
IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING, VOL. 9, NO.4, OCTOBER 2012 687 

Modeling and Optimization of Building Emergency 
Evacuation Considering Blocking Effects on 

Crowd Movement 
Peter B. Luh, Fellow, IEEE, Christian T. Wilkie, Student Member, IEEE, Shi-Chung Chang, Member, IEEE, 

Kerry L. Marsh, and Neal Olderman 

Abstract-In building emergency evacuation, the perception 
of hazards can stress crowds, evoke their competitive behaviors, 
and trigger disorder and blocking as they pass through narrow 
passages (e.g., a small exit). This is a serious concern threatening 
evacuees' survivability and egress efficiency. How to optimize 
crowd guidance while considering such effects is an important 
problem. Based on advanced microscopic pedestrian models 
and simulations, this paper establishes a new macroscopic net
work-flow model where fire, smoke, and psychological factors can 
evoke a crowd's desire to escape-the desired flow rate. Disorder 
and blocking occur when the desired flow rate exceeds the passage 
capacity, resulting in a drastic decrease of crowd movement in 
a nonlinear and random fashion. To effectively guide crowds, a 
divide-and-conquer approach is developed based on groups to 
reduce computational complexity and to reflect psychological 
findings. Egress routes for individual groups are optimized by 
using a novel combination of stochastic dynamic programming 
and the rollout scheme. These routes are then coordinated so that 
limited passage capacities are shared to meet the total need for 
joint movement. Numerical testing and simulation demonstrate 
that, compared with a strategy of merely using nearest exits, our 
solution can evacuate more people more rapidly by preventing or 
mitigating potential disorder and blocking at bottleneck passages. 

Note to Practitioners-Effective building evacuation in case of 
emergencies, such as fire and smoke, has long been recognized as 
an important issue. Effective crowd guidance can improve evac
uees' survivability and egress efficiency. In practice, most guidance 
(e.g., an exit sign) directs evacuees to the nearest exits. As crowds 
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move and fire spreads over time, however, such guidance is ques
tionable because some exits may be overcrowded or obstructed by 
fire and smoke. This paper establishes a new network-flow model, 
where crowd evacuation behaviors are supported by psychological 
findings and simulation studies. Novel optimization techniques are 
then used to find egress routes for effective evacuation. Numerical 
results show that our solution will update guidance when the emer
gency situation significantly changes. Compared with using nearest 
exits, our solution can help evacuate people more efficiently. 

Index Terms-Blocking effects, building emergency evacuation, 
crowd movement, guidance optimization, macroscopic model, psy
chological features. 

I. INTRODUCTION 

E VACUEES were pushing against each other trying to get 
to the front door as fast as possible, but they were tram

pled underfoot and the door was simply blocked. Such a tragedy 
happened in a Bangkok nightclub fire on January 1,2009, and 
as the fire spread through the entire building within 10 min, 
61 people were killed and more than 200 injured in the hor
rible moments of intense heat, smoke, and trampling (My dans 
[31]). Similar scenes of disorder and blocking were observed 
in the Rhode Island nightclub fire in 2003 (Grosshandler et al., 
[13]) and several other building emergencies. How to optimize 
building egress to prevent or mitigate such disasters is an im
portant topic in egress study. 

As identified by recent egress research, a fundamental cause 
of such disorder and blocking is the psychological stress of 
emergencies on crowd motion (proulx [38]; Fahy and Proulx 
[9]). Under intense stress, people may move faster than normal. 
If they cannot move as desired (e.g., when passing through a 
small exit), disorder and blocking at a bottleneck passage may 
arise. However, disorder and blocking have long been ignored 
in traditional egress models, where crowds were simply cap
tured as an unthinking mass flowing in a passage-and-area net
work. Such network-flow models enable optimization of egress 
(Chalmet et al. [7], Hamacher and Tjandra [14]), but the vital 
feature of blocking is ignored. 

To better characterize crowd behaviors for egress analysis, 
microscopic pedestrian models have been developed during 
recent decades where an evacuee's behavioral/psychological 
status can be modeled and simulated. A representative model 
is the social-force model by Helbing et al. [16]. In this model, 
a key concept-desired velocity, was introduced to describe 
the inner drive of an individual to escape, especially in a 
stressful condition. By simulating many such individuals 
collectively, blocking was observed at a narrow passage, 
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and further intensified as the individuals' desired velocity 
increased. This simulation reflects what happens in reality, and 
it yields emergent group-level behavior akin to a psychological 
phenomena found in individuals: excess stress can degrade 
human performance. However, such microscopic simulations 
are computationally complex making it difficult to be used 
directly for crowd guidance optimization, 

Drawing from advances in psychological studies, behavioral 
findings and pedestrian modeling and simulation, this paper es
tablishes a new model for egress analysis. In this model, an im
portant concept-the desired flow rate, is introduced as a macro
scopic counterpart of the desired velocity in Helbing et al. [16], 
and it aggregates individual-level motivation to escape in terms 
of group-level flow dynamics. Disorder and blocking are then 
characterized to occur when the desired flow rate exceeds the 
maximum achievable rate as specified by the passage capacity, 
resulting in a drastic decrease of crowd movement in a nonlinear 
and probabilistic fashion. The desired flow rate and direction are 
captured through a probabilistic graph in Section III, where po
tential disorder and blocking can be predicted for egress perfor
mance analysis. The key question here is how to select a set of 
passages with proper capacities to maximize the egress speed. 
Such ap optimization problem is formulated in Section IV where 
the optimized route will be conveyed to evacuees via informa
tional devices (e.g., dynamic exit signs). Such guidance will 
be assumed to be properly updated, and represents the decision 
variables of the formulated problem. 

In view of the nonlinearity and randomness of the egress 
model, the optimization problem turns out to be a Markov deci
sion problem. This problem is required to be solved in a timely 
fashion because of the time-criticality of emergency response. 
A divide-and-conquer approach is then developed in Section V, 
where evacuees are divided into groups based on their rela
tive proximity. Escape routes for each group are then individ
ually optimized and coordinated with each other for an inte
grated egress solution. Such a grouping method is also consis
tent with existing social psychological studies--crowd evacua
tion behaviors usually emerge at the level of groups (Santos and 
Aguirre [40]). 

