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(1)

and W and Z are p X[ and p X( p — ) matrices, respectively, such that
{W i Z] is nonsingular, and H7BW =1 and H'BZ =0. The minimum
values of the objective functions are

S(NY=0).  1=N-1,.1

N N-1
min J,= ¥ wHHP(¢)+ Y, tHHIK(1)
ver -y 1=ty
P(t+1-LYK() + mTHHm, =1,k
(12)
N N-1
min J.,= 3 wQP()+ 3, uS(t+1)K (1)
vew’ t=tg =1y
Pt +1-LYK() + m'S(15)m (13)

where P(1) is the covariance of the estimation error x{z)— %(z), P.(+ +1
— L) is the covariance of the innovations 7(¢+1— LY=y(r+1- L)~
E[y(t+1— L)|#,]. K(2) is the Kalman filter gain, and m = Ex(t;).
Proof: Due to (1) and (3) the set %’ defined by (6) is
= {UIHT(A%(2)+ Bu(1)y=0, 1=N-1,--,10} (14)
and the minimum values of J;, i=1,---,k are given by (12) [3] The
assumptions on the matrices / and B are such that %’ is nonempty. The
minimum of J, , , in the set %’ is given by dynamic programming {3]. Due
to (14) the solution of the Bellman equation is obtained recursively by
solving a quadratic programming problem [4] at each step, giving the
result of the theorem. a
Note that the condition on rank H7B can be relaxed, and it is only
necessary to assume that the / ( < p) states H x are controllable from all
inputs. The general case can be solved as above, but the set %’ is modified
and may be time varying.

III. EXAMPLE

The following simple example illustrates the procedure. Consider a
system described by (1) with

_[ 09 o2 _[1 -o05
4 [-0.6 0.8]’ B [2 0.9]'

_f1 o _fr o _
C'[o 1]’ Rw [0 1]‘ R.=0

and 2, = {y(¢1), - -+ }, i.e., complete state information. Consider the loss
functions

.
. 1 ¢ 2
J= Nh_l;nocE[']'V— Y x() ]

=1

N
J,= lim E[%rgl [q1xz(1)2+ u(r)TQzu(t)]}

Nowx

Now k=1,/=1, H=[1 0]” and one specific choice for the matrices W
and Z is

w=BTH(H™BB'H) '=[08 -04]"

z= 21"
Taking J; as the primary objective function, (14) gives the set %’ of
control strategies for which the variance of the state x; attains its

achievable minimum value

2(¥) = min /i =1.
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The design weights ¢; and Q5 of the secondary loss function J, can then
be selected in the usual way [1], such that the variances of x,. u;, and u,
are jointly acceptable. For example, for ¢; =1, Q, = I the optimal strategy
and the minimum value of J, are

ein_ | 0376 o027m].
w*(1) —105  o0142] (D)
min J,=2.54.
vea

IV. ConNcCLUSIONS

The solution to a multiobjective optimal control problem with a
hierarchical ordering of the individual loss functions has been given. A
potential field of application of the result is in industrial process control,
where it is well known that substantial gains may result from a reduction
of the variances of some variables [3]. It could then be meaningful to take
these variances as the primary objective functions J,, i =1,-- -, k, and the
other variables could be included in the secondary objective function
Jear
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Three-Level Stackelberg Decision Problems

PETER B. LUH, TSU-SHUAN CHANG,
AaND TAIKANG NING

Abstract —Three-level Stackelberg decision problems are studied by
using the inducible region concept. Through a systematic derivation, it is
identified that the leader’s control has dual purposes, which in general are
not separable. A special class of problems is then considered, where explicit
results are obtained.

I. INTRODUCTION

Recently, most results on Stackelberg decision problems were obtained
by using the “ team solution approach.” The essential notion is to have the
leader modify the followers’ cost functions (through appropriate leader’s
strategy) so that the followers are induced to behave as if they were also
optimizing the leader’s cost function. Sufficient conditions for achieving
the team solution have then been derived under several formulations ([1],
[51. [8}. [11] for two-level problems and {2] for three-level problems).

