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Load Adaptive Pricing: An Emerging Tool 
for Electric  Utilities 

Abstract -Motivated by the importance of  the peak  load  problem faced 
by the  electric utility industries in this paper  we  analyze  several  different 
electricity  pricing schemes from  a game theoretic  point of view. Recogniz- 
ing the limit  of  the  traditional  peak  load  pricing  formulation  and  the 
persuasive  breakthroughs  in  microelectronic  technology.  we  introduce  a 
philosophy-  in  which  supply-  and  demand  respond to  each  other through 
prices and  consumptions,  and the utility  company sells power  at “real-time” 
rates. We call it load adaptice pricing. By itself, the concept of load 
adaptive  pricing is not  new. The contribution of this  paper is the  formula- 
tion and  resolution of this idea as a closed-loop dynamic Stackelberg  game 
problem. The central  part of this problem is how to choose appropriate 
incentives  (i.e.. pricing strategies) so that  customers can be induced to 
behave  cooperatively  and  thus  achieve the team  optimum. In this paper. the 
load  adaptive  pricing  problem is solved for a particular  praducer/consumer 
model. We demonstrate  that it is possible for  the utili0 company to induce 
the  customer to behave  cooperatively- to achieve the team optimum. We 
also show  that  in  stea+  state,  our  solution converges and  the system is 
stable. 

I. INTRODUCTION 

A. The  Peak Load  Problem and  Current Practice 

T HE electric utilities’ in the United  States face the peak 
load problem. Ths problem arises because tradition- 

ally, the utilities are required to supply their customers 
instantaneously with whatever amount of power they  wish 
to  purchase  at whatever time they desire, with prespecified 
prices whch are  independent of the time of consumption. 
In exercising their preferences. customers have evolved 
electric power use patterns whch vary not only periodi- 
cally over the  day, week, and year, but  also  depend signifi- 
cantly on some random elements such  as weather, for 
example. In fact, with few exceptions. all system peaks in 
the  U.S.  are caused principally by air conditioning  (summer 
peak)  and space heating (winter peak). Thus. the utility 
must meet the  demand due to  a  fluctuating load instanta- 
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enterprises as well (telecommunications. for example).  but we shall focus 
The  problem  addressed in this  note is common to many other public 

the  discussion on electric  utilities  to  keep the terminology  simple  and 
unambiguous. 

neously. incurring idle capacity cost, while capacity  expan- 
sions require a fairly long  gestation period. Most utilities 
use additional peaking generators (which have low capital 
cost to offset their idle time, but high running  cost) to 
satisfy the excess loads  during  the  short  duration  peak 
periods. The  unit cost of electricity production  during the 
peak period is thus higher than  that in the off-peak peri- 
ods. 

In recent years the high cost of electricity production, 
especially during peaks, and  the concern for future energy 
resources have led utilities and regulatory agencies to move 
to policies that  encourage conservation and more efficient 
use of production capacity. Toward these ends, the utility 
may either negotiate for direct  control of some of the 
customer  loads as with industrial users and/or design some 
forms of incentive rate structures. which may be time-de- 
pendent, as an indirect way to influence some of the 
customer loads. The latter is a variable pricing scheme for 
electricity consumption [ 191. The peak loud pricing scheme 
is a familiar example. In peak load pricing. a cycle (usually 
a  day,  a week, or a year) is divided into several periodr (a 
period may range  from several hours  to seasons). The price 
of electricity in each period reflects the  estimated  produc- 
tion costs for that  period,  and is required to be announced 
prior  to the beginning of operation.  The  peak  load pricing 
problem  has been studied extensively by economists (for 
example: [6]. [7], [lo]. [15], [17].  [18].  [22]. [25], and [33]; 
other references can be found in [30] and [21]). 

B. The Concept of Load Adaptive Pricing 

From  a game theoretic point of Liew, the utility com- 
pany plays the role of a leader. and customers play roles of 
followers in the variable pricing framework. For a given 
pricing strategy. each customer  determines h s  optimal 
consumption  strategy which is reflected in the demand 
curve. The utility company foresees these reactions and 
decides the optimal pricing strategy. Thus. pricing prob- 
lems are actually Stackelberg games. 

