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A bstract —Motivated by the importance of the peak load problem faced
by the electric utility industries; in this paper we analyze several different
electricity pricing schemes from a game theoretic point of view. Recogniz-
ing the limit of the fraditional peak load pricing formulation and the
persuasive breakthroughs in microelectronic technology, we introduce a
philosophy in which supply and demand respond to each other through
prices and consumptions, and the utility company sells power at *‘real-time™
rates. We call it load adaptice pricing. By itself, the concept of load
adaptive pricing is not new. The contribution of this paper is the formula-
tion and resolution of this idea as a closed-loop dynamic Stackelberg game
problem. The central part of this problem is how to choose appropriate
incentives (i.e., pricing strategies) so that customers can be induced to
behave cooperatively and thus achieve the team optimum. In this paper, the
load adaptive pricing problem is solved for a particular producer /consumer
model. We demonstrate that it is possible for the utility company to induce
the customer to behave cooperatively to achieve the team optimum. We
also show that in steady state, our solution converges and the system is
stable.

I. INTRODUCTION

A. The Peak Load Problem and Current Practice

HE electric utilities' in the United States face the peak

load problem. This problem arises because tradition-
ally, the utilities are required to supply their customers
instantaneously with whatever amount of power they wish
to purchase at whatever time they desire, with prespecified
prices which are independent of the time of consumption.
In exercising their preferences. customers have evolved
electric power use patterns which vary not only periodi-
cally over the day, week, and year, but also depend signifi-
cantly on some random elements such as weather, for
example. In fact, with few exceptions, all system peaks in
the U.S. are caused principally by air conditioning (summer
peak) and space heating (winter peak). Thus. the utility
must meet the demand due to a fluctuating load instanta-
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"The problem addressed in this note is common to many other public
enterprises as well (telecommunications, for example). but we shall focus
the discussion on electric utilities to keep the terminology simple and
unambiguous.

neously, incurring idle capacity cost, while capacity expan-
sions require a fairly long gestation period. Most utilities
use additional peaking generators (which have low capital
cost to offset their idle time, but high running cost) to
satisfy the excess loads during the short duration peak
periods. The unit cost of electricity production during the
peak period is thus higher than that in the off-peak peri-
ods.

In recent years the high cost of electricity production,
especially during peaks, and the concern for future energy
resources have led utilities and regulatory agencies to move
to policies that encourage conservation and more efficient
use of production capacity. Toward these ends, the utility
may either negotiate for direct control of some of the
customer loads as with industrial users and /or design some
forms of incentive rate structures, which may be time-de-
pendent, as an indirect way to influence some of the
customer loads. The latter is a variable pricing scheme for
electricity consumption [19]. The peak load pricing scheme
is a familiar example. In peak load pricing, a cycle (usually
a day, a week, or a year) is divided into several periods (a
period may range from several hours to seasons). The price
of electricity in each period reflects the estimated produc-
tion costs for that period, and is required to be announced
prior to the beginning of operation. The peak load pricing
problem has been studied extensively by economists (for
example: [6]. [7], [10]. [15], [17], [18]. [22], [25], and [33];
other references can be found in [30] and [21]).

B. The Concept of Load Adaptive Pricing

From a game theoretic point of view, the utility com-
pany plays the role of a leader, and customers play roles of
followers in the variable pricing framework. For a given
pricing strategy, each customer determines his optimal
consumption strategy which is reflected in the demand
curve. The utility company foresees these reactions and
decides the optimal pricing strategy. Thus, pricing prob-
lems are actually Stackelberg games.

However. in peak load pricing, the utility company is not
a “powerful” leader. On the one hand. it needs to an-
nounce all the time-dependent prices prior to the beginning
of operation, after which it is expected to persist without
change for many cycles. (In the parlance of control theory,
this is called open-loop control.) Price cannot respond to
“real-time™ loads caused by random events such as weather
and outage under this setup. On the other hand. the utility
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company bears almost all the burden concerning system
operation, planning, integrity, and environmental impact.
Customers are, in general, not supplied with any system
demand /supply information. It will not be very effective
for the utility company to induce a particular behavior on
the part of customers without providing them with some
kind of demand /supply information.

In recognizing the limit of the peak load pricing formu-
lation and the persuasive breakthrough of microelectronic
technology, we foresee a new pricing philosophy emerging
in which supply and demand respond to each other through
prices and consumptions. We call it load adaptive pricing.
In load adaptive pricing, the utility company does not
announce prices for all cycles prior to the beginning of
operation. On the contrary, it announces the strategy of
pricing, i.e., the rules for how the prices will be determined.
The exact price for each period is calculated at the begin-
ning of that period according to the announced strategy
and based on previous consumptions and realizations of
random events. Supply and demand thus respond to each
other through prices and consumption, and the prices are
made to adapt to the load.

