
and W and Z are p x I and p X ( p - I )  matrices, respectively. such that 
[ W i Z] is nonsingular. and H'B W = I and HTBZ = 0. The minimum 
values of the objective functions are 

.x .v - 1 

min A =  trH,HTP(t)+  trH,HTK(r) 
r = r 0  r = to 

~ P , . ( t + l - L ) K ( t ) ' + m ' ~ ( r , ) m  (13) 

%,here P( t )  is the covariance of the estimation error .x( t)- .?( f ) ,  P, ( t  1 
- L )  is  the covariance of the iMOVatiOns .y(r + 1 - L )  = J ( t  + 1: L ) -  
E [ y ( r  + 1 -  L )  lPI]. K(t )  is the Kalman filter gain. and m = E.x( tO) .  

Proof: Due  to (1) and (3) the set Q' defined by (6) is 

and the qGnimum values of 4, i = l ; . . , k  are given by (12) [3]. The 
assumptions on the matrices H and B are such that O2' is nonempty. The 
minimum of JA + in the set 9' is given  by dynamic programming [3]. Due 
to (14) the solution of the Bellman equation is obtained recursively by 
solving a  quadratic programming problem [4) at each step. giving the 
result of the theorem. 0 

Note that the condition on rank HTB can be relaxed, and it is only 
necessaq to assume that the I ( d p )  states H'.x are controllable from all 
inputs. The general case can be solved as above, but the set  9' is modified 
and may be time varying. 

111. ExAhipLE 

The following simple example illustrates the procedure. Consider a 
system described by (1) with 

c=[; ; I .  R*=[:, ;I, R,.=O 

and 9, = { ~ ( 2 ) .  . . . ), i.e., complete state information. Consider the loss 
functions 
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Now k = 

and Z is 
1. I = 1, H = [l 01' and one specific choice for the matrices bV 

W =  B T H (  H'BB'H)-'= [0.8 -0.41' 

z= [l 21'. 

Taking J1 as the primary objective function. (14) gives the set e' of 
control strategies for which the variance of the state x1 attains its 
achievable minimum value 

J l ( 9 ' )  = min J1 =1 
L' E 9 

The design weights ql and Qz of the secondaq loss function J2 can then 
be selected in the usual way [l], such that the variances of .x2.  u l ,  and u ?  
are jointly acceptable. For example, for q1 = 1. Q, = I the optimal strategy 
and the minimum value of J? are 

u * (  t )  = - 
0.376  0.271 [ -1.05  0.1421J(') 

L' E *, min J2 = 2.54. 

IV. CONCLUSIONS 

The solution to  a multiobjective optimal control problem with a 
hierarchical ordering of the individual loss functions has been given. A 
potential field of application of the result is in industrial process control, 
where it is  well known that substantial gains may result from a reduction 
of the variances of some variables [3]. It could then be meaningful to take 
these variances as the primary objective functions J, ,  i = 1 , .  . ., k ,  and the 
other variables could be included in the secondary objective function 
J A + l .  
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Three-Level  Stackelberg Decision Problems 
PETER B. LUH, TSU-SHUAN CHANG, 

A N D  TAIKAhTG NING 

Abstract-Threelevel  Stackelberg  decision problems  are studied by 
using  the  inducible  region  concept.  Through a qstematic derivation,  it is 
identified that the  leader's control has dual  purposes,  which in general  are 
not separable. A special  class of problems is then considered, d e r e  explicit 
results are obtained 

I. Ih%ODUCTION 

Recently, most results on  Stackelbeg decision problems were obtained 
by using the "team solution approach." The essential notion is to have the 
leader modiFy the followers' cost functions (through appropriate leader's 
strategy) so that the followers are induced to behave as if they were also 
optimizing the leader's cost function. Sufficient conditions for achieving 
the team solution have then been derived under several formulations ([l], 
[5], [8]. [ l l ]  for two-level problems and [2] for three-level problems). 

To handle the situation where the team solution approach fails, another 
methodology began to emerge [9], [lo]. The concept of inducible region 
was then formally introduced in [3], [4].' By using this concept, we have 
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obtained necessaty and sufficient conditions for the existence of a Stackel- 
berg solution for two-person single-stage as well as multistage problems 
[4], [6]. In this note, we investigate three-level Stackelberg problems. The 
problem formulation is given in Section 11. The inducibility conditions are 
derived in Section 111. These conditions give a clear picture of the problem 
and indicate its fundamental difficulties. In particular, we identify that the 
leader’s control has dual  purposes: direct control  and indirect influence. 
The fact that the dual purposes are generally not separable makes the 
problem difficult to solve.  We then in Section IV obtain explicitly 
solutions for a special class of problems where the dual controls degener- 
ate. Concluding remarks are given in Section V. 