However. in peak load pricing. the utility company is not 
a  “powerful” leader. On the one  hand. it needs to an- 
nounce all the  time-dependent prices prior  to  the beginning 
of operation.  after whch it is expected to persist without 
change for many cycles. (In the parlance of control  theory, 
this is called open-loop  control.) Price cannot  respond to 
“real-time”  loads caused by random events such as weather 
and  outage  under this setup. On the other  hand.  the utility 
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company  bears  almost all the  burden  concerning  system 
operation,  planning, integrity, and environmental  impact. 
Customers are, in general, not  supplied  with  any  system 
demand/supply  information.  It will not be very effective 
for  the utility wmpany  to  induce  a  particular behavior  on 
the  part of customers  without  providing  them  with  some 
kind of demand/supply  information. 

In recognizing the limit of the  peak  load pricing formu- 
lation  and  the  persuasive  breakthrough of microelectronic 
technology, we foresee a new pricing philosophy  emerging 
in which supply and  demand respond to each  other  through 
prices and consumptions. We  call it load adaptioe pricing. 
In  load  adaptive pricing, the utility company  does  not 
announce prices for all cycles prior  to the beginning of 
operation.  On  the  contrary,  it  announces  the strategy of 
pricing, Le., the rules for how  the prices will be determined. 
The exact price for each  period is calculated at the begin- 
ning of that period  according to  the  announced strategy 
and based on previous  consumptions  and realizations of 
random events. Supply and demand  thus  respond to each 
other  through prices and consumption, and  the prices are 
made  to  adapt  to  the  load. 

Throughout  the discussion we shall use  a simplified 
single-producer  single-consumer  model to  bring  out  the 
main aspects of pricing schemes. It represents the  situation 
where  a utility company deals with  a single large industrial 
customer, or  an organized  group of customers which has 
the  intention of improving social welfare. 

By itself the  concept of load  adaptive pricing is not new 
[34], [26]. The contribution of this  paper  is to gice for  thefirst 
time a  mathematical  formulation and resolution of this idea 
as a closed-loop dynamic Stackelberg game. (For recent 
developments in Stackelberg  games, see [28], [29]. [3], [43, 
[23], [24],  [31], [13], [14], and [32].) It  should also be 
emphasized at the outset that the purpose of this paper is 
not  to  formulate  a  comprehensive  model of load  manage- 
ment  taking  into  account all the  socioeconomic and tech- 
nological constraints  and  dynamics of a  “real world”  power 
generation/distribution  network.2  What we have done is to 
choose  a  more  narrowly specified set of issues, mainly 
economic  (corresponding  to  “spot pricing” in [27]), to 
demonstrate how mathematical tools of optimization and 
game  theory  can  be used to  address  and solve these issues; 
and to interpret  the results. In terms of the larger compre- 
hensive  model,  our results illustrate  the  general  method of 
attack  and  the  conceptual  approach.  For  the  narrowly 
defined  problem, our results identify the relevant parame- 

2Recently.  a  good  conceptualization of a  comprehensive  model of load 

“homeostatic  utility  control.” as a novel approach to  the control  and 
management  has  been  proposed  in [27] and  refined  in [ 161 under  the  name 

economic  operation of electric  power  systems. It  includes  three  major 
concepts:  spot pricing. microshedding,  and  decentralized  dynamic  control. 
Spot  pricing  depends on system  supply-demand  conditions  and is set 
every 5 min. With  microshedding,  the  utili@  commands  a customer’s 
computer to shed  a  certain  percenta  e or amount of the customer’s  load: 

Decentralized  dynamic  controllers  are  activated by changes  in  the 
the  customer’s  computer  then  deciies which part of the  load to shed. 

standard 60 H z  (or 120 V) and  provide  short-term storage  adaptable  to 
frequency (or voltage) of the  electric  power  system above  and below  the 

the  power  system.  Load  adaptive  pricing  corresponds  to “spot  pricing“ of 
the homeostatic  control.  The  theoretical  analysis of customer  response to 
spot  pricing was @Yen in [5]. 

ters  and ideas involved. We are  not  suggesting that  our 
solution is ready and  can  be applied “as is” to  a real world 
utility pricing problem. 

C. Outline of the Paper 

In Section 11, the distinction between  peak  load pricing 
and  load  adaptive pricing is made clear through  the  notion 
of information structure. The deterministic producer/con- 
sumer  model, [12] and [20],  is extended in Section I11 for 
the  mathematical  formulation of the  load  adaptive pricing 
problem. The  optimal  load  adaptive pricing problem is 
then solved in Section IV. The  asymptotic  behavior of the 
system is examined in Section V. 