Throughout the discussion we shall use a simplified
single-producer single-consumer model to bring out the
main aspects of pricing schemes. It represents the situation
where a utility company deals with a single large industrial
customer, or an organized group of customers which has
the intention of improving social welfare.

By itself the concept of load adaptive pricing is not new
(341, [26]. The contribution of this paper is to give for the first
time a mathematical formulation and resolution of this idea
as a closed-loop dynamic Stackelberg game. (For recent
developments in Stackelberg games, see [28], [29], [3], [4],
[23], [24], [31], [13], [14], and [32].) It should also be
emphasized at the outset that the purpose of this paper is
not to formulate a comprehensive model of load manage-
ment taking into account all the socioeconomic and tech-
nological constraints and dynamics of a “real world” power
generation /distribution network.? What we have done is to
choose a more narrowly specified set of issues, mainly
economic (corresponding to “spot pricing” in [27}), to
demonstrate how mathematical tools of optimization and
game theory can be used to address and solve these issues;
and to interpret the results. In terms of the larger compre-
hensive model, our results illustrate the general method of
attack and the conceptual approach. For the narrowly
defined problem, our results identify the relevant parame-

IRecently. a good conceptualization of a comprehensive model of load
management has been proposed in [27] and refined in [16] under the name
“homeostatic utility control,” as a novel approach to the control and
economic operation of electric power systems. It includes three major
concepts: spot pricing, microshedding, and decentralized dynamic control.
Spot pricing depends on system supply-demand conditions and is set
every 5 min. With microshedding, the utility commands a customer’s
computer to shed a certain percentage or amount of the customer’s load;
the customer’s computer then deci«%es which part of the load to shed.
Decentralized dynamic controllers are activated by changes in the
frequency (or voltage) of the electric power system above and below the
standard 60 Hz (or 120 V) and provide short-term storage adaptable to
the power system. Load adaptive pricing corresponds to “spot pricing” of
the homeostatic control. The theoretical analysis of customer response to
spot pricing was given in [5].

321

ters and ideas involved. We are not suggesting that our
solution is ready and can be applied “as is” to a real world
utility pricing problem.

C. Qutline of the Paper

In Section II, the distinction between peak load pricing
and load adaptive pricing is made clear through the notion
of information structure. The deterministic producer/con-
sumer model, [12] and [20], is extended in Section III for
the mathematical formulation of the load adaptive pricing
problem. The optimal load adaptive pricing problem is
then solved in Section 1V. The asymptotic behavior of the
system is examined in Section V.

II. PRICING SCHEMES AND INFORMATION
STRUCTURES

We shall model various pricing schemes using the notion
of information structure. The information structure for a
game characterizes the precise information each player has
at every stage of the game. Different information structures
permit different decision rules or strategies, lead to differ-
ent interpretations, and yield different results.

Let x, be the initial information available to both the
producer and the consumer; and let p;, g,, and §; be,
respectively, the price, demand, and the state of nature at
period i. Let 9, be the information available to the pro-
ducer at the instant when he needs to decide p,, and let 1,
be the information available to the consumer at the instant
when he needs to decide g;. In this section, for the sake of
clarity and ease of exposition, we shall consider a single
cycle which consists of two periods.

In peak load pricing, the producer is required to declare
the prices prior to the beginning of the cycle. For the
producer we have the information structure

M1 = Tpa = (Xg)-

In most of the peak load pricing literature, the electricity
consumed in n different periods was treated as if it had
been » different commodities consumed in a single period.
Consequently, consumption of the second period is not
directly affected by what happened in the first period. The
situation is modeled by the following information struc-
ture:

nc] :(XO’PI’ p25€[)
nczz(xo’Pl’széz)~

To be more realistic, the consumer should be endowed
with the following information structure:

Na = (X0, P1s P22 1)
ncZZ(XO’PHpZ’gl’ql"fz)-

That is, the consumer acts according to prices, previous
consumption level, and current and past realizations of £.
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The information structure for flat rate pricing is the
same as that for peak load pricing with an additional
constraint: p, = p,.

Load adaptive pricing has the following information
structure:

"Jpx:(xo)

M0 = (X0, P15 &)
np2:(x0’Pl’€l’ql)

My = (X0, P1: €1, 415 P25 €2)-

The producer is required to set up p, prior to the beginning
of the cycle. The consumer then decides g, according to x,,
P> and the realization of £,. Based on the realization of £,
and the consumption ¢,, the producer decides p,. Finally,
g, is determined according to the current price p,, current
realization of £,, and past history (x,, p;. &, and ¢,). Fig.
1 summarizes the relationship among information struc-
tures and pricing schemes.’

