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Hence, 

(35) 

V. FINAL REMARKS 

The problem of c-controllability for continuous parameter stochastic 
composite systems has been considered. The sufficient conditions of 
c-controllability obtained in this paper  are  an extension of the results [lo] 
for linear stochastic composite systems. In a similar way, using the 
Gershwk and Jacobson results [4], it is possible to introduce the defini- 
tions and to prove the sufficient conditions of controllability for nonlinear 
deterministic and stochastic systems. 
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Derivation of Necessary and Sufficient Conditions for 
Single-Stage Stackelberg  Games  Via  the  Inducible 

Region  Concept 

TSU-SHUAN CHANG AND PETER B. LUH 

it now follows from the theorem (and the corollary) that the initial state 
[J;. y&, &. y$, &,] of the composite system  (14).  (15) is stochastically 
<-controllable in probability rp in the normed squared sense with respect to 
the terminal state in the time interval [0, t f ]  if S is negative defined, i.e.. if 

Abstruct-The inducible  region is defined as the collection of all  the 
possible outcomes. It is typically  a subset of the entire decision space. The 
best the  leader can obtain is then the optimal outcome in this inducible 
region. Necessary and sufficient conditions  are  derived by first delineating 
the  inducible  region,  and  then  obtaining  a  leader’s optimal strategy, if it 
exists. If not,. an €-strategy always exists, provided that the  leader‘s 
Stackelberg cost is bounded. 

and conditions ii) and iv) hold, Le., 
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I. INTROUUCIION 

Stackelberg games can be  used to model multiperson optimization 
problems hating decision makers in different levels of hierarchy. The 
central theme lies in the assumption that the leader, occupying the higher 
level of hierarchy, can choose his strategy to optimize h s  operation b>- 
talung into account the rational reactions of followers. Although the 
concept had been introduced earlier in [l]. it was believed until recently 
that even a simple looking two-person. linear, quadratic. deterministic. 
closed-loop Stackelberg game w a  difficult to solve [?I. Recent progress is 
mainly due to the discoveries of indirect methods of solving determinibtic 
Stackelberg games.  which are introduced independently in [3]. [4]. (A few 
rewlts using direct methods huch a [SI are also reported.) These indirect 
methods have been extended to d v e  more dcternlinistic and stochastic 
Stackelberg games such as in [6]-[9!. Conccptuall\-. proious results tc t o  
find sufficient conditions to guarantee the existence of a solution or an 
€-solution. What is lacking in the literature are the necesbq and suffi- 
cient conditions. 

In this note. tve demonstrate how necessaq and sufficient conditions 
can be denbed through the dclineation of the inducibk regiorz. To achieve 
this. we state two-person. single-stage. deterninistic games in Section 11. 
We then define mathematically the inducible rcgion  in Section Ill.  Undcr 
the assumption that every optimization problem considercd has a unique 
solution. \ye deriw in Section 1V inducibility condition> and thus the 
inducible region step by step from the definition. In Section V. the 
asbumption of uniqueness is dropped and we then present necessq- and 
sufficient conditions for general problem. When a Stackelberg solution 
does not exih t .  \\e show that an <-Stackelberg solutlon altvays exists under 
certain conditions. Concluding remarks in Section VI include a compari- 
son between Tol\vinski’s results [7] and ours. 

11. m O - P t K X ) N .  SINGLE-SIAGE, D ~ T ~ R M N I S I I C  CiAhkS 

Since a tno-person. single-htage. deterministic Stackelberg game wit11 
incompiete information can be conterted into an  equi\alent  one uith 
complete information by following [6].  it suffices here  to consider the 
problem uith complete information. Let J, (u , .  u , )  and J1(uo. 11,)  bc the 
cost functlons of the leader and the follower.  respectively. For any given 
leader‘s strategy yo E r,,. the follower chooses his control variable u, E 

to minimize J,. The leader. who is assumed to know  the  follower’s control 
u I  precisely. then decides on the value of h s  control 11, E Uo according to 
his preannounced strategy. Le.. u o  = yo( 1 1 , ) .  Here we assume that yo is the 
set of all functions from VI to 1 5 ~ .  The problem for the leader is to find 
his Stackelberg strategy yo’ to satisfy 

SUP J o ( y ; ( t ~ l ) , u l ) ~  SUP . r o ( Y o ( u l ) . u I )  f o r a l lyoEro .  