11. PRICING SCHEMES AND INFOFUWTION 
STRUCTURES 

We shall model  various pricing schemes  using  the  notion 
of information  structure.  The information structure for  a 
game characterizes the precise information  each  player  has 
at every stage of the game. Different  information  structures 
permit different decision rules or strategies, lead to differ- 
ent  interpretations,  and yield different results. 

Let x. be  the  initial  information available to  both  the 
producer  and  the consumer; and let pi ,  qi, and (, be, 
respectively, the price, demand,  and  the  state of nature  at 
period i. Let qpi be the  information available to  the  pro- 
ducer  at  the  instant when he  needs to  decidep,.  and let qci 
be the information available to the consumer at the instant 
when  he  needs to decide q,. In this section, for  the  sake of 
clarity  and ease of exposition, we shall consider  a single 
cycle which consists of two periods. 

In peak  load pricing, the producer is required to declare 
the prices prior  to the beginning of the cycle. For  the 
producer we have  the  information  structure 

?,I = q p 2  = b o ) .  

In most of the  peak  load pricing literature,  the electricity 
consumed in n different periods was treated as if it  had 
been n different commodities  consumed in a single period. 
Consequently,  consumption of the  second  period is not 
directly affected by what  happened  in the first period. The 
situation is modeled by the following  information  struc- 
ture: 

To be more realistic, the  wnsumer should be endowed 
with  the  following  information  structure: 

v,, = (-yo, P I >  P 2 9  ( 1 )  

?Ic2 = b o 7  PI, P 2 7  E l 9 q l ?  (2). 

That is, the consumer acts according to prices. previous 
consumption level, and  current  and  past realizations of 5. 
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The  information  structure for flat rate pricing is the 
same as that  for peak load pricing with an additional 
constraint: p1 = p 2 .  

Load adaptive pricing has  the following information 
structure: 

Tpl = b o )  

Tcl = (x07 PI? 61) 

T p 2 = ( x o J - J I ? t 1 ~ q l )  

77d = b o ,  PI1 t,? 41. P2, t 2 ) .  

The producer is required to set up p I prior to  the beginning 
of the cycle. The consumer then decides q1 according to xo, 
pl ,  and  the realization of E l .  Based on the realization of 
and the  consumption q l ,  the producer decides p z .  Finally, 
q2 is determined  according  to  the  current price p 2 ,  current 
realization of t2, and past history (xo, pl.  E l ,  and ql) .  Fig. 
1 summarizes the  relationship  among  information  struc- 
tures  and pricing schemes.’ 

111. AN EXTENDED FRODUCER/CONSUMER MODEL 

We shall now extend the peak load pricing model of [ 121 
and [20]. Consider  a model of N cycles: each cycle in  turn 
consists of M periods of equal  duration. Each period is 
sufficiently short so that the demand for electricity within 
it  can  be assumed to  be  flat. For clarity of this discussion, 
however, M is restricted to be 2. The m th  period of the nth 
cycle is written as period nm. 

A .  The Producer 

As discussed earlier, the electric utilities in general have 
a variety of plant types to choose from. Base-load plants, 
such  as nuclear and coal-steam. with high marginal capac- 
ity costs  and low marginal operating costs, are used to 
furnish the base  load of the demand. When the capacity of 
these  plants is exceeded, supplementary  plants  are  brought 
on line, such as oil-steam (for  intermediate  load)  and 
internal  combustion (for peak load). In [35] and [8] this 
multiplant  situation was modeled as having a nondecreas- 
ing piecewise linear  cost  function (with each individual 
plant having a  linear cost function). In [12] this piecewise 
linear cost function was further  approximated by a 
quadratic cost function C(q) = c2q2 + clql + co. where the 
coefficients ci were derived from  a minimum mean-square 
error fit to the piecewise linear curve. This quadratic cost 
function is adopted here with 

in  the  sense  that all succeeding  decision  makers  know  what  the  previous 
3Note  that  in this  formulation we have a nested  information  structure 

decision  makers knew. This is not  too  far  from real since most of the 

vancements  in  communication  and  microelectronic  technology will also 
relevant  uncertainties  such  as  weather are obsewable  by  everyone. Ad- 

make  the  utility  company  and  customers  better  informed  about  relevant 
happenings. However, more  research  is  needed  for  cases  with  nonnested 
information  structure. 

pri , , e  

Peak load 
pricing 1 

PI pz 

ILoad adaptive 
pricint: 

P. 