ITl. A~ EXTENDED PRODUCER /CONSUMER MODEL

We shall now extend the peak load pricing model of [12]
and [20]. Consider a model of N cycles; each cycle in turn
consists of M periods of equal duration. Each period is
sufficiently short so that the demand for electricity within
it can be assumed to be flat. For clarity of this discussion,
however, M is restricted to be 2. The mth period of the nth
cycle is written as period nm.

A. The Producer

As discussed earlier, the electric utilities in general have
a variety of plant types to choose from. Base-load plants,
such as nuclear and coal-steam, with high marginal capac-
ity costs and low marginal operating costs, are used to
furnish the base load of the demand. When the capacity of
these plants is exceeded, supplementary plants are brought
on line, such as oil-steam (for intermediate load) and
internal combustion (for peak load). In [35] and (8] this
multiplant situation was modeled as having a nondecreas-
ing piecewise linear cost function (with each individual
plant having a linear cost function). In [12] this piecewise
linear cost function was further approximated by a
quadratic cost function C(g)= c,q2 + ¢,q"' + ¢, where the
coefficients ¢, were derived from a minimum mean-square
error fit to the piecewise linear curve. This quadratic cost
function is adopted here with

Clq)=52n, m(q2,)

¥Note that in this formulation we have a nested information structure
in the sense that all succeeding decision makers know what the previous
decision makers knew. This is not too far from real since most of the
relevant uncertainties such as weather are observable bv evervone. Ad-
vancements in communication and microelectronic technology will also
make the utility company and customers better informed about relevant
happenings. However, more research is needed for cases with nonnested
information structure.
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Fig. 1. Information structures and pricing schemes.

where ¢ is a positive constant and g,,, is the electricity
consumed in period nm.* The linear and constant terms
have been dropped for simplicity. Note that the quadratic
cost function captures the essence that the marginal cost of
generation is an increasing function of output level.

B. The Consumer

The consumer is characterized by a satisfaction function
S(g), which is the preference function that gives in mone-
tary units the level of satisfaction at the consumption level
g. The basic form of the satisfaction function was derived
from some assumptions about consumer behavior [12];
here, it is extended to the multicycle case, with the ex-
istence of both 1) uncertainties and 2) intercycle substitu-
tions:

S(fl) = a{ - %2”[“’1(%1 - 5;,1‘11)2 + Wz(qnz - gnzqz)z

2
+ w3(qnl + 9n2— gnlql - snlq?_) ]
S >R O o N

tq, 12— §091— £.292

=& _gn—x.z‘lz)z} (1)

“Since we assumed all periods are of equal duration and the demand
within each period is flat. the energy (kWh) consumed in a period is the
power (kW) demanded in that period times the length of the period (h).
Thus. in our mathematical formulation we shall not distinguish between
power and energy. Note that the formulation can be exiended to the case
with periods of unequal duration without much difficulty [20]. In this
case, the generating cost for a period is the length of the period times a
quadratic function of demand in that period.
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where w;, i =1,2, 3,4 are nonnegative constants and at least
one of them is positive; ¢; and a are positive constants;
and £,,, are unit mean independent Gaussian random
variables.’

In S(q), £,,9, is the ideal consumption level for period
nl when all the prices are zero. It is a random variable and
captures the random nature of the demand. The first term
in 8(q), —iw(q,, —&,4,)% reflects the consumer’s desire
to maintain the consumption schedule ¢,, close to £,,4,
with the priority w, in mind. The second term in S(g)
reflects the similar desire for period 2. The third term
reflects the desire to keep the total consumption of the nth
cycle (g, +g,,) close to the ideal total (§,,9,+4,.9,)-
Thus, if the price in the first period is increased drastically,
the consumer may reduce the consumption and yet try to
make up by consuming more in the second period (within
the same cycle)— intracycle substiturion. In the same spirit,
the last term represents intercycle substitution. Note that
intercycle substitutions are assumed to exist only between
adjacent cycles. The third term tries to capture the essence
of real-life consumption habits. If necessary, the model can
be extended to incorporate intercycle substitutions across
several cycles. Finally, the positive constant « translates the
satisfaction of electricity consumption into monetary units.
For simplicity we assume that a equals one.

All the observations are assumed to be noise-free, and
both players have perfect memory.® The information struc-
ture is assumed to be nested [11]:

Np.11° o]
Neant P11,k“,§11
Mp.12° Pis ks an

Neazt Pk §1mdus Pias ks én
np.nI: nc.n—l.z

nc.nlz Neon—1.2> Pnl’knl’gnl
T’p.nz: nc.n—l,.?,’ pn1=kﬁl’€nl’in
nc,n?_: Neon—1.2> Pns knl > gnl >4n1s Pras kn2= Enl'

C. The Pricing Rules

The producer levies a two-part tariff on the consumer,
with p,, and k,,, being, respectively, the unit price and the
fixed charge for period nm. Actions taken by the producer
(p, k), the consumer (g), and the state of nature (§) are
shown in Fig. 2. Note that in this case the revenue equals

R(Q):En,m(pnmqnm + knm)+ k]\H-Ll'

The producer needs the additional (the final) control K, R
to induce the consumer’s last action (g,,). This becomes
irrelevant as N approaches infinity, as we shall see in
Section V.

