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I. INTRODUCTION

Stackelberg games can be used to model multiperson optimization
problems having decision makers in different levels of hierarchy. The
central theme lies in the assumption that the leader, occupying the higher
level of hierarchy, can choose his strategy to optimize his operation by
taking into account the rational reactions of followers. Although the
concept had been introduced earlier in [1]. it was believed until recently
that even a simple looking two-person, linear, quadratic, deterministic,
closed-loop Stackelberg game was difficult to solve [2]. Recent progress is
mainly due to the discoveries of indirect methods of solving deterministic
Stackelberg games, which are introduced independently in [3). [4]. (A few
results using direct methods such as [5] are also reported.) These indirect
methods have been extended to solve more deterministic and stochastic
Stackelberg games such as in [6]-{9]. Conceptually, previous results try to
find sufficient conditions to guarantee the existence of a solution or an
e-solution. What is lacking in the literature are the necessary and suffi-
cient conditions.

In this note, we demonstrate how necessary and sufficient conditions
can be derived through the delineation of the inducible region. To achieve
this, we state two-person, single-stage, deterministic games in Section IL
We then define mathematically the inducible region in Section 1. Under
the assumption that ¢very optimization problem considered has a unique
solution, we derive in Section 1V inducibility conditions and thus the
inducible region step by step from the definition. In Section V, the
assumption of unigueness is dropped and we then present necessary and
sufficient conditions for general problems. When a Stackelberg solution
does not exist, we show that an e-Stackelberg solution always exists under
certain conditions. Concluding remarks in Section VI include a compari-
son between Tolwinski’s results {7] and ours.

II. TwoO-PERSON, SINGLE-STAGE, DETERMINISIIC GAMES

Since a two-person, single-stage, deterministic Stackelberg game with
incompiete information can be converted into an equivalent one with
complete information by following [6]. 1t suffices here to consider the
problem with complete information. Let Jy(ug. 1) and Jy(ug. u;) be the
cost functions of the leader and the follower, respectively. For any given
leader’s strategy yy € I,. the follower chooses his control variable u, € U
to minimize J;. The leader. who is assumed to know the follower's control
u, precisely, then decides on the value of his control u, € Uj according to
his preannounced strategy, i.e.. ug = Yo (1, ). Here we assume that y, is the
set of all functions from U to {j. The problem for the leader is to find
his Stackelberg strategy yg to satisfy

sup  Jo(vp(m).uy)  forally, €Ty,

u € R{yg)

sup  Jo(vg () 1) <

up € R(¥3)
€]

where

R(¥)= {ullEUlEJI(YO(HI')‘uI,) <h(v(w) ). forally € Ul}

()
is the rational reaction set of the follower for the given yy. Any ui € R(yg)
is called a Stackelberg solution of the follower, and the Stackelberg cost of
the leader is defined as

Js=inf  sup  Jo(yo(uy).uy). 3)

Yo w; € R(vg)

In the case where a Stackelberg strategy does not exist, we consider the
e-Stackelberg strategy v which sausfies

sup  Jo(¥§(w). ) <Jg+e.  provided that|J3|<oc. (4)

u; € R(Y§)

11I. THe CONCEPT OF INDUCIBLE REGION

For a given y,, the rational follower can choose any u; € R(y,). If the
follower chooses a particular u) € R(y,). then the leader has to act
according 1o uj = yo(u1) (under the assumption that he keeps his commit-

ment). In other words, (g, uy) is the real outcome of the game for this vy.
However, in the strategy designing stage, the leader’s viewpoint regarding
the outcome of the game is somewhat different. From (2), the leader
assumes that the follower chooses a particular uf € G(v,), where

)

G(vo) £ argmax Jo(vo(tn) )
u) € R(yp)

is assumed to be nonempty for the convenience of discussion. Since
Jo(vo(uy), uy) as well as Ji(vo(wy), u;) takes the same value for all
u €G(y,). all the outcomes in the set {(ug, u)jug = vo(ur). uff €
G(Yo)} are equivalent. With little abuse of notations, we shall use
(ud, uf¥) to represent the equivalent set, and say that, from the leader’s
viewpoint, the unique outcome (1§, ui*) can be induced by announcing the
given yy. Let us define the inducible region (IR) by’

IR = {(ud.uf)| there exists a yy €T, such that
(uf.uf) is the unique outcome from the
leader’s viewpoint}.