-t TIME 

-+TIME 

-TIME 

Fig. I .  Information  structures  and  pricing  schemes 

where c is a positive constant  and q,, is the electricity 
consumed in period ~ ~ r n . ~  The  linear  and  constant  terms 
have been dropped for simplicity. Note that  the  quadratic 
cost  function  captures  the essence that the marginal cost of 
generation is an increasing function of output level. 

B. The Consumer 

The consumer is characterized by a  satisfaction  function 
S(q) ,  whch is the preference function  that gives in mone- 
tary  units  the level of satisfaction at the  consumption level 
q. The basic form of the satisfaction  function was derived 
from some assumptions  about consumer behavior [12]; 
here. it is extended to  the multicycle case. with the ex- 
istence of both 1) uncertainties  and 2) intercycle substitu- 
tions: 

witlun  each period is flat. the  energy (kWhl  consumed in a period  is  the 
4Since we assumed all periods  are of equal  duration and the  demand 

potver  (kW)  demanded  in  that  pencd  times  the  length of the  period  (h). 
Thus. in our mathematical  formulation \ve shall not  distinguish  between 
power  and  energy.  Note  that  the  formulation  can  be  extended  to  the  case 
with  periods of unequal  duration  without  much  difficulty [20]. I n   t h s  
case.  the  generating  cost for a period is the  length of the  period  times a 
quadratic  function of demand  in  that  period. 
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where wi, i = 1,2: 3,4 are nonnegative constants  and at least 
one of them is positive; qj and a are positive constants; 
and t,, are  unit mean independent  Gaussian  random 
 variable^.^ 

In S ( q ) ,  tnlql  is the ideal consumption level for  period 
nl when all the prices are zero. It  is a  random variable and 
captures  the  random  nature of the  demand. The first term 
in S(q) ,  - f w l ( q n l  - t,lq1)2, reflects the consumer’s desire 
to maintain the consumption schedule qnl close to tnlql 
with the  priority w I  in  mind. The second term in S ( q )  
reflects the similar desire for period 2. The thrd term 
reflects the desire to keep the total  consumption of the nth 
cycle (qn1  + qn2) close to the ideal  total (t,llql + tn2q2). 
Thus, if the price in  the  first  period is increased drastically, 
the consumer may reduce the consumption and yet try to 
make  up  by  consuming more in  the second period  (within 
the  same cycle)-intracycle substitution. In  the same spirit, 
the last term represents intercycle substitution. Note  that 
intercycle substitutions  are assumed to exist only between 
adjacent cycles. The third term tries to capture  the essence 
of real-life consumption habits. If necessary, the model can 
be extended to incorporate intercycle substitutions  across 
several cycles. Finally, the positive constant a translates  the 
satisfaction of electricity consumption into monetary units. 
For simplicity we assume that CY equals  one. 

All the observations  are assumed to  be noise-free, and 
both players have perfect memory.6 The  information  struc- 
ture is assumed to  be nested [ 111: 

4 p . 1 1 :  @ 
4c.11: P l l ~ k l l ~ t l l  

4lp.12: P l l ~ ~ l l ~ t l l ~ ~ l l  
4c.12: P l l 7 ~ l l ~ E l l ~ q l l ~ P 1 2 ~ k l 2 , ~ 1 2  

4 p . n l :   4 c . n - 1 . 2  

T c . n l :  4 c . n - 1 . 2 3  ~ n l , k n l , t n l  

4 p . n 2 :  4 c . n - l , 2 ’ P n l , k n l r t n l , q n l  

4 c , n 2 :  

C. The Pricing Rules 

The  producer levies a  two-part tariff on  the  consumer, 
withp,, and k,, being, respectively, the  unit price and the 
fixed charge for period nm. Actions  taken by the  producer 
( p ,  k ) ,  the  consumer ( q ) ,  and  the  state of nature ( t )  are 
shown in Fig. 2. Note  that  in this case  the revenue equals 

R(q)=’n , , (pnrnqn ,+kn , )+k .~+ , . , .  

The producer needs the  additional  (the  final)  control K,+ 
to induce  the consumer’s last  action (q,,,,2). This becomes 
irrelevant as N approaches  infinity,  as we shall see in 
Section V. 