5The assumptions of unit mean and independence among random
variables are made to keep the discussion simple. They can be relaxed
without much difficulty.
It tumns out that both the producer and the consumer do not need any
information that occurred two or more cycles ago. See Section IV.

D. Payoff Functions and the Stackelberg Game

An important concept in our formulation is the notion
of economic surplus. As described in the survey paper by
Currie et al. [9], economic surplus is the benefit derived in
monetary terms when a consumer purchases goods from a
producer. The benefit to the consumer and the producer
are called the “consumer’s surplus” (CS) and the “pro-
ducer’s surplus” (PS), respectively. In our case, the con-
sumer’s surplus is the difference between his level of satis-
faction and what he pays for it, i.e., CS(g)= S(q)— R(g).
Since CS is a measure of the net benefit the consumer
derives from consuming ¢, we define the consumer’s payoff
function as the expected value of CS, i.e.,

J.=E[CS(g)] = E[S(¢)— R(q)] =E[L.].

The producer’s surplus is defined here as the profit, i.e.,
PS(g)=R(q)— C(g). Many electric utilities are profit
maximizing companies subject to the regulation of having a
“fair” return on the total capital investment (see [18]). On
the other hand, publicly owned and operated utilities may
consider the benefit to both the consumer and the pro-
ducer. One objective function that is both meaningful and
quantifiable is the sum of the consumer’s surplus and the
producer’s surplus ([25], [8], and [21]). We thus define the
producer’s payoff function as the expected value of the
sum of producer’s surplus and consumer’s surplus,’ i.e.,

J,=E[CS(q)+ PS(q)]
=E[(S(g)— R(q))+(R(q)—C(q))]
=E[S(9)-C(g)] =E[L,].

For any given pricing strategy, the consumer chooses a
reaction strategy which maximizes J.. Knowing the con-
sumer’s rationale, the producer wishes to announce a
strategy such that with this strategy and the consumer’s
reaction to it, the producer’s maximum payoff is achieved.
Thus, the problem formulated is a stochastic closed-loop
multistage Stackelberg problem. The central part of the
problem is how to choose (closed-loop) pricing strategies so
that the consumer can be induced to behave cooperatively and
thus achieve the social optimum. In the next section, we
shall first derive the team solution, and then find a pricing
scheme such that the consumer can be induced to behave
cooperatively as a team member.

IV. OPTIMAL STRATEGIES

The best solution the leader can possibly achieve in a
Stackelberg game is the team optimum, which is defined as
the optimal payoff when all the players work cooperatively

"The nature of the regulatory environment is crucial to the pricing
strategies. The well-known Averch-Johnson effect says that if a company’s
allowable profit is based on the amount of investment, then there is an
incentive for the company to overcapitalize [1]. This in turn, has various
implications on pricing policies [2). We recognize that the concept of load
adaptive pricing could have a major impact on the basic regulatory
attitudes and approaches. However, we shall not address this issue here.
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Fig. 2. Sequences of actions taken by decision makers in the load adaptive pricing formulation.

to optimize the leader’s payoff under the same information
structure. We shall investigate the team problem first.

A. Optimal Team Solution

Since p and k do not appear in J, explicitly, the corre-
sponding team problem here is to find g such that J, is
maximized. Also since the information structure is nested,
the problem can be solved by using the usual dynamic
programming method working backwards in time. It is
easy to see that the necessary condition for g,,, to be
optimal is

dE/cnm[Lp] — , [ GAY

dqnm aqnm B anmjl =0 (2)

where E,,,[-] denotes the conditional expectation given
the information of the consumer at period nm. Under the
linear-quadratic-Gaussian assumption, we expect to find
an affine solution [11]. Furthermore, since intercycle sub-
stitutions occur only between adjacent cycles, it is not
difficult to see that the optimal team solution g, ,, obtained
from (2) will not be an explicit function of either g¢,.,, or
£, for n’<p —1. That is to say, in the team problem the
consumer’s action will be affected directly only by what
happened in the current cycle and the one before that.
Based on these observations and the particular format of

L,, the optimal team solution will be of the following

form:
Gn> = Aménda T @G — $ad1)
+a,5(qu-11% ui
=& 61292 T A
an=bnénditb,3(q, 1t a2
&1 6o 1.292) T bua (3)
where a,; and b, ; are constants determined by the follow-

ing proposition. First some definitions:
xnl = an3 + (1 + anl)bn3
X3 =Wy +wy +2w, +c+wx, for2<n<N
=w,twy+w,+c forn=N+1

