1) a term proportional to the retrieval rate v(t )  is added to the storage 
cost (2), i.e., 

S C = ~ = ( b 2 u + b , x + b o ) d l  (2’) 

with 

b2 > 0; 

2) maximum power  flow constraints for both storage and retrieval are 
included, i.e., 

o<u<u, 

o<v4v, 

with 

%>O, v,>O; 

3) due to the presence of the b2u term in SC, the efficiency factors for 
storage and retrieval can no longer be lumped  together.  Let e,, and e, be 
defined as the efficiency factors for storage and retrieval,  respectively, 
with O<e, < 1, O<e, < 1. Hence, we have 

A t )  + e,o(f) = q(r)  + u(t)/e,.  (4‘) 

The optimality condition (10) is modified as follows: 

H,=O i fO<u<y,  

H,>O i fu=O 

H U G O  i f u = y , .  ( W  

Hence, 

u=O i f H , > O  

u=% ifH,<O. ( I O )  

Replacing u everywhere in (103 and (10”) by v,  we get (11’) and (11”). 
The other conditions, (12)-(14), still hold. 

It can be  proved that Propositions 1,2, and 4 are still true.  Proposition 
3 is generalized as below.  Over the storage cycle ( t l , r3]  define the valley 
line as a straight line  with  slope b,e,/a, and intercept 

at t=  t,,  where the constant k accounts for the jump in A(t). Define peak 
line as a straight  line  with  slope b,/e,,a2 and intercept 

~ 2 = ~ 1 ~ 1 / ~ , ~ 2 - ( ~ , / ~ 2 - ~ 2 / ~ , ~ 2 + ( ~ l ~ + r l ) / ~ , ~ 2 )  

at t = t l .  
Proposition 3’: Over the storage cycle ( t l , tg]  let t2, with r 1  <t2<r3, be 

the first instant at which the load curve crosses the valley  line  from 
below. 

1) In (t,,rd, it is optimal to store whenever the load curve fa l l s  below 
the valley  line and to let generation follow the valley  line.  However, 
when the maximum power  flow constraint (5’) is violated, store at the 
maximum rate u=u,,, and let g(r)=q(t)+u,/e,. 
2) In (t2,t3], it is optimal to retrieve  whenever the load curve rises 

above the peak  line and to let generation follow  the peak line.  However, 

- 
- 
- 

t l  t3 t2 
I I 

0 6 12  18  24 6 12  18 24 
i I 

t IN Hr 

(a) 

(a) GENERATION 
ib) STORAGE LEVEL FOR THE  EXAMPLE 

I-SToRAGE CYCLE 1 
10‘ KWH - 

0 f i l t 2 n l  6 12 18 24 6 12 18 24 I 
t IN HI 

(b) 

Fig. 3. (a) Generation. (b) Storage  level  for  the  example. 

when the maximum  power  flow constraint (6’) is violated,  retrieve at the 
maximum rate u=u, and let g(t)=q(t)-e,u,. 

3) The load curve q(t) crosses the peak line at r3. 
Note that the presence of 9 > 0 does not change the slopes of the peak 

line and the valley  line.  However, due to changing intercepts, a higher 9 
means  less  use of the storage. 

Our result can be specialized to the usual criterion  of retrieving  when 
the “system lambda”’2 exceeds  some  level (see, for  example, [5D. In the 
special case b, =0, the valley  line and the peak line are horizontal, and 
Proposition 3’ can be interpreted to imply that we should retrieve 
whenever  system lambda exceeds 4 c 2 + a 1 .  This results in a constant 
system lambda until the power  flow constraint u, is binding. A similar 
statement can be  made for the storage part of the strategy. 

The optimal  storage and retrieval strategies are depicted in Fig. 4 for 
the example  in  Section 111-E with 

e, = 0.9 
e,, = 0.8 

y,=O.I6X 1 0 6  (kw) 

q,, = 0.25 X 1 0 6  (kW) 
b2=0. 