Due to the nonlinearity of the crowd flow, a major difficulty 
lies in how to decompose an overall crowd flow into group 
subflows. To overcome this difficulty, a method is used where 
each group is iteratively optimized. Limited passage capaci
ties are thus properly shared among multiple groups to meet 
their total need for joint movement. The Lagrangian relaxation 
framework serves as a mathematical basis for operationalizing 
this divide-and-conquer approach. 

Numerical testing is presented in Section VI using two exam
ples, where our optimized solution shows that, compared with 
merely using the nearest exits, properly updating guidance can 
improve the egress speed and safety by preventing or mitigating 
disorder and blocking at bottleneck passages. For the valida
tion of our entire approach, mor~ efforts will be made in the 
future, for example, in the form of fire drills or virtual reality 
experiments. 

A preliminary version of the work was presented at the 2008 
IEEE Conference on Automation Science and Engineering. 
Major improvements have been made in terms of stronger psy
chological justification, complete mathematical formulation, 

detailed method derivation, more numerical testing with video 
simulation, as well as overall presentation. 

II. LITERATURE REVIEW 

This section reviews relevant literature on building egress 
systems (Section IT-A), emergency events (Section II-B) and 
modeling and simulation of crowd evacuation (Section II-C). 

A. Building Egress Systems 

A building egress system is mainly considered as a struc
tural layout equipped with devices for information collection 
and dissemination for safe and efficient evacuation in emer
gencies. Various areas in the building and passages connecting 
them are the structural aspects of an egress system. Such lay
outs including the 3D-geometry, construction materials, etc., 
can be described by advanced microscopic simulators such as 
building EXODUS (Galea et al. [12]), Simulex (Thompson and 
Marchant [45]), Fire Dynamics Simulator with Evacuation (Ko
rhonen and Hostikka [27]), etc., (Kuligowski and Peacock [28]). 
By abstracting key ingredients from these simulators, macro
scopic models have been established where each area is rep
resented by a node with a specified capacity, and passages be
tween areas by an arc with a specified capacity (Chalmet et at. 
[7]; Hamacher and Tjandra [14]). These network models form 
a basis for both egress performance analysis based on linear 
system properties and for optimization by using network opti
mization methods. Building egress systems also include devices 
for information collection and dissemination such as smoke de
tectors and exit signs. Recently, several new devices have been 
developed, such as smart signs (Lijding et at. [29]), as well as 
new methods of fire detection (Toreyin et al. [46]). With tech
nological advancements in these areas, we hope that providing 
real-time guidance will be possible in the future. 

B. Emergency Events 

To study the propagation offire and smoke in buildings, sim
ulators (such as Fire Dynamics Simulator, McGrattan et at. [32]) 
are widely used. Such simulators provide detailed results re
garding fire spread and smoke movement in complex building 
geometries, but require significant computational efforts and 
cannot be used during a fire to optimize evacuation guidance. 
Complementing the simulations, macroscopic models such as 
Markov chains and cellular automata are extracted from the sim
ulation to aid analysis of the spread of fire and smoke. These 
high-level models mainly describe the likelihood of fire and 
smoke spread (Hostikka and Keski-Rahkonen [18]; Aua et at. 
[3]), and are used for hazard risk assessment. However, existing 
macroscopic models do not include psychological factors. 

C. Modeling and Simulation a/Crowd Evacuation 

Over the past decade, with advances in computer technology, 
behavioral features of crowds have become incorporated into 
microscopic pedestrian model and simulation. One of the most 
well-known models is the social force model of Helbing et at. 
[16]. This model characterizes each individual as a Newtonian 
particle subject to both physical forces and psychological forces. 
The psychological force is induced by the derivative of a vir
tual velocity-the desired velocity, which specifies the speed 
and direction that an individual desires to realize in escape. 
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From the viewpoint of psychology, the desired velocity rep
resents the inner drive of an individual to escape, and it re
flects how much the individual is stressed by perceiving the 
surrounding hazard (Sime [43]; Proulx [38]; Fahy and Proulx 
[9]). Therefore, the desired velocity (being psychological in na
ture) can be interpreted as a measure of stress on evacuees. 
By simulating a multitude of such individuals passing through 
a bottleneck, a phenomena emerges that is akin to psycholog
ical findings: moderate stress can improve the human perfor
mance-speeding up egress; and excess of stress can diminish 
such performance-slowing down egress. The negative effect 
has been labeled the "faster-is-slower effect" by Helbing et al. 
[16], which means a psychological increase in desired speed 
may inversely decrease the crowd's physical movement speed 
(see Fig. 1). 

The social-force model has been recently adopted in many 
microscopic pedestrian models and simulations, and several ex
tended versions of this model were also developed (Pan et al. 
[36]; Pelechano and Badler [37]). Recently, this model has been 
integrated into a well-known fire simulator, the Fire Dynamics 
Simulator (FDS) ofNIST, with the new module "Fire Dynamics 
Simulator with Evacuation" (FDS + Evac) simulating pedes
trians' behaviors within FDS (McGrattan et aT. [32], and Ko
rhonen and Hostikka [27]). Unfortunately, the version ofFDS + 
Evac when the simulations were run (2.1.0) lacks psychological 
features affecting Helbing's dynamic desired velocity. Instead, 
its "unimpeded walking speed" for an evacuee remains con
stant throughout a simulation except in the presence of smoke in 
the immediate area around that evacuee. In this case, the unim
peded walking speed will be reduced to reflect the visual dif
ficulties of moving within smoke. We have been working with 
the developers of FDS + Evac, and a psychological increase 
in unimpeded walking speed due to stress from impatience has 
already been implemented in the beta version of the program 
based on Helbing's model for nervousness (Helbing et al. [50]; 
see FDS + Evac Issue Tracker). Validation of the social-force 
model and FDS + Evac has been carried out by comparing their 
implications with data drawn from experiments (Helbing et al. 
[15]; Hostikka et al. [19] and [20]) as well as observations from 
natural events (Helbing et al. [15] and [17]; Hostikka et al. [19] 
and [20]; Johansson, et al. [22] and [23]). Nevertheless, this is 
an ongoing process as additional features are still being added 
to better represent the behaviors of evacuees. 

In contrast to microscopic-level pedestrian models and simu
lations, crowds have also been viewed as a homogeneous mass 
that behaves like a fluid flowing along corridors with a speci
fied rate. Such macroscopic flow models can be embedded into 
an egress network, resulting in a network-flow model serving as 
a basis for optimization of building egress (Chalmet et al. [7]; 
Hamacher and Tjandra [14]). Theoretically, such models hold 

Density: p lqdl=Iv.~llp 

Fig. 2. Crowd flow dynamics at a passage. 
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the promise of being useful in real-time evacuation guidance. 
However, these models have not considered vital psychological 
features of individuals involved in the crowd, and thus ignore 
the blocking effect during egress. 