To handle the situation where the team solution approach fails, another
methodology began to emerge {9], [10]. The concept of inducible region
was then formally introduced in [3], [4].} By using this concept, we have
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obtained necessary and sufficient conditions for the existence of a Stackel-
berg solution for two-person single-stage as well as multistage problems
[4], [6]. In this note, we investigate three-level Stackelberg problems. The
problem formulation is given in Section II. The inducibility conditions are
derived in Section III. These conditions give a clear picture of the problem
and indicate its fundamental difficulties. In particular, we identify that the
leader’s control has dual purposes: direct control and indirect influence.
The fact that the dual purposes are generally not separable makes the
problem difficult to solve. We then in Section IV obtain explicitly
solutions for a special class of problems where the dual controls degener-
ate. Concluding remarks are given in Section V.

II. PROBLEM FORMULATION

Consider a three-person decision problem with three levels of hierarchy.
The leader (DMO) is at the top of the hierarchy; the first follower (DM1)
and the second follower (DM?2) are, respectively, at the middle level and
the bottom of it. Let the strategy of DMi be denoted as r,, with r, € T}; the
decision of DMi as u;, with 4, € Uj; and the cost function as J;(ry, 11, 73)
in its strategy form or J;(ug, u1, u,) in its extensive form. The solution
concept adopted here is the same as that of [2] or the first part of {10]. As
mentioned earlier, the team solution approach was used in [2]. On the
other hand, as we go through the derivation here, it will become clear. that
[9, Theorem 3] is incorrect. '

Consider a complete information problem where each decision maker
acts only once.? The sequence of actions is shown in Fig. 1. In the design
stage, DM 0 designs and announces 7, first. Knowing r;, DM1 designs and
announces ry. In the execution stage, DM?2 acts first, knowing both r, and
7. DM1 then calculates u; according to his announced ry, i.c., 4y = ri(u,).
Finally, DMO calculates u, according to ug = ry{uy, 1,).> The strategy r,
is allowed to be any measurable function from DM;’s information set to
U; (mixed strategies will not be considered here).

As discussed in [3], [4], the inducible region is the collection of all the
possible outcomes. In this case; for a given #y, since the reactions of DM1
and DM2 might not be unique, the realized outcome might thus not be
unique. According to the solution concept (see (2, eqs. (1) and (2)]),
however, DM0 assumes that followers choose a particular pair (r{, r5) in
his strategy design stage, where® *

(rl’, r:,’) = argsup sup  Jo(r.n.0). 21

1€ Ry{rp) ry € Ry(rg. 1)

In the above equation, R,(#) and R,(r,#) represent, respectively,
DM1’s and DM?2’s reaction sets, and are defined by [2, eq. 2]. The
corresponding decision tuple (ug, uf, u5) is thus called the outcome from
the leader’s viewpoint for this ry. As in [4], we can formulate equivalent
classes and, with a little abuse of notation, say that from the leader’s
viewpoint, the unigue outcome (ug, u{, u3) is induced by this r,. The
inducible region IR is then defined as

IR = {(uq. #1, uy): There exists a r, such that (ug, uy, 45) is the
unique outcome induced by this ry }.

(22)

III. INDUCIBILITY CONDITIONS

For any given ry, DM1 and DM?2 face a two-level Stackelberg problem
(the “nested” two-level problem). DMO can then be conceived of as also
facing a two-level problem (the outer layer problem), where the reactions
of the followers [in terms of (7, r;) or (uy, #,)] are determined by the
nested two-level problem. Consequently, the three-level problem can be
analyzed by considering these two two-level problems.

We shall first consider the nested two-level problem. This problem has
been solved completely in [4]. To convey main ideas, we shall assume for
simplicity that all the parameter optimization subproblems treated

21t can be extended to problems with incomplete information, see [7).