(6)

From the above definition, any point not belonging to IR cannot be the
outcome of the game (from the leader’s viewpoint). Thus, the leader needs
only to consider IR when he tries to minimize J, i.€..

inf  Jo(ug,up)-

(ug. 1) €IR

g = Q)
Therefore, the problem boils down to how to delineate the inducible
region IR.

IV. DELINEATION OF THE INDUCIBLE REGION

To get across main ideas, we shall assume in this section that every
optimization problem considered here has a unique solution. This assump-
tion will be dropped in the next section. First we derive the conditions on
the inducibility of a given point (ug, ui¥).

The candidate vy used to induce (u§. uf) has to take the form

uf if uy = uf,
Pw)

where P(u;) is a function from U, to U, (yet to be specified). For any
given P(-). the following three exhaustive cases can happen for each
up # uft.

Case 1: Ji(u¥. uf¥) < Jy(ug, u1), where ug 2 P(uf).

Case 2: Ji(ug. uify= Ji(ug. uy).

Case 3: Ji(ug. ui) > Jy(ug, uy).

If Case 3 is true for at least one uy# uj¥, then (u§. ui*) cannot be
induced by this y§ (because the follower will then prefer u{ to u{). Thus,
the leader will try his best in the selection of P(-) to avoid Case 3 from
happening. For each u{ # uf. the highest value that the leader can assign
to J) is

m*(ul)={ ®)

otherwise,

)

m(ul’) = sule(uo.u{).
“o

In other words, the most the leader can choose for each u] is ug,. where

®

uop(u,’) =arg sup]l(uo, u{).
up

Thus, the best y; the leader can choose (to avoid Case 3 from happening)
is

()= iy = uft, 10
Youm (1 g, (1) otherwise. (19

From the construction of yqas, if (uf, u*) cannot be induced by Yo,
then it cannot be induced by any other vy, and thus it is not inducible. This
leads to the two results given as follows.

'The concept of inducible region can be elaborated in both strategy space and decision
space. Please see [12] for details. Also. once the “unique™ ouicome {ud. #*} is defined in
the equivalent sense as described, the inducible region defined by (6) can be interpreted as
the collection of all the “incentive controtlable™ points (incentive controllability as defined
in [R]
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a) If Jy(ug, uf)> M, where
(*#a)

(**b)

M=infm(u)
L

= inf supJ; (ug. 11 ).
LIPS

then (u#, #) is not inducible (due to the unavoidable occurrence of Case
3).

b) If Jy(ud, uf) < M, then (ug, ui*) is inducible (by s since Case 1
holds for all u] = uf).

Results a) and b) imply that the remaining part of IR that needs to be
delineated is the boundary where Jy{ud,uf)= M, ie, when Case 2
occurs. From the construction of gy, if #;, is the unique solution which
achieves the minimum of (**a). then (ygp(tga9)- #127) i the minimax
solution of (**b). Thus, for a point (#f.u;*) on the boundary, we have
J(ud, uf) = Ji(Yoar (U1 a ) t147) = M. According to (5), we can conclude
the following.

¢) A point (u#,uf) is inducible (as the unique outcome from the
leader’s viewpoint) by voas iff Jo(ud, ui) > Jo (Yom (¥1a1), H1ps).

From previous discussions, we can conclude that, under the assumption
that the optimization problem considered has a unique solution, the IR is
completely delineated by a)—c).

V. NECESSARY AND SUFFICIENT CONDITIONS

From the construction procedure of yg,s in (10), we can see that the
assumption that (*) has the unique solution is important. For a general
problem, (*) may have either multiple solutions or no solution at all. If
(*) has no solution, then (9) is not well defined. If (*) has multiple
solutions, we have to determine which one of them will be used to

construct Yoy, Therefore, it is necessary to distinguish between these two )

cases.