D. Payoff Functions and the  Stackelberg  Game 

An important  concept in our  formulation is the  notion 
of economic surplus. As described in the survey paper  by 
Currie et al. [9], economic surplus is the benefit derived in 
monetary terms when a consumer purchases goods  from  a 
producer. The benefit to the  consumer  and  the  producer 
are called the “consumer’s surplus” (CS) and the “pro- 
ducer’s surplus” ( P S ) ,  respectively. In  our case, the con- 
sumer’s surplus is the difference between his level of satis- 
faction  and what he pays for it, i.e.> CS(q) = S ( q ) -  R(q) .  
Since CS is a measure of the  net benefit the  consumer 
derives from consuming q, we define  the consumer’s payoff 
function  as the expected value of CSI i.e., 

The producer’s surplus is defined here as  the  profit, i.e., 
PS( q )  = R(  q )  - C( 4). Many electric utilities are  profit 
maximizing companies subject to  the regulation of having a 
“fair“  return  on  the  total  capital investment (see [18]). On 
the  other  hand, publicly owned and  operated utilities may 
consider  the benefit to  both the consumer and the pro- 
ducer.  One objective function  that is both meaningful and 
quantifiable is the sum of the consumer’s surplus  and  the 
producer’s surplus ([25], [8], and [21]). We thus  define  the 
producer’s payoff function as the expected value of the 
sum of producer’s surplus  and consumer’s surplus? i.e., 

Jp = E[CS(q)+  P W l  

= E [ ( S ( q ) - R ( q ) ) + ( R ( q ) - C ( q ) ) l  

= E [ S ( q ) - C ( q ) l  

For any given pricing strategy, the consumer chooses a 
reaction  strategy whch maximizes Jc. Knowing the  con- 
sumer’s rationale, the producer wishes to  announce  a 
strategy  such  that with this strategy and  the consumer’s 
reaction  to  it, the producer’s maximum payoff is achieved. 
Thus,  the problem formulated is a  stochastic closed-loop 
multistage Stackelberg problem. The central part 0)’ the 
problem  is how to choose (closed-loop) pricing strategies so 
that  the consumer can be induced to behave cooperatively and 
thus achieve the social optimum. In the next section, we 
shall first derive the team solution,  and  then  find  a pricing 
scheme such that  the consumer can be induced to behave 
cooperatively as  a team member. 

IV. OPTI~MAL STRATEGIES 

The best solution  the leader can possibly achieve in  a 
Stackelberg game is the team optimum, which is defined as 
the  optimal payoff when all the players work cooperatively 

strategies.  The  well-known  Averch-Johnson  effect  says  that if a  company’s 
7The  nature of the  regulatory  environment is crucial to the  pricing 

variables  are  made to keep  the  discussion  simple.  They  can  be  relaxed  incentive  for  the  company  to overcapitahe [I]. This in turn.  has  various 
’The  assumptions of unit mean  and  independence  among  random  allowable  profit is based on the  amount of investment.  then  there is an 

without  much  difficulty. implications  on  pricing  policies [2]. We  recognize  that  the  concept of load 
61t turns out that  both  the  producer  and  the  consumer do  not  need  any adaptive  pricing  could  have  a  major  impact on the  basic  regulatory 

information  that  occurred  two or more  cycles  ago. See Section IV. attitudes  and  approaches.  However, w-e shall not address this issue  here. 
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random  phenomenon 

denand fo r  n- th  cycle, 1st p e r i o d  
i 

(rc1.2 qn1.2 t n l  qn1 6.t qn2 {n+l.l qn+1,1 (N1 qN1 (NZ qN2 
I 1  I 1  I I  I 1  h I 1  , I  

1 Y I I II 

p n-12 P nj P d  pn+l.l P N1 PN2 k N+1 ,I 

kn1.2 k n l ]  k& kw1.1 k N l  k w  ' f i x e d   c h a r q e  
u n i t   p r i c e  

Fig. 2. Sequences  of  actions  taken by decision makers in  the  load  adaptive  pricing  formulation. 

to optimize the leader's payoff under  the same information 
structure. We shall investigate the team problem first. 