11. PROBLEM FORMULATION 

Consider a three-person decision problem with three levels of hierarchy. 
The leader (DMO) is at the  top of the hierarchy; the first follower (DM1) 
and the second follower (DM2) are, respectively, at the middle level and 
the  bottom of it. Let the strategy of DMi be denoted as r,, with r, E rj; the 
decision of DMi  as ui .  with u, E U,; and the cost function as Jj(ro,  rl ,  r,) 
in its strategy form or J,( u0, ul, u 2 )  in its extensive form. The solution 
concept  adopted here is the same as that of [2] or the first part of [lo]. As 
mentioned earlier, the team solution approach was used in [2]. On the 
other  hapd, as we go through the derivation here, it will become clear. that 
[9. Theorem 31 is incorrect. 

Consider a complete information problem where each decision maker 
acts only once., The sequence of actions is shown in Fig. 1. In the design 
stage, D M 0  designs and announces r;first. Knowing r,, DM1 designs and 
announces rl. In the execution stage, D M 2  acts fir‘st, knowing both ro and 
rl .  D M 1  then calculates u1 according to his announced rl, i.e., u1 = rl( u2) .  
Finally, D M 0  calculates u, according to uo = ro( ul, u Z J 3  The strategy r, 
is allowed to be any measurable function from DMi’s information set to 
U, (mixed strategies will not be considered here). 

As discussed in [3], [4]. the inducible region is the collection of all the 
possible outcomes. In this case, for a given r,, since the reactions of D M 1  
and DM2 might not be unique, the realized outcome might  thus not be 
unique. According to the solution concept (see [2, eqs. (1) and (2)]), 
however, D M 0  ussunzes that followers choose a particular pair ( r i ,  r i)  in 
his strategy design stage, where4 ’ 

( r i . r i )=  a r g s y  sup ~ ~ ( r ~ , r ~ , r ~ ) .  (2.1) 
rt E Rl(ro) r2 E Rz(rO.  rt) 

In the above equation. R,( ro) and R,( r,, r,) represent, respectively, 
DMl’s and DMZ’s reaction sets, and are defined by [2, eq. 21. The 
corresponding decision tuple (uh .  ui, ui) is thus called the  outcome from 
the leader’s oiewpoint for this ro. As in [4], we can formulate equivalent 
classes and, with a little abuse of notation, say that from the leader’s 
viewpoint, the unique outcome ( t i ; ,  u;, u ; )  is induced by this ro. The 
inducible region IR is then defined as 

I R =  { ( u o .  ul .  2 4 2 ) :  There exists a ro such that ( u O !  ul ,  u 2 )  is the 
unique outcome induced by this ro}. (2.2) 

111. INDUCIBILITY CONDITIONS 

For any given ro. DM1 and DM2 face a two-level Stackelberg problem 
(the “nested” two-level problem). DM0 can then be conceived of as also 
facing a two-level problem (the outer layer problem), where the reactions 
of the followers [in terms of ( r l ,  r,) or ( ul, u, ) ]  are determined by the 
nested two-level problem. Consequently, the three-level problem can be 
analyzed by considering these  two  two-level problems. 

We shall first consider the nested two-level problem. This problem has 
been solved completely in [4]. To convey main ideas, we shall assume ‘for 
simplicity that all the parameter optimization subproblems treated 

21t can  be extended IO problems \*ith incomplete  information. see 171. 
’We  assume that both DUO and D M 1  keep their promises by carrying out their 

‘For slmplicity, we assume that such  a ( r i .  r i )  exists. 
announced  strategies 

Fig. 1. 

hereafter have  solution^.^ With this assumption, the inducible region for 
DM1 for any fixed ro can be written as 

where 

and ST(ro), which is basically the solution set of (3.2) that maximizes J1, 
is defined rigorously in [4]. 

Intuitively, no matter what DM1 is going to do, D M 2  can always 
guarantee himself that J2 will not be greater than m1,( ro). Thus,  any  point 
with J,  > rn2(ro) is not inducible. On the  other  hand,  any point with 
J2 < m 2 ( r o )  is inducible since DM1 can always penalize DM2 to mz(r0) 
if DM2 does not select the designated point. On theJ, = m 2 ( r o )  boundary, 
only points  in’ &*(ro) are inducible. For proof and detailed discussions, 
see [4]. 

Let us now turn to the outer layer problem, and examine whether a 
point u’= (uh ,  u;, u ; )  is inducible or not. The candidate ri that induces 
(uh,  ui,  u ; )  has to take the folloRing form: 

where the punishing strategy Po is yet to be specified. In order  to  induce 
u‘, the following two conditions have to be satisfied. 

CI) Capabilig Condition: D M 1  must be able to induce ( u i ,  u; ) .  i.e., 

C2) Desirability  Condition: DM1 must prefer ( u i ,  u ; )  to  any  other 
points in IRl(r& i.e., 

We can now derive some explicit results. First C1 and (3.1) imply that 

The constant M ,  can be thought of as DM2’s guaranteed cost, since D M 2  
can always get M ,  even if both D M 0  and DM1 maximize J,. Therefore, it 
is impossible for DM0 to induce any point with J2 > M,. We thus have 
the following: 

I R c { u : J ~ ( ~ ) G M , } .  (3 4 

The condition (C2) implies that 

J 1 ( u ’ ) <  min J 1 ( P o ( u ~ , c ~ ~ ) , u l . u ~ ) .  (3.7) 
(uL.UZ)E1R1(r6)  
( U 1 , ” 2 ) + ( U 1 . U i )  