=w, +wy+w, + o+ wx,, forn=2

X3 = (W +wy +2¢)x,, —(wy + c)z‘

Proposition 1: The team problem has a solution of the
form (3), where the coefficients are determined by the
following equations:

ay=l=c/X, 1, Vn
@, =—1+(w+c)/x,, 0, Vn
Q3= — Wy /Xpi10 forl<m<N
=0 forn=1
Qs = ‘4’4[_ Ayira = (1+a,012)b,014
+(1=a, )0+ (1+a,. ;)

'(l_bn+1,1)Q1]/xn_1_2 for 1snu<N

=0 forn=N

by =1=X,i12/Xns1 3 Vn

b= —wiwy,+c¢)/x,.,5 forl<an<N
=0 forn=1

b= {_ wy(wy + C)[an+1.4 +(1+ an+1‘2)bn—1,4]
Fwg(wy+o)(1+a,,  )(1=b,41 )4,
+ [”’4(‘”’2 +o)l—a,, )
+ C('xn+l.2 W, C)] ‘Iz}/xn+1.3
forlsn<N

=c(wy+twy)g,/x, ;5 forn=N.

Furthermore,

—1<x,<0

Koy > (wy+wy+¢)>0

X3 > [(wy + ) (wy + )+ wy(wy +w, +2¢)| >0
for2sn<N+1.

The lengthy, but straightforward proofs of this and all
the following propositions will not be included here. They
will be made available separately, if requested by the
reader.

Although the above formulas for x,;, a,;, and b,, seem
quite complicated, it is only important at this point to
recognize that the team problem has an affine solution, and
the coefficients can be precalculated. The signs of x,,
indicate that

1>a, >0,
1>p, >0,

a,,<0, a

b, <O0.

3<0

a,, > 0 says that if the ideal consumption §,,g, is high for
period n2, so is g;,. The negativity of a,, makes it clear
that if the deviation from the ideal consumption in period
nl. (&£,14, — 9.1) is large, then g/, will be high in order to
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make up for the difference. a,; <0, b,; >0, and b,; <0 can

be interpreted in the same fashion. Thus, the results we
have are intuitively appealing.

B. Incentive Pricing Scheme

For any given pricing scheme, the consumer finds opti-
mal consumption strategies g, such that J, is maximized.
The goal of the producer is to find a particular pricing
scheme such that the consumer can be induced to act
cooperatively, i.e., ¢¥,=g!,. to achieve the team opti-
mum. Due to the fact that g, is an explicit function of
information in the nth and » —1th cycles only, we shall
consider functions of the following form:

Pu(&ami 5@t En1.20Ga1.2)
kp(€p-1.2:90-1.2)

Purlnmi @115 En 120 G012 Ento Q)
knz(‘fnx.-qnl)-

From the consumer’s viewpoint, for any given pricing
scheme of the above form he faces a one-person optimiza-
tion problem. The necessary conditions for this problem
can be obtained by using the dynamic programming method
and are given by the following proposition.

Proposition 2: The necessary conditions for the con-
sumer are

Period n2:
dE/an[Lc] - F [ aLC o aLc akn+|.]
aq,, sen? G, 0K,i1y 04,
4 aLc a})nJrl,l + aLc aPn*-—l,.'l
a1 94,2 0P 12 3G,
=0.
Period ni:
dE/cn][Lc] _ aLc aLc aan aLc aPnZ
dqnl sem aqn] aan aqnl aPnZ aqnl
+ aL( aPn—l,l aLc aPn+l.2
AP, 11 94, 0P, 12 9q,
=0. 4

Now we want to find some p and k& such that g%, = g/,
We shall start with simple functional forms. Let
Pu=en(Gui it a1
=& g~ € 1292) T ey
kpy=en(é,21:—1)q,15
P2 =@ —60q) T d,3(q0 1 g0
I FRRY Ny NPV S L o A
kyy=d, (&, —1)g, (5)

where the e’s and 4 ’s are coefficients yet to be determined.
Note that p,; is an affine function, k,; is a product of g and
£, and k&, vanishes when the previous realized £ equals its
expected value (which is 1 in our case). Also note that &,
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appears linearly in the revenue function R(g). As a result,
the revenue will be quadratic. Thus, it is conceivable that
by choosing p and k appropriately, the consumer’s crite-
rion E[S— R] can be modified to agree with that of the
producer, since both will be quadratic under the pricing
strategy of (5). Here, the incentive pricing strategy simply
fulfills the old adage, “If you wish other people to behave
in your interest, then make them see things your way.” The
result is presented in Proposition 3. We shall first define
several variables.