Through the above literature review, a gap can be identified 
between the traditional crowd flow model without the blocking 
effect considered and the advanced simulation model with this 
feature captured. Thus, our first task is bridging the gap, i.e., es
tablishing a model that captures the blocking effect at a macro
scopic level so that it can be properly used in building egress op
timization. The basis of our modeling is the social-force model 
and simulations. 

III. AN EGRESS MODEL WITH BLOCKING EFFECTS 

Based on recent advances in psychology, behavioral studies 
and pedestrian modeling and simulation, a new egress model 
is established in this section. In this model, a key concept, the 
desired flow of crowds, is first presented as the macroscopic 
counterpart of the desired velocity of Helbing et al. [16] 
(Section III-A). It reflects the intrapersonal drives underlying 
crowd movement in terms of flow dynamics, and it arises as 
crowds are stressed by fire/smoke (Section III-B). The out
comes of disorder and blocking are then modeled when the 
desired flow rate exceeds the achievable rate as specified by 
the passage capacity, resulting in a drastic decrease of crowd 
movement. With this model, interdependencies among crowd 
flows, hazards and passage capacities are captured, allowing 
for a shift to the important issue of how to select the passages 
with proper capacities (Section III-C). 

A. The Blocking Effect on Crowd Movement 

Existing egress research clearly indicates that disorder and 
blocking occur at bottlenecks in a structural layout (e.g., the 
doorway). OUf study will focus on crowd movement at such bot
tlenecks rather than in open areas, and the key egress scenario 
to be modeled is how crowds move from one area to another via 
a passage. In this section, the crowd movement will be modeled 
in an elementary layout, as shown in Fig. 2, where two areas, 
VI and V2, are connected by a passage. To model the blocking 
effect at a macroscopic level, a novel concept-the desired flow 
rate, will be first established based on the concept of desired ve
locity (Helbing et al. [16]). 

The desired velocity in Helbing et aT. [16] specifies two as
pects of motion that an individual desires to realize-their di
rection and speed. As many such individuals move collectively 
through a passage of width l, as shown in Fig. 2, this micro
scopic concept can be transformed to the macroscopic level of a 
crowd, representing people by a density of p. The average speed 
of crowd movement can be abstracted along the direction of the 
passage, and is obtained by averaging each individual's speed, 
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Fig. 3, The egress blocking effect. 

denoted by Ivdl, The crowd's flow rate can thus be represented 
as the product of these terms 

(1) 

The magnitude Iqdl denotes the average number of people 
who desire to move through a passage per time unit and the sign 
of qd represents the direction of their desired movement. With 
the direction of a passage specified (e.g., the directed arc of the 
network in Fig. 2), qd is positive if the crowd desires to move 
along with this direction, and negative if they desire to move 
oppositely. From a psychological perspective, a crowd's desire 
to move is due to the experience of stress, and it is particularly 
related to perception of hazards. Thus, qd, as an indicator for 
demand of escape, can also be viewed as a measure of the stress 
that evacuees experience. 

What will occur if the crowd's desire to move keeps on 
increasing? Existing egress research indicates that, when 
the demand increases beyond a certain threshold, disorder 
and blocking may arise (Kachroo, et al. [24]). In our model, 
blocking may occur when the desired flow rate exceeds the 
achievable rate as specified by the passage capacity, resulting 
in an undesirable decrease in crowd movement. 

To quantify the blocking effect, the crowd flow rate and pas
sage capacity are further defined. The crowd flow rate q reflects 
the physical movement that the crowd actually achieves: Iql de
notes the number of individuals who pass through a passage per 
time unit, and sgn( q) denotes the direction of such movement. 
Clearly, the physical movement is directed by their psycholog
ical motivation. Thus, the crowd flow rate q is directed by the 
desired flow rate qd, i.e., sgn( q) = sgn( qd). For the passage ca
pacity, it is the maximal number of people who can pass through 
the passage per time unit, i.e., c == max{lql}. With the above 
quantification in terms of flow dynamics, the blocking effect is 
restated as: when the desired flow rate is below the passage ca
pacity, the crowd can move as fast as desired, i.e., q = qd. If the 
desired flow rate exceeds the capacity, the probability of dis
order and blocking increases. This will then result in a decrease 
of the expected crowd flow rate in a nonlinear fashion, as shown 
in Fig. 3. 

Comparing Fig. 3 with Fig. 1 in Helbing'S simulation, it can 
be seen that the two curves are similarly shaped. This can be 
partly considered as a validation of our macroscopic flow model 
of the egress blocking effect. The following probability distri
bution exemplifies the curve shown in Fig. 3. 

a) If Iqd 1 :::: c, q equals qd with probability 1, i.e., 

Pr(q 1 qd,c) = {I, 
0, 

for q = qd 
otherwise' 

(2) 

b) If Iqd 1 > c, the probability of disorder and blocking in
creases as the difference between qd and c increases, i.e., 

ifq = sgn(qd). c 
P ( 1 

d ) _ Iqdl- c ' { 
l-exp (~) 

rqq,c- ( ) 
exp I q:;-I'=- c ' if q = sgn( qd) . cBlc . 

(3) 
Here, cBlc denotes a small flow rate when the passage is 
blocked, and a > 0 is a parameter that affects the slope 
of the curve in Fig. 3 when Iqdl > c. In the psycholog
ical sense, a reflects the level of competitiveness in the 
crowd: as a goes to zero, E( q 1 qd) tends to decrease 
more sharply, implying an increase in the probability of 
disorder and blocking. As a increases, E(q 1 qd) tends to 
decrease less sharply, implying a decrease of the proba
bility of blocking. The extreme case of a -+ 00 implies 
an ideal situation where the evacuees are absolutely altru
istic, resulting in no probability of disorder and blocking. 

B. The Relation of Hazard and Stress 

Psychological findings indicate that hazards can stress people 
and induce them to escape. In building fires, people desire to 
move faster as they perceive more urgent threats (Ozel [35]; 
Staal [41 D. As a result, the demand of egress, as indicated by the 
desired flow rate qd, is dependent on emergency status. In this 
paper, we will call this effect the "impatience effect on evac
uees." To model this at the macroscopic level, a probabilistic 
method is developed where the binomial distribution is applied 
to transform individuals' impatience at the microscopic level to 
the collective impatience of a crowd at the macroscopic level. 