Let {, denote the set of all u,’s for which m(u{) in (*) cannot be
achieved by any u, € Uy; furthermore assume that m(uy) <oc on Ui, By
the definition of supremum, there always exists a ug(u;) € Uy which
achieves m(u) within ¢ in the following sense:

|y (e, uf)— m(u) | <e. (11)

Apparently, this ug, is the leader’s best choice to construct g,

Let Uy, =U,— (), then Uy, is the set where m(u{) in (*) can be
achieved by at least one u, from the definition of {,. For cach uj € Uy,
the leader will choose a g, (u{) to construct yy,,, where

uOM(u{)=argin,fJ0(u(’,,u{), (122)
4o
subject to ug € argmax]l( Up., u{). (12b)

L]

Since all uj in (12b) achieve m(uq), the leader will certainly choose the
one in (12a) to minimize J,. Note that if the solution in {12a) is not
unique, ¥g(4;) can be any one of them. If the solution of (12a) does not
exist, then wug, () is chosen to make Jo(uga(u(), u;) achieve the
infimum in (12a) within €. From (11) and (12), we then obtain the
modified vy, as follows:

ug if u, = uff
Yom (i) = o (1) ifuy # uff. uy €Uy, (13)
ug (uy) ifu, #ufu, €Uy

It can be seen that a) and b) of Section IV still hold with this new yya,.

If (uf.uf) is on the boundary with J)(ud, u¥)= M, then we have to
modify the inducibility conditions ¢) in Section IV according to the
existence of the solution of (**a). Denote the u;’s which achieve the
infimum of (**a) by u;,,, then we have the following three exhaustive
and exclusive cases:

Case A: there is a u, y € U,

Case B: there is no u; 5, € Uy, but there is a u; ,, € Uy,

Case C: there is no u, y € U;.

If Case A is true, then there is no uo which makes J1(uy, u; ) equal to

M according to the definition of {;. Therefore, J;(ug, u14,) < M for all
g € Up. This implies that (¢, uf¥) is not inducible because the follower
prefers u,; to uff. In other words, we have Lemma 1.

Lemma 1: If Case A is true, then IR = Dy, where

Doé{(uo,u1)|-71(“o,u1)<M}. (14)

If Case B is true, then Ji(voar(#1as)s ttyar) = M from the construction
of ygas ini (13). In this case, (4§, uf*) is inducible only if [according to (5)]

(15)

where the supremum is taken over all solutions of (**a) which achieve its
minimum. This implies that Lemma 2 is true.
Lemma 2: If Case B is true, then IR = DUD,, where

Dy = {(ug, )| (o) =M

Jo{(ug. uf > supJo(vorr (u1ar) . 1ar ) 2 B,

and Jo(ug, ) >k}, (16)

If Case C is true, then for each u; € U; there exists a u, € Uj such that
Ji(ug, u;)> M. To see this, suppose it is not true, then there exists a u;
such that J;(ug, u{) < M for all ug € Uj,. This implies that either 1) there
exists a ugy € U such that J;(ug, v} = M, then we have uj € Uy,; or 2)
Ji(ug, u}) < M for all ug € U, then we have uj € J;. Both cases lead to
contradiction. As a result, any point (4§, #{°) on the J, = M boundary is
inducible. We thus obtain the result.

Lemma 3: If Case C is true, then IR = Dy, where

D = {(uo,ul)[Jl(uO,ul)<M}. amn
The above results can be summarized by the following theorem.
Theorem 1: A Stackelberg strategy exists iff the problem
min _ Jy(ug, ). (18)
(up.uy) €IR

has a solution, where IR is defined by (14)-(17) for various cases.
Theorem 2: An e-Stackelberg strategy always exists, provided that J§ is
bounded.
Proof: Under the boundedness condition, and for a given € > 0, from
(7), there always exists a point (g, #;) € IR such that

[Jo(ug.u)—Jg|<e.

Since this (u,. #;) € IR is inducible, an e-Stackelberg solution exists.

VI. CONCLUDING REMARKS

In this note, necessary and sufficient conditions for two-person, single-
stage games are derived by using the concept of inducible region. Since
the inducible region concept is derived directly from the definition, the
inducible region in strategy space always exists regardless of whether the
problem is deterministic or stochastic, single-stage or multistage, one-fol-
lower or multifollower as discussed in [12]. Thus, it is expected that the
concept can be carried through for general problems. Preliminary results
are encouraging (e.g., [10]) and will be reported in forthcoming papers.