(1)  

~q E R(:,,;) 111 t R( . fo)  

\vhere 

R ( - ( , ) =  { u ; ~ ~ l ~ ~ l ( ~ o ( ~ ~ ; ) . u ; ) ~ ~ , ( ~ o ( z ~ l ) . z ~ I ) .  foralIr t ,EL~l} 

(’1 
is the rational reaction set of the  follower for the given yo. Any 4 E R(yd ) 
is called a Stackelberg solution of the  follower. and the Stackelberg cost of 
the leader is defined as 

Jd=inf sup Jo(yo(ul).ul). ( 3 )  
1 0  111 E R l y o )  

In the case  where a Stackelberg btrategy dms not exibt, we conaider the 
<-Stackelberg btrategy y; which satibfics 

sup J o ( ~ ~ ( ~ ~ l ) , ~ ~ l ) < J ~ ~ ~ .  providcdthatIJc;l<x.  (4) 
u l E  R l y S )  

111. THL Co~ct r r  OF INDUCIBLE L ~ ~ I O N  

For a given yo, the rational follower can choose any 11, E R (  yo).  If the 
follower chooses a particular u{ E R (  yo),  then the leader has to act 
according to t r ;  = yo( u ; )  (under the assumption that he keeps his commit- 

ment). In other words, ( 1 1 6 ,  u ; )  is the real ourcome of the game for this yo. 
However, in the strategy designing stage, the leader’s viewpoint regarding 
the outcome of the game is somewhat different. From (2). the leader 
assumes that the follower chooses a particular uf E G(yo), where 

G ( y O I d  x g m a x  J o ( y o ( ~ ~ l ) . u I )  ( 5 )  
ut E R(.fo) 

is asumed to be nonempty for the convenience of discussion. Since 
J ~ ( ~ ~ ( u ~ ) , u ~ )  as well as Jl(yo(ul), u l )  takes the same value for all 
UT sG(yO).  all the outcomes in the set { ( u ; ,  uf)lu$ = yo(uT) .  UT E 

G ( y o ) }  are equivalent. With little abuse of notations, we shall use 
(u; .  uf) to represent the equivalent set. and say that. from  the leader’s 
ciebrpoint, the unique ourcome ( u ; ,  UT) can be induced by announcing the 
given yo, Let us define the inducible region (IR) by1 

IR = { ( u ; .  uf )I there exists a yo E ro such that 
( u ; . u : )  is the unique outcome from the (6) 
leader’s viewpoint}. 

From the above definition. any point not belonging to 1R cannot be the 
outcome of the game (from the leader’s vie\\point). Thus. the leader needs 
only to consider IR when he tries to minimize Jo. Le.. 

J ; =  inf J o ( u o . u l ) .  (7) 

Therefore. the problem boils down to how to delineate the inducible 
region IR. 

( UO. E IR 

I\’. DELIMATION Oi- THE INDUCIBLE  REGION 

To get across main ideas. we shall assume in this section that eser)i 
optimization problem considered here has a unique solution. This assump- 
tion wil l  be dropped in the next section. First we derive the conditions on 
the inducibility of a given point (IC;. uf). 

The candidate y z  used to induce ( u g .  uf ) has to take the form 

u; if ul = u:,  ( p (  ul) otherwise. 

where P( u l )  is a function from L!, to Lb (yet to be specified). For any 
given P( .). the following three e-xhaustive cases can happen for each 
u; -L UT. 

C u e  I: J,(u;. 11;) < J l (u ; l .  u; ) ,  where uh P(u;). 

C u e  3: J l ( u $ .  uf) > J l ( u b .  u; ) .  
If Case 3 is true for at least one N;+ uf, then (u;. uf) cannot be 

induced by this y z  (because the follower  will then prefer u; to uf). Thus, 
the leader will try his best in the selection of P( .)  to avoid Case 3 from 
happening. For each u; + uf. the highest value that the leader can assign 
to J ,  is 

CureI:J,(u~.uf)=J,(u~.Ui). 