Let probability Pimp denote the probability that an individual 
desires to move in the next time slot. The total number of in
dividuals desiring to move within a time slot forms the de
sired flow rate Iqdl. As a result, Iqdl is binomially distributed: 
Iqdl rv Bin(I'WI,pimp), with 

P (I dl_ k 1 ' F) - Ck (,. )k(l_ . )Iwl-k r q - W,s - IwlPImp PImp . (4) 

Here, k = [0, Iwl]' and Iwl is the number of individuals who 
decide to take a certain path to escape, and sF denotes the fire! 
smoke status in the egress layout. 

The discrete parameter Pimp depends on the fire and smoke 
status, and Pimp increases as fire or smoke gets closer to the lo
cation of people. With the layout, as shown in Fig. 2, the prob
ability Pimp can be specified as 

Pimp = { 
PI;np, 

PL imp' 

iffire!smoke propagates to an area 
immediately adjacent to vl or V2 

otherwise. 

C. Guidance and Way-Finding 

(5) 

The way people select their escape route is an important 
issue affecting how to effectively guide them to safety. Existing 
studies show that people's way-finding procedure can be con
sidered as a process of fusing external information (e.g., exit 
signs) with internal information (e.g., their prior knowledge 
of exit locations). For external information, people often put 
more trust in personalized guidance (e.g., instructions from a 
group leader) than impersonalized ones (e.g., exit signs). For 
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Fig. 4. The probabilistic graph. 

internal information, people tend to use paths they are familiar 
with rather than those they are unfamiliar with (Proulx [38]; 
Johnson and Feinberg, 1997). 

To model the above, a stochastic method is used where a bi
nomial distribution similar to (4) is used to transform an in
dividual probability measure to a collective probability mea
sure. Specifically, given a guidance u, each individual is as
sumed to follow the guidance with a probability Pcr. Let x de
note the total number of people in a location, then the number of 
people who follow the guidance is binomially distributed, Le., 
Iwl ~ Bin(x,Pcr)' From a psychological viewpoint,Pcr reflects 
the level of trust that people have in the guidance, and is de
scribed by 

{ p~, 
Pcr = 

P~rl 

if u is personalized instruction or u 
guides people to a familiar path 

otherwise. 
(6) 

By combining the probability distributions as given in the 
above three subsections, a probabilistic graph is established, as 
shown in Fig. 4. Each node of the graph denotes a factor being 
considered and their interdependencies are captured through the 
probability distributions of one factor conditioned on another. 
The guidance u, fire/smoke status sF, capacity c and number 
of people x are the input to this graphical model. The crowd 
flow rate q is the output random variable and can be denoted by 
q = q( v,, c, sF, x). The probability distribution of q is 

Pr(q I u,c,sF,x) 

= LLPr(q I qd,c)Pr(qd I w,sF)Pr(w I u,x). (7) 
qd W 

In the above probabilistic model [(1)-(7)], the unknown pa
rameters include the social bond parameter a, impatience pa
rameter Pimp, and trust parameter Pcr. Each has a psychological 
meaning and can be estimated with statistics, given appropriate 
data sets. Such data sets can be acquired from various designed 
experiments. For example, a psychological experiment can be 
conducted to find the way-finding preference of occupants in 
an apartment building. Video recordings can be reviewed to 
determine the flow rate of a passage under certain conditions 
(Muir et al. [34]). Additionally, virtual reality experiments have 
recently been conducted to determine the effect of various emer-

Fig. 5. An egress network. 

gency signs on evacuees' way-finding activities (Tang et al. 
[44]). Nevertheless, estimating unknown parameters is not the 
focus of this paper. In Sections IV-VII, it will be assumed that 
the guidance is in good credence, and we shall examine how to 
guide crowds when individuals behave impatiently and compet
itively in emergency egress. 

In sum, excessive stress can lead to disorder and blocking in 
emergency egress. The model established in this section char
acterizes this effect at the macroscopic level. It describes how 
situational information (Le., perceived hazards or received guid
ance) affects psychological factors (e.g., the desired flow rate 
qd) and how these factors further affect the physical movement 
of crowds in egress. 

IV. AN OVERALL OPTIMIZATION FORMULATION 

In this section, the model established above will be extended 
in both spatial and temporal dimensions, and a Markovian 
network-flow model will be presented to capture crowd move
ment through a building in a dynamic manner (Section IV-A). 
Fire and smoke information will also be described by a 
Markovian process and be integrated into this network-flow 
model (Section IV-B). To properly guide crowds to safety, a 
snapshot problem is formulated as a Markov decision problem 
with the objective to maximize both the egress speed and 
number of people evacuated (Section IV-C). 

A. Network-Flow Dynamics 

The structural layout of an egress system is represented as 
a network G = (V, E) (Hamacher and Tjandra, 2001), where 
each area is denoted by a vertex v E V and each passage con
necting areas is denoted by an arc e E E. Because an egress 
network abstracts a layout for evacuation, its arcs are usually 
directed to the exits or the safety areas. Fig. 5 illustrates a planar 
layout and the corresponding network model. 

By embedding the crowd flow in a network, a network-flow 
model is obtained. Let qe (t) be the extension of q in both the 
temporal and spatial dimensions. The magnitude Iqe(t)1 denotes 
the number of people passing through arc e during the interval 
[t, t + b..t, and the sign sgn[qe(t)) denotes the direction of their 
motion in the same interval. Let xv(t) denote the number of 
evacuees in area v at time t. As the crowd moves through each 
area, the number of people Xv (t) is updated according to the 
following mass balance equation: 

xv(t + 1) = xv(t) + L b(v, e)qe(t) (8) 
eEE 

where the arc direction is indicated by 

{ 
1, if arc e is directed into vertex v 

b( v, e) = -1, if arc e is directed from vertex v 
0, otherwise. 

(9) 
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Fig. 6. The matrix representation of an egress network in Fig. 5. 1 
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The set of such equations can be put in the matrix form 

x(t + 1) = x(t) + Bq(t), (10) Fig. 7. Evacuation routes and strategies. 

which is a standard linear network-flow model. For the example 
in Fig. 5, B is represented by the matrix below. 