ynl:(an3+aann3)dn3+bn3e;13 for2<n<N

=0 forn=N+1
ynl = ynl + an -c
Yn3 = (1 - arl}Z)le +(Wl - WZ)
Yoa = — [an4 + an2bn4 - anZ(l - bnl )ql + an1q2] d”3
—(bys T hug))est “’4[_ a,a—(1+a,)b,
+ (1 - anl)q2 +(1 + anZ)(l - bn])ql] + €l
for2<n<N
forn=N+1

Vs = 8,283 n+ 1.2 Wy

= ent1.i

Yne = {an+ 1at a0, 04— a,28,4(a, 1 3

F a1 2bs13) T @ 2(1= 0,000

+ [an—l,l —(1+a,a,,)

'(an—1,3 +an+1,zbn~1,3)] %}dn+1.3

S IRl T S o AT

—(1+a,a,,)b,- 1.3‘12] €n-1.3

—wy(wy + ), 0t (1 a,005)8,-1.4]

+ an4[(1 +a,,) (%412 ¢)— Wz]

+w(1+a,0 (1=, )(m +c)g,

+{w(1=a,_;,)(m+c)

+a, [(1 +a,,)(x, 12— ¢)— Wz]

(X2~ W) gyt dy,

forlsn<N
=(ay,+ aqu)[(l Tay (xpp12 =) Wz]

+e(xyp1,—w—c)g,+dy,  forn=N.

(AS1) y,,>0and y,,>0.

Proposition 3: 1f (AS1) holds for 2<n< N +1, then by
choosing

dnl = (1 - bnl )yn+ 1,341
d”2 = _(1 + anZ)yn+l,2 + Ws
dn3 = Ayl 1.2 Wy

dn4 = yn+ 1.4 an4yn+ 1.2
a,— 1.1 )yanZ

en3 = ynS - anyn-» 1.3

enl: (1_.

€n4 = yné - b,,4}",,+ 1.3
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the optimal consumption levels are given by

q:l = [(.-Vn+ I.qu Tl )Enl

_(yn+ .27 wl)(qnl - énlql )

- w4(qn—1.l + Gn—127 gn* 119
- Ell* l.2ql)+(.},n+ 1.4~ P2 )]//,Yn ~1.2
q:l = [(}"n'l.}ql - dnl)gnl

+ Vus(Gur 1 T 12— -1 09

_gn*l.lq?_)_i—(.vné_pnl)]/yn+l.3' (6)

If p,; and p,, are substituted by (5) with coefficients given
above, then g¥ = ¢/, and ¢¥, = gJ,.

Note that although the above formulas for y,,. 4, ,. and
e, seem quite complicated. it is only important to know
here that if (A4S51) is satisfied, then the consumer can be
induced to behave cooperatively, and the coefficients of
pricing strategies can be precalculated. (4S1) is the second
order condition that guarantees ¢* to be the true maximal
strategies. We shall see in the next section that as N
approaches infinity, the sequences {y,.}. {v,:} converge
and (AS1) is satisfied. Note also that 4,,>>0 (the coeffi-
cient of the fixed charge for period #2) which says that if
the realized £, is greater than its expected value (which is
1). then the fixed charge for the next period (k,,) will be
positive. Similarly. e, > 0.

C. Comparison Between Peak Load Pricing and Load
Adaptive Pricing

Let J*,, and Jy,, be, respectively, the optimal payoffs
for the Stackelberg game and its corresponding team prob-
lem under the load adaptive pricing formulation. We can
also formulate a Stackelberg game and its corresponding
team problem under the peak load pricing formulation
having the information structure as shown in Fig. 1(b). Let
% and J, be. respectively, their optimal payoffs. It is
well-known that for team problems, more information
means equal or better payoffs. In our model it is easy to
show by direct calculation that J5, <Jy,. Thus. from
Proposition 3, we have

rflp < Jrilp < Jl’ap - Jltp'

Thus, the model predicts that load adaptive pricing is
desirable. Note that, however. the implementation costs of
load adaptive pricing are not considered here. If the energy
costs increase at a much faster rate than the implementa-
tion costs of hardware and software. it is reasonable to
believe that the adoption of load adaptive pricing will be
justified in the future.

V. THE CasE wiITH INFINITE CYCLES

In the previous section, the load adaptive pricing prob-
lem was treated for the general N-cycle case. As mentioned
earlier, a cycle may be a day. a week, etc. Once a pricing
scheme is set, it may remain in effect for several months
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and even years. Thus, it is very important to examine the
asymptotic behavior of the solution. Two questions will be
addressed here. First, will the coefficients of the solutions
converge? That is. will the consumer face a fixed set of
coefficients for each cycle under consideration? If these
coefficients do not converge, the consumer will face a
different set of coefficients each cycle. which is very unde-
sirable. The second question is whether or not the system is
stable. That is. if some small disturbance occurred at the
nth cycle. will it die out as time passes? If the system is not
stable, any small disturbance occurring either in consump-
tion or in pricing will cause future g. p. and k to oscillate
forever. We shall investigate the team solution first.