~ ~ ~ ( u ; ) = s u p J , ( u o . u ; ) .  (*I 
UO 

In other words. the most the leader can choose for each 21; is uop. where 

uop(I‘~)=argsupJl (uo .u; ) .  (9) 
110 

Thus. the best yo the leader can choose (to avoid Case 3 from happening) 
is 

From the construction of yo.+,, if ( u z ,  UT) cannot be induced 6r yaw, 
rhen I f  tunnor he induced by any ofher yo. and rhur i f  is not Inducible. This 
leads to the two results given as follows. 

s p c e  Plcnx see [ I ? ]  for details. A h .  once the “unlque” outconlc ( u a .  U T )  is deflned in 
IThc cwccpt of inducible rc;mn can be clabordted In both btrateg!, >pace and dmsion 

the cqul\alent xnse as dcscribcd. the inducible region dehncd hx ( 6 )  can be interpreted as 

; n  !X]I 
Ihc cc4cction of all the “lncentlve controllable“ points (Inzentixc zontrollab!lity as defined 
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a) If J I (  u g ,  UT) > M ,  where 

M = infm( u , )  (**a) 

= inf supJ,( uo .  q ) .  ( * *b) 

U l  

u1 uo 

then (u;, UT) is not inducible (due to the unavoidable occurrence of Case 
3 ) .  

b) If J1( u;, u p )  < M ,  then ( u ; ,  UT) is inducible (by yo.%, since Case 1 
holds for all u; * UT). 

Results a) and b) imply that the remaining part of IR that needs to be 
delineated is the boundary where J,( u;, UT) = M ,  i.e.,  when Case 2 
occurs. From the construction of yonf, if u, ,w is the unique solution which 
achieves the minimum of (**a). then (yo , , f (~~l ,r f ) .u l ,~f )  is the minimax 
solution of (**b). Thus, for a point ( u ; ,  UT) on the boundary, we have 
J1( u;, 11;)  = J1(yOM( u,  %,). u I M )  = M. According to (5). we can conclude 
the following. 

c) A point ( u ; .  UT) is inducible (as the unique outcome from the 
leader's viewpoint) by yo.w iff Jo( u;, UT) > Jo ( y o , ~ ( ~ 4 1 r ) ,  itlM). 

From previous discussions, we can conclude that, under the assumption 
that the optimization problem considered has  a unique solution, the  IR is 
completely delineated by a)-c). 

V. NECESSARY AND SUFFICIENT CONDITIONS 

From the construction procedure of yo,%, in (lo), we can see that the 
assumption that ( *)  has the unique solution is important. For a general 
problem, ( * )  may have either multiple solutions or no solution at all. If 
( * )  has no solution. then (9) is not well defined. If ( * )  has multiple 
solutions, we have to determine which one of them will be used to 
construct yOM.  Therefore, it is necessary to distinguish between these two 
cases. 

Let 0, denote the set of all ul's for which m( u ; )  in ( * )  canmr be 
achieved by any uo E bb; furthermore assume that m(z1;) < E on El. By 
the definition of supremum, there always exists a u o c ( u ; )  E 6'0 which 
achieves m( u ; )  within in the following sense: 

I J l ( u o , , u ; ) - ~ ~ ( . ; ) I < ~ .  (11) 

Apparently, this uOr is the leader's best choice to construct yo,$f. 
Let U,, = U, - 4 ,  then Ulu is the set where "( 1 4 ; )  in ( *  ) can be 

achieved by at least one u0 from the definition of U,. For each u; E E,,! 
the leader will choose a uo,rf(u;)  to construct yaw, where 

u o u ( u ; ) = a r g i n f J o ( u ~ , u ; ) ,  (12a) 

subject to 146 E argmaxJ,( uo .  u ; ) .  (12b) 

u6 

U Q  

Since all u; in (12b) achieve nz(u;), the leader will certainly choose the 
one in (12a) to minimize Jo. Note that if the solution in (12a) is not 
unique, uOM(  u;)  can be any one of them. If the solution of (12a) does not 
exist, +en uo,(u;) is chosen to make Jo(uo,M(u;),  u; )  achieve the 
infimum in (12a) within c. From (11) and (12), we then obtain  the 
modified you as follows: r if u1 = UT 

m f ( u l ) =  u0,,,(u1) i f u l + z ~ T , ~ l E U l o ,  (13) 

u o c ( u l )  ifu,#u,*u,EU,.  