Those who are familiar with Tolwinski’s results in [7] might see the
mathematical resemblance between his results and ours. According to
Tolwinski [11], ideas relevant to the concept of inducible region have
appeared in the Russian literature. However, they have not been intro-
duced formally. He is the first researcher to obtain a region which is close
to the inducible region for the problem considered. We define the induci-
ble region formally and delineate it step by step from the definition. It
turns out that his region in [7, eq. (11)] and the inducible region differ
from each other only on the J, = M boundary. However, for more general
problems such as the three-level games considered in his paper, his region
defined [7, eq. (40)] and the actual inducible region for that problem are
very different. This point has been discussed in detail in [13].
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On the Efficiency of Output-Error Estimators
PAUL KABAILA

Abstract —In this correspondence we consider a system with rational
transfer function from input to output where the transfer function has p
parameters, It is proved in [1] that when the input is a sum of sinusoids and
has a two-sided line spectrum consisting of p distinct frequencies, then the
output-error estimator and the prediction-error estimator are equally effi-
cient. This result, which is at first sight a surprising one, is given an
intuitively pleasing proof in this correspondence. This proof is based on the
algorithm of {2].

1. INTRODUCTION

Let {u,} be the input, {3} the output, and {¢,} the driving (white)
noise for the following single-input, single-output system:

_yl=:3A(a,z)B(b,:)_lu,+ H(8,2)¢,
where
A(a,z)i=ag+tayz+ -+ +ayz?

a:=[ag.--.a,]

B(b,z):=1+byz+ - +b,_,_ 2P 97!
bi=[by. b, o]

H(8,2):= gohu(g)zu

8:=[8,,---,8,]. &eC.

Manuscript received June 7, 1982.
The author is with the Division of Mathematics and Statistics, Commonwealth Scientific
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a.b.8 are the true parameter values. s is assumed known. Here, p:=g is
to be interpreted as meaning that p is defined by the expression g and x*
denotes the transpose of x. We use a common form of notation in which z
sometimes denotes the delay operator and sometimes a complex number.
Suppose that a and b are unknown and that we wish to estimate these on
the basis of - -+ ,ug.- - -. 1, _1 and yg,- - -, 3, 1. In other words, we wish to
estimate the transfer function from input to output. .

Let us denote the output-error estimators of ¢ and b by &, and b,.
respectively. Also let @, =[d,9. " *.@,g} and b, =[by, - by gl
As in [1] and [2] &, and b, are defined to be minimizing values of the
following quantity subject toa € 4 and b € B:

% (,1',-z’A(a.z)B(b.z)7lu,)

-1
t=0
Also, let us denote the prediction-error estimators of a, b, and 8 by d,,, B,
and 3, respectively. Also, let

and

Asin[1, sect. IV] &,. b,, and §, are defined to be minimizing values of the
following quantity subject toa € 4, b€ B, and 8 €C:

2
1 n—1/fr-1 . 1
> Z Z1‘,(6)).',_[,—I(8,z)z‘A(a,z)B(b,z) u, | (L.1)
=0 \v=0
where
< 1
1(8,2):= Y i (8)2":=H(8.2) .
=0
In [1] are specified regularity conditions under which
_— N d
n*([a;.b;) ~[a".6]) = N(O. F)

nl"'z([ ap. byl -la b']') N(0,G)

when 4 denotes convergence in distribution. Furthermore, [1, Theorem
4.1] provides regularity conditions under which the following result holds.
Resulr + : If the input u, is a sum of sinusoids and has a two-sided line
spectrum consisting of p distinct frequencies, then F = G, i.e., the output-
error and prediction-error estimators of [a”, b']” have the same efficiency.
At first sight this is a rather surprising result. That G> F (i.e, G — Fis
positive semidefinite) is well to be expected but a simple condition (as
provided by Result *) for F = G is somewhat unexpected. Unfortunately,
the proof of [1, Theorem 4.1] does not help one’s intuition much as
regards Result . OQur aim is to prove Result * (under the appropriate
regularity conditions) in a manner which helps one’s intuitive understand-
ing of it. In the next section we will prove that (under the appropriate

regularity conditions)
W (a,—a,) >0, n2(h,—b) Lo

(1.3)

p
when — denotes convergence in probability. Equation (1.3) implies that,
asymptotically, [, b;]” and [&/, b;]" amount to the same estimator.
II. THE MaIN RESULT

For the statement of the main result we require the following assump-
tions. Note that M <oc.
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