In the literature, a network-flow model takes the flow rate q( t) 
as decision variables (Chalmet et al. [7]), implying that we can 
control how many evacuees will move through each passage 
during each time step. This assumption is questionable since 
humans cannot be viewed as machines or robots under our com
plete control. Rather, humans initiate actions in response to their 
subjective impressions of emergency events. Ignoring such sub
jective initiative may lead to disorders or blocking as we dis
cussed in Section III. 

The traditional model can be improved by capturing 
critical human factors. Our new crowd flow dynamics, 
as presented in Section III, is incorporated into this mass 
balance equation where the flow rate qe(t) is replaced by 
qe (x(t), V,e(t), sF (t), c), which includes several psychological 
factors 

xv(t + 1) = Xv(t) + L b(v, e)qe (Xv(t),ue(t), sF(t), ce ) . 

eEE 
(11) 

In (11), q, qd, w, and U are extended in both temporal and spatial 
dimensions, resulting in qe(t), q~(t), we(t), and v,e(t). The pas
sage capacity c is labeled with only the arc index, i.e., ce , as it 
is derived from the dimensional size of a doorway or stairs. The 
fire/smoke status sF denotes the overall hazard status within 
the egress layout, and is thus labeled only with the time index 
sF (t). Here, the guidance Ue (t) is considered a decision vari
able instead of the flow rate qe (t) as in the traditional model. 
The guidance U e (t) is specified as 

{ 
+ 1, if along with the direction of arc e 

V'e ( t) = -1, if opposite to the direction of arc e 
0, if arc e should not be used. 

(12) 

By vectorizing qe(t), q~(t), we(t), and ue(t) with arc sub
scripts, an overall crowd flow equation can be obtained, and a 
restatement of (10) is given below 

or through personalized guidance such as instructions from 
safety staff(Aguirre, 1994; Pelechano and Badler [37]). 

B. Fire/Smoke Propagation 

As fire and smoke propagate in an egress network, the net
work-flow model given in (13) requires incorporation of fire/ 
smoke information. Such information is described in a proba
bilistic sense in this paper. A cellular automaton model is used 
to characterize the likelihood of the spread of fire and smoke 
in buildings. In this automaton, a cell represents an area of the 
egress network and the cell's state represents its hazard status 

SF(t) = {I, ifarea~isonfireattimet (14) 
v 0, otherwIse. 

The overall fire/smoke state at time t is then 

The transitions of cell states are governed by the conditional 
probabilities that fire or smoke propagates to an area given the 
status of its direct adjacencies, i.e., 

{Vi} 
(16) 

where {Vi} denotes the set of direct adjacencies of area v, and 
Pv' v F is the conditional probability that fire or smoke will prop
agate from Vi to v 

P~v = Pr (s~(t + 1) = 11 s~(t) = 1). (17) 

The conditional probabilities can be estimated via statistical 
methods based on experimental data. The resulting model is a 
Markov process. Since the fire and smoke dynamics as specified 
in (16) are uncontrollable, our decision will be to properly select 
and update a set of passages for safe egress. 

x(t + 1) = x(t) + Bq(x(t),u(t), sF(t), c). (13) c. Formulationfor the Optimization Problem 

In the event of a complicated building layout, the model can be 
simplified by only keeping prominent choices based on experi
mental data or heuristics. The vector u(t) = [Ul(t)··· UIEI(t)] 
specifies an egress decision at each passageway at time t. These 
decisions, when put together, can provide egress routes for indi
vidual groups. Fig. 7 illustrates three candidate routes for either 
Group 1 or Group 2 in the building. 

Egress decisions will be conveyed to evacuees through the 
building guidance system, e.g., exit signs, audio broadcasting, 

To select or update a set of passages in emergency egress, an 
optimization problem is formulated, consisting of system dy
namics, constraints and an objective function. 

To capture the overall egress situation, the system dynamics 
consists of the network-flow model (13) with the fire/smoke 
dynamics (16), where (x(t), SF(t)) is the system state and the 
guidance strategy u( t) is the system input. Here, the evolution 
of x(t) can be described by 

x(t + 1) = f(x(t), sF(t),u(t)). (18) 
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Similarly, the evolution of sF (t) is specified by 

sF(t + 1) = h(sF(t)) 

resulting in a Markov process. 

(19) 

The constraints for the problem can be categorized in two 
sets. The first set refers to the size of a passage that constrains 
the speed of crowd movement as described by (2) and (3). The 
second set refers to the rationality of the disseminated crowd 
guidance-----the guidance should not lead evacuees to an area that 
is currently on fire, contains smoke or will soon be hazardous. 
These constraints are given as 

ue(t) 1= 1, if Pr (s~(t + k) = 1) > (3, 

fork =0,1,2···K. (20) 

Here, (3 is a threshold for fire risk measure, and K is the length 
of the future to take into account. Symbol Vi denotes an area di
rectly adjacent vas in (16). Since our problem does not consider 
fire-fighting efforts, the probability of an area catching fire will 
increase over time, and this implies that (20) can be simplified 
to 

U e (t) 1= 1, if Pr (s~ (t + K) = 1) > (3. (21) 

To goal of crowd guidance is to evacuate as many people as 
possible and as rapidly as possible. The objective function to be 
maximized is thus a weighted sum of the expected number of 
total people evacuated and the expected cumulative number of 
people evacuated. Given a time horizon [0, T], the total expected 
number of people evacuated is evaluated by 

Rl = L E[xv(T)]. (22) 
vE{exit} 

To evacuate people as fast as possible, the cumulative number 
of people evacuated is evaluated by 

T-l 

R2 = L L E[xv(t)]. (23) 
t=O vE{exit} 

The corresponding objective function is then 

Maximize J, with J = cavg . Rl + R2 , (24) 

where cavg is a weight. 
With the above objective function in a time additive form, 

the optimization problem is formulated as a Markov decision 
problem. The people's locations and fire/smoke status form its 
state space {(x(t), sF(t))}, and crowd guidance makes up its 
decision space {u( t) } . 

The above problem will be used as a snapshot problem 
and solved in the moving window manner. In view of the 
nonlinearity and randomness of the above formulation, it has 
a high computational complexity. Solving the problem in a 
timely fashion is challenging because of the time-criticality of 
emergency operations. 

V. SOLUTION METHODOLOGY 

To efficiently solve the optimization problem formulated in 
(18)-(24), a divide-and-conquer approach is developed. Evac
uees are divided into groups based on their initial locations, and 

F.xit 1 

c'roup 1 
Exitz 

Fig. 8. Grouping of evacuees. 