It can be seen that a) and  b) of Section IV still hold with this new yow. 
If ( u ; .  UT) is on  the  boundary with J1( u;, IC?) = M ,  then we have to 

modify the inducibility conditions c) in Section IV according to the 
existence of the solution of (**a). Denote the ul's which  achieve the 
infimum of (**a) by u ~ , ~ ,  then we have the following three exhaustive 
and exclusive cases: 

Case A: there is a u1 ,w E 0p 
Case B: there is no u l M  E U,. but there is a ulM E Ul,, 
Case C: there is no u I M  E L!,. 
If Case A is true, then there is no uo which makes J1( uo, u , , , ~ )  equal to 

,V according to  the definition of 4 .  Therefore. J l ( u o .  uI y) M for all 
uo E Uo. This implies that ( u ; ,  u p )  is not inducible because the follower 
prefers uly to 117. In other words, we have Lemma 1. 

Lenlnza I: If Case A is true, then IR = Do, where 

~ o ' I ( U o , z ~ l ) l J 1 ( ~ ~ o , ~ ~ ) < M } .  (14) 

If Case B is true, then J1( y O M (  u , , ~ ~ ) ,  u 1  &,) = IM from the construction 
of yo,rr iri (13). In this case. ( u $ .  u , * )  is inducible only if [according to ( 3 1  

. I 0 ( U 8 . ~ 1 * ) > / S ~ P J O ( Y O ~ f I ( U 1 . w ) . ~ l r v f ) ~ b r  (15) 

where the supremum is taken over all solutions of (**a) which achieve its 
minimum. This implies that Lemma 2 is true. 

Lemnza 2: If Case B is true, then IR = DoL'D2, where 

D,= { ( u o , u I ) I J 1 ( ~ ~ O , u l ) = M  andJo(uo,ul)>b}.  (16) 

If Case C is true. then for each u, E U, there exists a uo E Uo such that 
J1( uo, u l )  > M .  To see this, suppose it is not true, then there exists a u; 
such that J l (uo ,  u; )  6 M for all uo E Uo. This implies that either 1) there 
exists a uo E Uo such that J1( u 0 .  u ; )  = M ,  then we have u; E Ul,; or 2) 
J1( uo. u; )  < M for all uo E Uo, then we have u; E a,. Both cases lead to 
contradiction. As a result, any point (u; .  u p )  on the J1 = M boundary is 
inducible. We thus obtain the result. 

Lenzma 3: If Case C is true, then IR = D l ,  where 

D I = { ( u o , I 4 l ) l J l ( I 1 o , " l ) d M } .  (17) 
The above results can be summarized by the following theorem. 
Theorem 1: A Stackelberg strategy exists iff the problem 

min Jo(  uo .  u , ) .  (18) 
( ~ 0 .  ~ 1 )  E IR 

has a solution, where IR is defined by (14)-(17) for various cases. 

bounded. 

(7), there always exists a point ( u o .  u, )  E IR such that 

Theorem 2: An €-Stackelberg strategy always exists, provided that Jd is 

Proof: Under the boundedness condition, and for a given c > 0, from 

IJo( 11o.u1)-J& < E .  

Since th s  ( uo. ul) E IR is inducible, an €-Stackelberg solution exists. 

VI. CONCLUDING REmm 

In this note, necessary and sufficient conditions for two-person. single- 
stage games are derived by using the concept of inducible region. Since 
the inducible region concept is derived directly from the definition, the 
inducible region in strategy space always exists regardless of whether the 
problem is deterministic or stochastic, single-stage or multistage, one-fol- 
lower or multifollower as discussed in 1121. Thus, it is expected that  the 
concept can be carried through for general problems. Preliminaq results 
are encouraging ( eg ,  [lo]) and will be reported in forthcoming papers. 