A. Concergence of the Team Solution and Iis Stability

The team solution is given by (3), where the coefficients
are determined by Proposition 1. In the investigation of
convergence of coefficients, x,, plays a key role. It is easy
to see that if the sequence {x,,} converges, then the rest of
the sequences will converge. We have the following results.

Proposition 4: As N approaches infinity. {x,} con-
verges to x, where

X, :%[— ot (a3 —4)]'/2]
=0

fornw, =0
forw, =0
and when w, =0,
Xy =2+ w, /wy
+(wy+ ) owy + ¢) [ walw, +wy + )]

As a result, {x,,}. {x,;} and all the coefficients of the
team solution {a,,}. {b,,} converge (to x,, x;. a,. and b,.

nj

respectively). Furthermore.
—1<x; =<0
X, >(wy twytuyTc¢)>0
X5 >[( w,+c)(ny +c)
+ (e uy)(w, +wy +20)] >0 (7)

and the team solution exists.
It is easy to derive from Proposition 4 that
1>a,>0, <0

1>5,>0,

a,<0.
b,<0

a

3

and the interpretation which was applied to the finite-cycle
case still prevails.

We shall now investigate the stability property. Assume
some disturbance occurred at the n’th cycle and the team
strategies are still followed afterwards. From (3). dis-
turbances propagate according to the following formulas:

Ag, = bi(Aq, 1+ 4q, )

Ag,, = asAdq,, +ai(Aq, +A4q, ;)
=(ay+ab)(Aq, ,, +4q, ) (8)

and

(Ag, +4q,,)=x,(4q,. 1.I+Aqn*l.3) (9
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where Ag, , is the deviation from the nominal consumption
level. Since —1<<x, =<0 as stated in Proposition 4, the sum
of deviations Ag,, + Agq,, will die out. So will Ag,, and
Ag,, [from (8)]. Thus, the team solution is stable. This is
intuitively reasonable since optimality usually implies sta-
bility.

B. Convergence of the Pricing Scheme and Its Stability

The pricing scheme is given by (5) where the coefficients
are determined by Proposition 3. In order to investigate the
convergence of these coefficients, we shall assume that all
a,; and b,; have converged. Similar to the case treated in
the previous subsection, y,; plays a key role here. If {,}
converges, so do all other sequences. The following pro-
position states the results.

Proposition S: As N approaches infinity, 0 < (a3} — b? —
a3b?)<1, and {y, } converges to

V= —[1-!—(a§-i-b32—a§b32)]*1

[(a3 +83 - a3b3)(x, — <)

+wyx, + 0w, — w2)].

(10)

As a result, {y,;} and all the coefficients of the pricing
rules {d,;} and {e,,} converge (to y;, d;, and ¢, respec-
tively). y, > 0 and y; >0, i.e., (AS1) is satisfied; thus g%,
Prm> and knm exist and 9nim = qrttm‘

Since the consumer can be induced to behave coopera-
tively (¢*,=4,,,), one would expect that the stability of
the system follows from the stability of the team problem.
This is indeed the case. More precisely, disturbances prop-
agate according to the following formulas [from (5) and

(0)]:
Ap,y=e3(Ag,—y 1 +Ag,,5)
Ap,, =dyAq, +dy(Ag,  +4q, )
Ag =[rs(Aq,— 1+ Agy 1)~ Apu] /13
=(rs—es)(Aq, 11+ 48q, 12)/»
Aq,,= — [( ¥, —wy)Aq,
+wy(Ag,— 1+ A, 1)+ APnz]/Yz
=—[(n—w+d,)Ag, +(w, +d;)
(Ag, 1, +A‘1n—|,2)]/y"2
gy + 8,0 =[(wy = dy) (35— €3) /33— (wy + d3)]
'(Aqn—l,l +4q, 12)/%

:xl(Aqrr—l.l+Aqn—l.2) (11)

which is identical to (9). Thus, Ag,, + Aq,,, will die out; so
will Ag,,, Ag,,, Ap,,, and Ap,,, and the system is stable.

Example 1: Consider an infinite-cycle load adaptive
pricing model with the following parameters:

wy;=1/2,
c=2.

w=w, =1,

wy=1/4,
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qunn’ pnm’ knm’ and qum are gl\]en by (3)’ (5)‘ and (6)’
respectively, where the coefficients are determined by Pro-
positions 1, 3, 4, and 5 as follows:

a,=0497, a,= —0.245, a; = —0.063
b, =0.465, by= —0.051
¥, =1.987, y; = 1.868, ys= —0.219
d=gq, d,= —0.500, dy= —0.125
e =q,, e;= —0.125.