3We assume that both DMG and DM1 keep their promises by carrying out their
announced strategies.

4For simplicity, we assume that such a (r{, 73) exists.
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ralug,u,)  rofuy) r>
o2 12 // Execution Stage
; g
Design Stage u, u1=r1(u2) uy= ro(u1,d2)
Fig. 1.

hereafter have solutions.> With this assumption, the inducible region for
DM]1 for any fixed ry can be written as

IRy (1) = {(,u;): ;€U =12 and

Ty (ro (g uz)s uyuay) < my(r)} USH(r). (3.1)

where

(32)

. 6
my(ry) £ min maxJ, (ro(uy, ), 4y, )
U

and S§*(ry), which is basically the solution set of (3.2) that maximizes J;,
is defined rigorously in [4].

Intuitively, no matter what DM1 is going to do, DM2 can always
guarantee himself that J, will not be greater than m, (7). Thus, any point
with J, > m,(ry) is not inducible. On the other hand, any point with
J, < my(ry) is inducible since DM1 can always penalize DM?2 to m,(r)
if DM 2 does not select the designated point. On the J, = m,(r;) boundary,
only points in S#*(7,) are inducible. For proof and detailed discussions,
see [4].

Let us now turn to the outer layer problem, and examine whether a
point u’ = (ug, u3, u3) is inducible or not. The candidate #; that induces
(u§, ui, u3) has to take the following form:

if (u,uz)= (u{,ui),

otherwise,

U

33
Py( iy, u3) )

ro(uy, uy) = {

where the punishing strategy Py is vet to be specified. In order to induce
u’; the following two conditions have to be satisfied.
C!) Capability Condition: DM1 must be able to induce (uj, u3), ic.,

(u{,u3) € IR (15).

C2) Desirability Condition: DM1 must prefer (u{,u3) to any other
points in IR (), i.e.,

J(u) <K (Py(uy,u3), 41, 15) V(g 13) GIR\(G;)‘
(uy,uy)# (ul’, ui).

We can now derive some explicit results. First C1 and (3.1) imply that

Jy (') < min max J, (7§ (uy, u), uy, uy ) (34
uz U
< min max maxJ, ( ug, 4, 4;) = M;. (3.5

¥y g

The constant M, can be thought of as DM2's guaranteed cost, since DM 2
can always get M, even if both DM 0 and DM1 maximize J,. Therefore, it
is impossible for DMO to induce any point with J, > M,. We thus have
the following:

IRe {u:h(u)< M}, (3.6)
The condition (C2) implies that
S(w)< min I(Po(uy,uz) uy, uz). (€N

(1y. u3) € IRy (rg)
2y, uz) # (U, uj)

SWithout this assumption, the problem can still be handled by following the method of
[4]. however, the treatment of the inducible region's boundary becomes very complicated.
SIf there are multiple u;’s that maximize J3. the one that minimizes J; will be selected.
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That is, the punishing strategy P, should make all other alternatives in
IR, (7y) less attractive to DM1 than the desired #’. Note that P, affects
the term on the right-hand side of (3.7) directly since it determines J;’s
first argument. P, also affects the term indirectly since it shapes IR (rg)
and thus changes the region of taking the minimum. Intuitively, if DM2’s
cost function depends on DM O’s control variables, then DM 0 can modify
DM?2’s cost through ry, and this in turn affects DM1’s ability to induce
DM?’s decisions. Thus, DMO has indirect influence on DM1’s decisions.
On the other hand, if DM1’s cost depends on DM(Q’s control variables,
DMO can assign adequate values to them (through ry) as threats, and thus
imposes direct control on DMI’s decisions (in contrast to the indirect
influence). In order to select a good punishing strategy Py, we therefore
have to consider both effects, and the dual purposes of DMQ’s strategy are
observed.