Exitl Exit 1 

+ 1 
Exit 2. 

the evacuation route for each group is optimized. These routes 
are then coordinated with each other for an overall egress solu
tion. To prevent potential disorder and blocking in group evac
uation, the desired flow rates of evacuees are used to coordinate 
multiple groups so that the limited path capacities can be prop
erly allocated. The Lagrangian relaxation framework is used 
to operationalize such coordination (Section V-A), and each 
group subproblem is solved by using the dynamic programming 
method and the rollout scheme (Section V-B). 

A. The Divide-and-Conquer Approach 

To develop a divide-and-conquer approach, crowds will be 
first divided into groups, as shown in Fig. 8. Grouping is an 
important vehicle for accelerating computation in optimiza
tion since we can then deal with individual groups in areas 
as opposed to dealing with all the crowds simultaneously in 
the building. Also, grouping reflects a well-accepted social 
psychology finding in egress research-people are drawn to 
evacuate with others rather than alone (Cornwell [8]) and 
their movement toward exits is influenced by others' behavior 
(Santos and Aguirre [40]). For example, individuals move 
in directions that they see others move (Low [30]) and they 
will delay evacuation if others are not moving. Moreover, 
individuals seek confirmation from others as to whether an 
emergency is even occurring (Aguirre et al. [2]), and they often 
strive to exit with others they know (Sime [42]). Thus, dividing 
crowds into groups enables us to capture these psychological 
findings by using different parameters and motion features in 
the group subdynamics. The overall crowd dynamics (18) can 
be decomposed into group subdynamics as 

Xi(t + 1) = f(xi(t), sF(t),ui(t), ci ), 

for i = 1, 2 .. · I, (25) 

where I is the total number of groups under consideration. For 
simplicity, it is assumed that the groups will not merge or sep
arate within the time horizon, and that they are able to receive 
separate sets of guidance. 

The above group subdynamics is not as simple as one might 
think. Groups are coupled when they come into contact with 
each other by using the same passages at the same time. As 
seen in Fig. 3, the nonlinear crowd dynamics is described by 
a piecewise function, where a linear segment is for I q~ (t) I :::: Ce 

and a nonlinear segment is for I q~ (t) I > Ce . The linear segment 
represents that the passage capacity is sufficient for the crowd's 
desire to move. The nonlinear segment implies that the passage 
capacity is not sufficient, and groups compete for the limited 
passage capacity in a nonlinear and complicated fashion. As a 
result, the overall crowd dynamics cannot be decomposed into 
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independent group dynamics. A surrogate method is therefore 
developed to approximate such nonlinear coupling of groups, 
where each group subproblem is solved with the aggregation of 
the latest results from all other groups (Zhao et al. [49]). 

Whether the system evolves in the linear segment or not is de
cision-dependent, making it important to coordinate the groups 
so that the egress evolves in the linear segment as much as pos
sible. This coordination is also used to approximate the overall 
system dynamics when the egress has to evolve in the non
linear segment. A soft constraint is therefore imposed to limit 
the crowd flow dynamics within the linear segment, thus pre
venting the nonlinearity of disorder and blocking 

Iqe d (t)lceforYeEE,t=O,l, ... T. (26) 

This inequality can be viewed as a criterion for preventing dis
order and blocking, and implies that the egress demand should 
not exceed the total passage capacity. The psychological inter
pretation of (26) is that the stress on people should not exceed 
a limit for safe egress. From the perspective of optimization, 
(26) expresses our hope that the optimized solution will be in 
the linear segment (without the risk of disorder or blocking). 

Inequality (26) can be transformed into a group form based 
on the additive property of q~ (t), i.e., the total desired flow rate 
is equal to the sum of each group's desired flow rate. Because 
counterflows are not considered in our egress model, this addi
tivity is expressed by 

I 

I q~ (t) I = L I q~i (t) I ' 
i=l 

for Y e E E, t = 0,1, ... T. (27) 

By plugging (27) into (26) and taking expectation on both sides, 
a linear inequality is obtained as 

I 

L E [Iq~i (t)l] ::::: Ce , for Y e E E, t = 0,1, ... T. (28) 
i=l 

With the above, the objective function (24) is correspond
ingly transformed into a group form as 

I 

Maximize J, with J = L J i , where 
i=l 

Ji = cavg ' L E [x~(T)J 
vE{ exit} 

T-1 

+ L L E [x~(t)l· (29) 
t=o vE{exit} 

Equations (19), (25), (28), and (29) specify our new problem 
formulation. To solve it, (28) is first relaxed by using Lagrangian 
multipliers {A(t, en. The Lagrangian is 

I 

L == Cavg L L E [x~(T)l 
'VE{exit} i=l 

T-1 I 

+ L L L E [X~)(t)l 
t=O vE {exit} i=l 

~----'I------ -------~i-----
Group 1 :' Group 2 ': Group N 

Subproblem :: Subproblem :: Subproblem ______ _ ____ I~ ______________ J~ ____________ _ 

Lagrangian 
Multiplier 

Update 
N 

Fig. 9. The flow chart of the computation method. 

Solution 
y 

By collecting all the terms related to group i, subproblem i is 
formulated as: 

maxL' with Li = cavg L E [x~(T)l 
vE{exit} 

T-1 

+ L L E [x~Jt)l 
t=o vE{ exit} 

T-1 

- L L {'\(t, e)E [Iq~i (t)I]}· (31) 
t=o eEE 

In view that the groups are coupled through (3) in a compli
cated manner, surrogate optimization is used where each group 
subproblem is solved with the aggregation of the latest results 
from all other groups (Zhao et at. [49]). Specifically for (3), an 
available passage capacity for Group i is obtained by subtracting 
from the total capacity of that passage the latest flow rates of 
other groups. The subproblem is then to maximize a time-ad
ditive objective function with group subdynamics specified by 
(26) as specified above. This can be solved by using stochastic 
dynamic programming (Bertsekas [6]). Individual groups are 
then coordinated by iteratively updating the Lagrangian multi
pliers {A(t, en (Bertsekas [5]; Zhao et al. [49]). The flowchart 
of the solution process is presented in Fig. 9. Here, ,\( t, e) spec
ifies the penalty that is given based on the likelihood of disorder 
and blocking on passage e at time t. Such multipliers provide 
a marginal value of the passage capacity (called the "shadow 
price"), and are valuable for egress analysis. 