The condition a,>0, a, <0, a; <0, b,>0, b, <0, d, >0,
and e, >0 can be interpreted as before. In this example we
also have
d, <0, d; <0, e;<0.

The negativity of J, indicates that if ¢,; is small and the
deviation from the ideal consumption in period nl, (£,4,
—q,1) is large, then p,, will be high. The utility company
does this since it anticipates a high demand in period #2
caused by the large deviation in period sl. Similarly, if g,,,
is very large and (£,,9, — g,,) becomes negative, p,, will be
low. d; <0 and e, <0 are interpreted in the same way.

VI. CONCLUSIONS

The motivation for our research may be stated in
Schweppe’s words [26]: “Computing and communication
are among the few things left in our society that are
decreasing in cost. Furthermore, data-network communica-
tions and mini- and microcomputer technology are evolv-
ing at a rate that parallels the needs of electric power
systems. Future control systems will exploit this technology
extensively.” And by the year 2000, “multilevel controls
and home minis will enable utilities to buy and sell power
at real time rates determined by supply and demand.”

The research work reported here was initiated by peak
load pricing problems of electric systems. From a game
theoretic point of view, peak load pricing problems are
Stackelberg games where the utility company (the leader)
has only open-loop control and customers (followers) are
not provided with any system demand /supply informa-
tion. In recognizing the limit of the peak load pricing
formulation and the persuasive breakthroughs in micro-
electronic technology, we formulate the load adaptive pric-
ing problem mathematically where the utility company
sells power at “real time” rates.

Load adaptive pricing is a closed-loop Stackelberg prob-
lem. In this paper, we have solved a load adaptive pricing
problem for a particular producer/consumer model by
using the methodology developed in [13] and [14]. We
demonstrated that it is possible for the utility company to
induce the customer to behave cooperatively to achieve the
team optimum. As the number of cycles approaches infin-
ity, our results show that the solution converges and the
system is stable.
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An Optimal Control Approach to Dynamic

Routing in

Networks

FRANKLIN H. MOSS anD ADRIAN SEGALL, SENIOR MEMBER, IEEE

A bstract — This paper explores the application of optimal control theory
fo the problem of dynamic routing in networks. The approach derives from
a continuous state space model for dynamic routing and an associated
linear optimal control problem with linear state and control variable
inequality constraints. The conceptual form of an algorithm is presented
for finding a feedback solution to the optimal control problem when the
inputs are assumed to be constant in time. The algorithm employs a
combination of necessary conditions, dynamic programming, and linear
programming to construct a set of convex polyhedral cones which cover the
admissible state space with optimal controls. An implementable form of the
algorithm, along with a simple example, is presented for a special class of
single destination networks.

I. INTRODUCTION

HE MODEL considered in this paper is motivated by

the following problem: given a capacitated network,
an initial accumulation of traffic at the nodes, and possible
input traffic and assuming that the accumulated traffic can
be measured at all times at all nodes, clear the traffic
congestion so that the total traffic delay is minimized. The
problem can be applicable to the communication networks
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Networks and Transportation Systems Committee,

F. H. Moss is with the IBM T. J. Watson Research Center, Yorktown
Heights. NY 10598,

A. Segall is with the Department of Electrical Engineering, Technion—
Israel Institute of Technology, Haifa, Isracl.

where messages may accumulate in node buffers, transpor-
tation networks where we have vehicle traffic [8], or other
types of networks. In all cases, we address the problem of
dynamic routing [1], whereby the decision on how to for-
ward traffic through the network is based on measurement
of the instantaneous queue lengths at the network nodes.

A model for the analysis of dynamic network routing has
been proposed in [1], whereby it has been shown that the
problem gives rise to a dynamic linear continuous state
space equation. The criterion considered in [1] is the
minimum weighted message delay throughout the network
giving rise to a linear optimal control problem with linear
state and control variable inequality constraints and with
linear integral cost functional. The inputs are assumed to be
deterministic functions of time, and a feedback solution is
sought which drives all of the state variables to zero at the
final time.

Little theoretical or computational attention has been
paid to the class of control problems with state variable
inequality constraints and the control appearing linearly in
the dynamics and performance index. In this case, the
control is of the bang-bang variety and the costates may be
characterized by a high degree of nonuniqueness. In [2] the
necessary conditions associated with this problem are ex-
amined when the control and state constraints are both
scalars, and an interesting analogy is presented between the
junction conditions associated with state boundary arcs

0018-9286 /82 /0400-0329$00.75 ©1982 IEEE