In order to delineate the entire inducible region, we have to find out
that for a given u’, what is the best the leader can do to make all other
alternatives less attractive. The most DMQ can do is to impose upon DM1
the punishing strategy that maximizes the right-hand side of (3.7), i.e.,

max[ min
Pq \ (uy.uz) €IR(rf)
(uy.uz)# (U], u3)

J](Po(ul’u2)'ul’u2)>' (3.8)

The indirect influence changes IR;(rg). To the best of the authors’
knowledge, there does not exist any systematic way in selecting the “best”
P, for shaping the optimization region. In addition, the generally nonsep-
arable dual roles of DM (s strategy further complicates the issue.

IV. INDUCIBLE REGION FOR A CLASS OF PROBLEMS

Consider the problem in which DM cannot affect DM2 directly, i.e.,
the case where J; = J,{uy, ¥,). From (3.1) and (3.2), we see that now IR,
is independent of r,. Consequently, (3.8) becomes

(4.1)

max< min JI(PD(ul,uz),ul,uz)}.
P IR,

(1, ug) # (ug. u3)

and the dual control degenerates to direct control. We can rewrite this
optimization problem into its extensive form:

min maxJ, (ug, 1. 43 ). (4.2)
(1. u) IRy ug
(uy. uz) #* (uf. ub)
From (3.7) and (4.2), we then conclude that
J(w)s min  maxJ(ug,uy. uy) 2 M. (4.3)

{u).un)€IR; up

M, can be thought of as DM1’s guaranteed cost. Let ugp(uy, #,) denote
the solution to the maximization subproblem in (4.3).7 Also let S;* denote
the solution to the minimax problem in (4.3) that maximizes J,. Then
DMO’s maximum penalty strategy is given by

if (. u;3) €1IRy,

44
otherwise. (4.4)

ugp{ 1y, ty),
PO*(ul'u2)='{a:;iEralry 2)

We then have the following results.
Theorem 1: If J, is not a function of u,, then

IR = {(ug,uy, ) u; €U, i =1,2,3, Jy(ug, wy, ;) < M; and
Jy(uy, u3) < M,. The first equality holds only <
for (ug, u,. u;) € Si¥, and the second equality (43)
holds only for (u;, u,) € 55 }.

The proof is given in [7]. Consequently, one way to solve such a Stackel-

berg problem is to go through the following steps.
S§1): Delineate IR as in (4.5).

7If there are multiple ug's that maximize J;. the one that minimizes J will be selected.
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S2): Find the optimal inducible outcome u* by solving the following
parameter optimization problem:

u*=arg min Jo(ug. uy.us). (4.6)
(ug.uy.uz)€IR
§3): Construct a 75* to induce #*. One such 7§ is given by
uf if (uy.us) = (uf. u3),
5 (upua) = 0. ' . ( 1 _) 4.7
P (uy. us) otherwise.

It can be readily seen that a Stackelberg strategy rf* exists if and only if
(4.6) has a solution in IR. Furthermore. if the Stackelberg cost J§* is
bounded (Jg* as defined by [2. eq. (1)]), then an e-Stackelberg strategy
always exists.

V. CONCLUDING REMARKS

Through a systematic derivation. we reveal the nature of three-level
problems, and indicate its fundamental difficuities. In particular. the dual
purposes of the leader’s strategy. direct control and indirect influence, are
identified. Together with other results obtained by using the inducible
region concept, it is believed that this concept is fundamental to the study
of many Stackelberg decision problems.
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Digitalization of Existing Continuous Control
Systems

KULDIP S. RATTAN

Abstract — The problem of converting existing continuous-data control
systems into digital control systems is considered. The objective of this
paper is to develop a computer-aided method for synthesizing the
pulse-transfer function of the digital controller. This is done by matching
the frequency response of the digital control system to that of the continu-
ous system with a minimum weighted mean-square error. Formulas for
computing the parameters of the digital controller are obtained as a result.
The design technique is illustrated with a numerical example, and a
comparison with previous methods is also presented.
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