B. The Dynamic Programming Method 

The group subproblem is solved by using stochastic dynamic 
programming. Given the subsystem state (:I:L sf) at time t, 
the problem is to select 1l,~ to obtain the optimal reward-to-go 
L~ (xL sf) based on the following Bellman Equation: 

Peter
Sticky Note
This should be less than or equal to.
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Here, gt (xL sf) denotes the stage-wise reward at time t. 
Solving the subproblem by directly using (32), however, is 
computationally intensive (Bertsekas [6]). To reduce the com
putational complexity, state space reduction is used by revising 
the dynamic programming method as presented next. 

A state for group i at time t includes two components-a 
crowd component x~ and a fire/smoke component sf. The state 
space can be reduced because our model treats sf as an uncon
trollable component, therefore sf can be viewed as a "distur
bance" rather than as a part of the state, and L~ only depends 
on the crowd component x~ (Bertsekas, 2005). Here, the term 
"disturbance" is slightly different from the common concept of 
disturbance because sf can be observed before u~ is optimized 
while the common disturbance occurs after u~ is applied. The 
optimal reward-to-go in (32) at time t is thus represented by 

(33) 

and the dynamic programming equation is then given by 

Equation (33) implies that the reward-to-go can be computed 
with a significantly reduced state space. 

Besides state space reduction, a rollout scheme is also used 
(Bertsekas [6]). Its main idea is to employ heuristics to approx
imate the optimal reward-to-go in Bellman's equation several 
steps into the future. For our problem the heuristic of using the 
nearest exit, an empirical method widely used in egress practice, 
is adopted. 

Although the above method enables us to compute guidance 
decisions in a moving window fashion, such decisions should 
not be updated frequently since frequent changes can cause 
confusion on evacuees and reduce the credibility of guidance 
(proulx [38]; Fahy and Proulx [9]). Infrequent updating also 
works to our advantage by reducing the problem complexity, 
i.e., reducing the decision variables in the timeline because 
the guidance will be kept unchanged within a certain time 
period [t, t + 8~tl. As a result, given a current subsystem 
state (Xi(t), sF(t)), the optimal guidance during [t, t + 8~tl is 
optimized by 

Here, L~+b.t (x~+b.t) is an approximation of future re
ward-to-go after time point t + ~t, and is approximated based 
on the nearest-exit heuristics and by treating the fire/smoke 
state components as "disturbances." 

It may be necessary to consider the possibility that the infor
mation network is damaged, either due ~o sensor failure or guid
ance failure. In the event of sensor damage, evacuees should be 
directed away from the affected area, due to the possibility of 
hazards. If the guidance fails, it can be assumed that evacuees in 
the affected area will use a self-guided strategy, such as nearest 

Exit 1 

O~ HI 
~l 

02 HZ LZ 

031 
ExitZ 

Fig.10. An egress network. 

exits. Normal guidance can resume when groups emerge from 
damaged areas. 

VI. TESTING AND SIMULATION RESULTS 

Numerical testing is presented by using two examples. The 
first example uses a small layout to compare our network-flow 
model and method with traditional ones. The second example 
uses a larger layout (following Pan et al. [36]), and compares 
our optimization-based strategies with the strategy of using 
the nearest exits. For either example, an evacuation process is 
first simulated by FDS + Evac 2.1.0 using the default settings 
for adult evacuees. A macroscopic model is abstracted from 
the simulation results, and the egress route is then optimized 
based on this model in Matlab. To compare our optimized 
egress strategy versus other strategies, our optimized result 
is executed in FDS + Evac, where guidance is implemented 
by dynamically opening or closing certain exits. As stated 
in Section II-C, the current version of FDS + Evac lacks 
the feature of dynamic desired velocity. An evacuee has an 
"unimpeded walking speed," which is reduced by the presence 
of smoke. Nevertheless, simulation is still meaningful when 
comparing our results with those of using nearest exits. The 
reason is that if a future version ofFDS + Evac with the feature 
of dynamic desired velocity is used, the comparison would be 
even drastic. This is due to more blocking by using the nearest 
exits caused by the increase in desired velocities, whereas 
changes to results using our method would be small because 
our guidance is designed to minimize blocking caused by high 
desired flow rates. Both examples run in the current version 
of FDS + Evac demonstrate that our optimized guidance can 
speed up egress by preventing potential blocking at bottleneck 
passages. 

1) Example 1: This example studies an egress scenario in 
which two groups of people are guided to exits within a small 
planar layout. By dividing the layout into areas and passages, an 
egress network is abstracted, as shown in Fig. 10. Let the time 
unit be 8 ds. Exit 2 is of small capacity, namely, 5 persons per 
time unit, and Exit 1 is of relatively large capacity, 15 persons 
per time unit. Group 1 consists of 30 evacuees and Group 2 
consists of 20 evacuees. Fig. 11 shows the initial locations of 
the two groups and the initial status of fire and smoke. Based 
upon analysis, there is little probability of smoke in the initial 
three time steps in the lounge areas (HI, H2 and H3), and thus 
Exit 2 is safe for egress within the initial three time slots. 
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Fig. 11. Initial guidance at t == 1. 

pig. 12. Guidance updated at t == 5. 

To find a good egress route, the guidance is optimized by 
using network-flow techniques. In this case the guidance is op
timized in 20 sequential time steps. For each time step, we look 
ahead five time steps to formulate a snapshot problem as pre
sented in Section IV. 

If our network-flow model is used, the optimized route for the 
initial time step is as shown in Fig. 11. This route is chosen be
cause our model and method predict that disorder and blocking 
will occur if people are guided to pass through the narrow pas
sage from Office 3 to Exit 2. Thus, Exit 2 is not chosen for 
egress, and evacuees are guided to Exit 1. At t = 5, the guid
ance is updated, as shown in Fig. 12, because fire/smoke may 
propagate to the lounge area soon, affecting the availability of 
the previously chosen egress routes. The average optimization 
computation time at each tis 2.95 s (with Dell Vostro 1700; Intel 
Core™2 Duo CPU with 2G memory; Window Vista). 

If the blocking effect is ignored, and the traditional network
flow model (10) is used to optimize the egress routes, the op
timized solution for the initial three time steps is as shown in 
Fig. 13, where Group 1 is guided to Exit 2. The solution will be 
updated later, as shown in Fig. 12. This result actually suggests 
the strategy of using the nearest exits--each group is guided to 
the nearest exit with respect to their locations. 