[4]. however. the treatment of the inducible  region’s boundae becomes v e q  complicated. 
5Without this  assumption. the problem can still  be  handled by following the method of 

‘If there  are multiple uI’s that maximize J Z .  the one that minimum J l  will be selected. 
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That is, the punishing strategy Po should make all other alternatives in 
I R l ( r i )  less attractive  to D M 1  than  the desired u‘.  Note  that Po affects 
the term on the right-hand side of (3.7) directly since it determines Jl’s 
first argument. Po also affects the term indirectly since it shapes IRl(rd)  
and thus changes the region of taking the minim-. Intuitively, if DM2’s 
cost function depends on DMO’s control variables, then D M 0  can modify 
DMZ’s cost through ro, and tbis in turn affects DMl’s ability to induce 
DM2’s decisions. Thus, DM0 has indirect influence on D M l ’ s  decisions. 
On the other  hand, if DMl’s cost depends on DMO’s control variables, 
D M 0  can assign adequate values to them (through ro) as threats, and thus 
imposes direct control on D M l ’ s  decisions (in contrast to the indirect 
influence). In order  to select a good punishing strategy Po. we therefore 
have to consider both effects, and the  dualpurposes of DMO’s stratep are 
observed. 

In order to delineate the entire inducible region, we have to find out 
that for a given u‘. what is the best the leader can do to make all other 
alternatives less attractive. The most D M 0  can do is to impose upon DM1 
the punishing strategy that maximizes the right-hand side of (3.7, i.e.. 

max  min J l ( P o ( u l . u z ) . u l , u , )  . (3.8) 
Po \ ( u t . u Z ) ~ I R ( r 6 )  i 

(U, .U2)”(Ui.Ui)  

The indirect influence changes IR,(r i ) .  To the best of the authors’ 
knowledge, there does not exist any systematic way in selecting the “best” 
Po for shaping the optimization region. In addition. the generally nonsep- 
arable dual roles of DMO’s strategy further complicates the issue. 

IV. INDUCIBLE REGION FOR A CLASS OF PROBLEMS 

Consider the problem in which D M 0  cannot affect D M 2  directly. i.e.. 
the case where J2 = J2(  ul, u2).  From (3.1) and (3.2). we see that now IR, 
is independent of ro. Consequently, (3.8) becomes 

(U1. u2) # cui. ui, 

and the dual control degenerates to direct control. We can rewrite this 
optimization problem into its extensive form: 

min maxJ1(uo, ul. u 2 ) .  (4.2) 
(ut .  UZ) E IRt uo 

(Ul .U2) f (Ui .Ui )  

From (3.7) and (4.2), we then conclude that 

M I  can be thought of as DMl’s guaranteed cost. Let uop( ulr u 2 )  denote 
+e solution to the maximization subproblem in (4.3h7 Also let S,* denote 
the solution to the minimLx problem in (4.3) that maximizes J,. Then 
DMO’s maximum penalty strategy is  given  by 

We then have the following results. 
Theorem 1: If J2 is not a function of uo. then 

IR = {( uo,  u,. u, ) :   u ,  E q,  i = 1.2.3. J l ( u o ,  ul ,  1 4 , )  < M I  and 
J 2 ( u l ,  u , )  < M,. The first equality holds only 
for ( u0 ,  u , .   u 2 )  E ST, and the second equahty 
holds only for ( ul ’  u 2 )  E ST }. 

(4.5) 

The proof is given in [7]. Consequently, one way to solve such a Stackel- 
berg problem is t.0 go through the following steps. 

Sl):  Delineate I R  as in (4.5). 

’If there are multiple uo’s that maximize JI. the one that minimizes J, will he selected. 

S?): Find  the optimal inducible outcome u” by solving the following 
parameter optimization problem: 

S3): Construct a r,* to induce u*.  One such r; is gven by 

It can be readily seen that a Stackelberg strategy r,* exists if and on!. if 
(4.6) has a solution in IR.  Furthermore. if the Stackelbeg cost J,* is 
bounded (J,* as defined by [2. eq. (l)]), then an <-Stackelberg strategy 
always exists. 

V. CONCLUDING REMARKS 

Through a systematic derivation. we  reveal  the nature of three-level 
problems. and indicate its fundamental difficulties. In particular. the dual 
purposes of the leader’s strategy. direct conrrol and indirect influence. are 
identified. Together with other results obtained by using the inducible 
region concept, it is  believed that this concept is fundamental to the study 
of many Stackelberg decision problems. 
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Digitalization of Existing Continuous Control 
Systems 

KULDIP S. RATTAN 

Abstract -The problem of converting existing continuous-data control 
systems into digital control systems is considered. The objective of this 
paper is to develop a computer-aided method for synthesizing the 
pulsetransfer function of the digital controller. This is done bl- matching 
the frequency response of the digital control system to that of the continu- 
ous system with a minimum  weighted mean-square error. Formulas for 
computing the parameters of the digital controller are obtained as a result. 
The design technique is illustrated with a numerical  example,  and a 
comparison wjth previous methods is also presented. 
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