V. C~NCLUSION 

We have  investigated the question of how storage  may be used as a 
load management  tool to shave off system  peaks and fill system valleys. 
A dynamic  formulation of the peak load problem  with  storage  results in 
a standard optimal control problem  with state and control variable 
inequality constraints. Using this optimal control problem, we  have 
shown  how  peak  lines and valley  lines  may be determined  resulting in 
the reshaping of the total demand  (customer loads and utility storage) to 
be met  by  the  generation  facilities. 
Our model can be further generalized to include the case  where the 

load curve q ( r )  is  generated  implicitly by some “inverse demand func- 

power literature 
12System Lambda is the margind c o s t  of generation ($/kwh) as is wen known in the 
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t IN HI 

Fig. 4. optimal generation with maximum power flow constraints. 

tion" and the objective function is a "welfare  function" (the sum of 
consumer's and producer's  surpluses) [12]. It can be shown that in this 
case  the  optimality conditions still hold. The well-known marginal cost 
pricing rule is obtained as an additional condition which can be used to 
determine q(t) explicitly. 

It appears that our work  (modified to include other further complica- 
tions of the "real world"  such as disaggregated  generation and storage 
facilities,  randomness in q(t), etc.)  may be used in two ways. 

1) To guide the development of an optimal dispatch strategy for using 
existing storage and generation facilities. 

2) To use as a planning tool for determining the best mix of genera- 
tion and storage facilities. 

APPENDIX 

Proof of Proposition 3 

1) First,  we want to show that u(t) >O if q(t) <cl + b,(t - f l ) /u2  By 
way of contradiction let u(t)=O for some t such that q(t)<cl+bl(t- 
t1)/u2 Then 

H " = ~ [ 4 ( t ) - - c l - b l ( t - t 1 ) / ~ 2 1 - ~ ~ ( t > < o .  

Thus, we have  a contradiction. Now suppose u(t) >O, then, Hu =0, 
hence, 

g ( f ) = q ( t ) + u ( t ) = c , + b l ( t - t l ) / u ~  

2) The proof is analogous to I). 
3) We shall prove that q(t) must cross the peak line at t3 from above. 

By way of contradiction assume that q(t) does not cross the peak line at 
t9 Then there exists two sufficiently  small  positive numbers z and T such 

To establish  a contradiction and thus complete the proof  we shall 
construct a strategy  which has less total cost than the uopthal" one. 
Consider a new strategy  consisting of storage/retrieval functions that 
coincide  with  the  optimal ones except for t in [ f 3 -  7,f3+ T ] ,  as shown in 
Fig. 5. It can be shown that 

that d f ) - g ( t ) > €  for f in [ f 3 - 7 , 1 3 + 7 ] .  

- b,(&r)T/e+higher order termS in 7 

where 6J = J(optimal) - J(new). For sufficiently  small T ,  GJ > 0 and we 
have desired contradiction. Note that the first and second terms in the 
brackets are the marginal generation costs, whereas the last term is the 
added storage cost for the new strategy. 

Proof of Proposition 4 

Using (4) and Proposition 3 this proposition obviously  holds within 
each storage cycle. What we want to show  now is that it also holds at 
entry points. 

Fig. 5. mustrating Proposition 3. 
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Fig. 6. IUuslrating Proposition  4. 

Let t ,  be the entry point under consideration. Assume q(tJ is continu- 
ous. Let t ,  be the associated  exit point. There are two cases: t I  <t2 and 
f I  = t2. Note that tl = t2 is the case  where the SVIC is binding on the 
optimal x trajectory at the single point tl .  

Case I :  

u(t,) is continuous since u(tl-)=u(t,+)=O. u(tl+)=O since u(t)=O for 
t in (t l , t2].  Also, q(tJ is continuous u(tl-)=O from the last part of 
Proposition 3. Thus dtl -) = u(t +) = 0 and u(tl) is continuous. 

Case 2: 

dt,) is continuous as proved in the previous case. We also know 
u(t,-)=O. What remains to be done is to show u(t,+)=O. By way of 
contradiction assume that we have u(tl+)= c >O. The proof, similar to 
that of the last part of Proposition 3, is by constructing another strategy 
with  lower  cost. For the new g(t) shown in Fig. 6 it can be  shown that J 
(optimal) - J (new) > 0. The proof is thus complete. 
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