Comparing the two sets of guidance above, a major issue is 
whether or not to use Exit 2. To answer this question, two sets 
of guidance are executed in the simulation: one with and one 
without using Exit 2. The simulation results show that blocking 
occurs when the large group of evacuees in Office 3 heads to 
Exit 2, and after 20 time steps there are still 13 evacuees who 
have not been successfully evacuated. Please see the video seg
ment attached to this paper. A snapshot of the video is shown in 
Fig. 14, where individuals are represented by small blue arrows. 

However, if the large group of evacuees is instead guided to 
Exit 1 based on our results, the simulation shows a smoother and 

Exitl 

Fig. 13. Optimal guidance by the traditional model (t == 1). 

Fig. 14. Example 1 by using the nearest exits. (Video). 

Fig. 15. Example I by using our optimized solution. (Video). 

faster evacuation process. After 20 time steps, there are only 
5 people left as compared with 13 in the previous case. Thus, 
the simulation results verify not using Exit 2 because of the 
bottleneck from Office 3 to Exit 2, even though Exit 2 is nearest 
to Group 1. A snapshot of the video is shown in Fig. 15. 

In summary, our model and method considers the blocking 
effect as Group 1 moves towards Exit 2, while the traditional 
model does not. Thus, our optimized solution suggests leading 
Group 1 to Exit 1, and this speeds up egress. 

One possibility to be mentioned here is to guide a small por
tion of Group 1 to Exit 2, while the remaining evacuees go to 
Exit 1. In this case the egress seems to be even faster. This so
lution implies that a group can be split, but splitting a group is 
unlikely to happen in a real evacuation unless a human leader 
can intervene and direct individuals to use different paths. Thus, 
in our approach as presented in Section V, once groups are de
fined they will not be split or merged. 

Additionally, our method with grouping is compared with 
the same approach but without grouping. The latter solves the 
problem formulated in Section IV without decomposition based 
on groups. The results on guidance for this particular small ex
ample turned out to be identical to the results with grouping, 
however, with a longer CPU time of 5.95 s (as compared to 
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Fig. 16. An egress structural layout. 

EL2 R2 R4 R5 ER2 

(b) 

Fig. 17. An egress network abstracted. 

2.95 s with grouping). It is expected that the CPU times will in
crease fast as the problem size increases for the method without 
grouping. 

2) Example 2: An egress problem motivated by Pan et al. 
[36] is used as our second example. Although Pan's simula
tion was able to demonstrate that crowds' competitive behaviors 
could induce blocking and thus delay egress, no solution was 
given to prevent such blocking. Our model and method provide 
a solution to this problem by seeking better routes to speed up 
egress. 

Following Pan's example, an egress layout is created in 
FDS + Evac, as shown in Fig. 15. Let the time unit be 5 s. The 
doorway connecting R5 and L1 has a small capacity of 10 per
sons per time unit. Other doorways have large capacities from 
15 to 20 persons per time unit. A network model is abstracted 
from this layout, as shown in Figs. 16 and 17. 

In this egress layout, 110 evacuees are located in areas from 
Rl to R5, and fire/smoke starts from L4. Five groups are formed 
based on their initial locations in Rl to R5. The network-flow 
dynamics of these groups are established and their guidance is 
optimized in 30 sequential time steps. To be consistent with 
Pan's simulation, the competitiveness of evacuees is tuned to be 
intensive, and this leads to a relatively small value of a in (3). 
Based on analysis using (16) there is little probability offire or 
smoke observed in L1 within the initial 30 s. Exits ERI and ER2 
are thus considered safe for egress during this time period. 

Based on the abstracted network-flow dynamics, the group 
guidance is optimized and the solution recommends Guidance 
Scheme 1 (Fig. 18) during the initial five time steps because 
there is little probability of hazard in Ll during this time pe
riod. Thus, exit EL 1 is safe for egress. As the smoke propagates, 
guidance is updated according to Guidance Scheme 2 (Fig. 19) 
from the sixth time step and onward because the small capacity 
of the passage connecting R5 and L1 cannot support people's 

ERI Rl R3 

®+:O~ 

ER2 R2 R4 R5 

Fig. 18. Guidance scheme 1. 

ERI Rl Rl 

®+:O~ 

ER2 R2 R4 R5 

Fig. 19. Guidance scheme 2. 

Fig. 20. Example 2: Using the nearest exit strategy. (Video). 

Fig.21. Example 2: Using our optimized solution (Video). 

rush to Exit ERI. The average computation time at each time 
point is 3.3 s. 

The optimized guidance strategy is simulated to compare our 
method with the strategy of using the nearest exits, shown in 
Figs. 20 and 21. A major difference between these two strategies 
is whether or not the passage connecting R5 and L1 should be 
used. Our solution suggests that this passage should only be 
used by a small group of people within the initial time slots, and 
guidance should be updated (switched to Scheme 2) as the risk 
of disorder and blocking significantly increases on this passage. 
The remaining people are then guided to Exit EL 1 or EL2. At 
the end of the simulation, 3 people are left in this layout after 
100 s. Each run of the simulation takes roughly 12 min. 
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By contrast, when the nearest exit strategy is used, a large 
number of people may be guided to EL 1. This inevitably makes 
a large number of people use the narrow passage between R5 
and Ll, and this may result in blocking. As shown in the sim
ulation results, after 100 s there are 14 people left. Compared 
with 3 people in the previous case, it is clear that the nearest-exit 
strategy is not the optimal choice for this example. 

VII. CONCLUSION 

Based on advanced microscopic pedestrian models and 
simulations, this paper establishes a new macroscopic net
work-flow model where fire, smoke, and psychological factors 
can evoke a crowd's desire to escape. Our model forms a basis 
for the optimization of egress routes and crowd guidance in an 
evacuation. A divide-and-conquer approach is then developed 
to reduce computational complexity and to reflect psycholog
ical findings based on groups. By time-sharing passages and 
avoiding narrow passages to prevent potential disorder and 
blocking, numerical testing results demonstrate that, compared 
with the traditional network-flow techniques and the empirical 
strategy of the nearest exits, our solution can evacuate more 
people more rapidly. 

Future efforts will be focused on validating our model and im
proving computation efficiency. For validation we plan to per
form fire drills and virtual reality experiments to study the psy
chological state of evacuees. Computation efficiency can poten
tially be improved through model simplification and method re
finement. New technologies such as cloud computing may also 
prove useful to provide a burst of computation power on de
mand in an emergency. 
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