Those who are familiar with Tolwinski's results in [7] might see the 
mathematical resemblance between his results and ours. According to 
Tolwinski [ll]. ideas relevant to the concept of inducible reGon have 
appeared in the Russian literature. However, they have not been intro- 
duced formally. He is  the first researcher to  obtain  a region wrhich is close 
to the inducible region for the problem considered. We define the induci- 
ble region formally and delineate it step by step from the definition. It 
turns out  that his region in 17. eq. ( l l)]  and the inducible region differ 
from each other only on the J1 = IM boundary. However, for more general 
problems such as the  three-level games considered in his paper, h s  region 
defined [7. eq. (40)] and the actual inducible region for that problem are 
very different. This point has been discussed in detail in [13]. 
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On  the  Efficiency of Output-Error  Estimators 

PAUL KABAILA 

Abstract-In this correspondence mre consider  a  system  with rational 
transfer  function  from  input to output  where the transfer  function  has p 
parameters.  It is proved  in 111 that  when  the  input is a  sum of sinusoids and 
has a two-sided  line spectrum consisting of p distinct  frequencies,  then  the 
output-emr estimator  and the prediction-error  estimator  are  equally effi- 
cient. This result, which is at first sight a surprising one, is given an 
intuitively  pleasing  proof in this correspondence. This proof is based on the 
algorithm of 121. 

---; TUSSACITONS ON AUTOMATIC CONTROL. VOL. AC-29. NO. 1, JANUARY 1984 

a. h. 6 are the true parameter values. s is assumed known. Here, p : = q  is 
to be interpreted as meaning that p is defined by the expression q and x’ 
denotes the transpose of x. We use a common form of notation in which z 
sometimes denotes the delay operator  and sometimes a complex number. 
Suppose that a and b are unknown and that we  wish to estimate these on 
the basis of . . . , uo. .  . . . u,- I and ~ b . .  . . ..y, In other words. we  wish to 
estimate the transfer function from input to output. 

Let us denote the output-error estimators of-a and b by d,, and $,, 
respectively. Also let d , , ~ [ d , x o . . . . . d , q ] ,  and b,,=[h, h,,,-,-,l’. 
As in [I] and [2] d,, and h, are defined to be minimizing values of the 
following quantity subject to a E A and b E B:  

I. INTRODUCITON 

Let { u , }  be the input, { yr} the output, and { e I }  the dribing (white) 
noise for the following single-input, single-output system: 

1 ; = ? . 4 ( a , z ) B ( b , z )  u 1 + H ( 6 . - . ) r ,  - 1  

where 

A ( a . z ) : = a o + a l z +  ... +aqzq 

a : = [ a o ; . .  .%I‘ 
B ( b , z ) : = l + b , ~ +  + b p - q - l : p - 4 - 1  

Manuscript received June 7.  1982. 
The  author  is  uith the Division of Mathematics and Statistics.  Commonwealth Scientific 

and  Industrial Research Organization. South Melbourne. Vie. 3205. Australia 

when -, denotes convergence in distribution. Furthermore, [l, Theorem 
4.11 provides regularity conditions under which the following result holds. 

Result * : If the input u r  is a sum of sinusoids and has a two-sided line 
spectrum consisting of p distinct frequencies, then F = G, i.e.. the output- 
error and prediction-error estimators of [a’. b’]’ have the same efficiency. 

At first sight this is a rather surprising result. That G 2 F (i.e., G - F is 
positive semidefinite) is well to be expected but  a simple condition (as 
provided by Result * )  for F =  G is somewhat unexpected. Unfortunately. 
the proof of [I. Theorem 4.11 does not help one‘s intuition much as 
regards Result *. Our aim is to prove Result * (under the  appropriate 
regularity conditions) in a manner which helps one’s intuitive understand- 
ing of it. In the next section we d l  prove that (under the appropriate 
regularity conditions) 

d 

when -, denotes convergence in probability. Equation (1.3) implies that, 
asymptotically. [C,’l. &;I’ and [ a ; ,  $1’ amount to the same estimator. 

P 

11. THE MAIN RESULI 

For the statement of the main result we require the following assump- 
tions. Note that M oc. 
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