A .  Optimal Team Solution 

Since p and k do not appear  in Jp explicitly, the corre- 
sponding team problem here is to find q such  that Jp is 
maximized. Also since the  information  structure is nested. 
the problem can  be solved by using the usual dynamic 
programming  method working backwards in time. It is 
easy to see that the necessary condition  for q,,, to be 
optimal is 

where E,,,,[-] denotes the conditional  expectation given 
the  information of the consumer at period nm. Under  the 
linear-quadratic-Gaussian assumption, we expect to  find 
an affine solution [ 111. Furthermore, since intercycle sub- 
stitutions occur only between adjacent cycles, it is not 
difficult to see that  the  optimal  team  solution q;,, obtained 
from (2)  will not be an explicit function of either q,,.m or 
E,,.,,, for n'< n - 1. That is to say, in the team problem the 
consumer's action will be affected directly only by what 
happened  in  the  current cycle and the  one before that. 
Based on these observations  and  the  particular  format of 
Lp, the  optimal  team  solution will be of the following 
form: 

4 ~ 2 = a n l E n 2 4 2 + a n 2 ( q , 2 1 - E n t 4 1 )  

+an3(qn-1,1+ q n - 1 . 2  

- E n - 1 . 1 4 l - ~ n - I . 2 q 2 ) + a r , 4  

4 ~ 1 = b n , ~ n , q , + ' n , ( 4 n ~ l . I + q n - 1 . 2  

-En-1.14l-En-1.242)+bn4 (3)  

where a,,, and br,j are  constants  determined by the follow- 
ing  proposition.  First some definitions: 

xnI=an3+(1+an2)bn3 
x ,2  = w2 + y +2w4 + c + w4xnI for 2 < n < N 

= w2 + w3 + w4 + c for n = N + 1 
= w2 + w, + w4 + c + w4xnl for n = 2 

x,, = ( W I  + w2 + 2 c ) x n 2  - ( w z  + c )  . 2 

Proposition 1: The team problem has a  solution of the 
form (3), where the coefficients are  determined by the 
following equations: 

arzI-'-c/xn+1,2 

an,= - 1 + ( ~ 2  +c)/xn+1.2 ' n  

- Vn 

an3 = - w4/xn+ for  1 < n G N 
= O  f o r n = l  

a r 1 4 = ~ ~ [ - a r 2 + 1 . 4 - ( ' + a n + l . 2 ) b n + 1 . 4  

+ ( l - a , ~ + ~ . ~ ) ~ 2 + ( l + a n + ~ . 2 )  

.(l-b,,+l,l)qlI/~n-1.2  for l ~ n < ~  
= O  f o r n = N  

br , I= ' -~xn+1,2/~,+1,3 ' n  
bn3 = - N;( w 2  + c)/x,+ ,., for 1 < n G N 

= O  f o r n = l  

b n 4 = { - ~ ~ 4 ( ~ ~ 2 + ~ ) [ a n + 1 . 4 + ( 1 + a n + 1 , 2 ) b n - 1 , ~ ]  

+ ~ 4 ( ~ v 2 + c C ) ( 1 + a , + l . 2 ) ( 1 - b n + l , 2 ) q l  

+ [ 5 ~ 4 ( ~ 2  + c ) ( 1 - a n + l . l )  

+ ~ ( ~ , , + 1 , 2 - ' ~ ~ - - ) 1 4 2 } / ~ n + l . 3  

for l G n < N  
= c( w3 + w4)q2/x,,- for  n = N .  

Furthermore. 

- l<X,,GO 

x , , z > ( y + w , + c ) > o  

x , , ~ > [ ( w ~ + c ) ( ~ ~ + c C ) + W ~ ( M ? I + W ~ + ~ C ) ] > O  

f o r 2 < n < N + l .  

The lengthy, but  straightforward  proofs of this and all 
the following propositions will not  be  included here. They 
will be made available separately, if requested by  the 
reader. 

Although the  above  formulas for x n i ,  a,,,, and bnk seem 
quite complicated, it is only important  at  this  point to 
recognize that the team problem  has an affine  solution,  and 
the coefficients can be precalculated.  The signs of xni  
indicate  that 

l>a , ,>O.   an2<0,  a n 3 4 0  
1 > b,, > 0, b,, G 0. 

u , , ~  > 0 says that if the ideal consumption  En2q2 is high for 
period n2. so is qA2. The negativity of a n 2  makes it clear 
that if the deviation from the ideal consumption  in  period 
nl. ((,llql - q,,l) is large, then 4A2 will be high in order  to 
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make up for the difference. an3 < 0, bn, > 0, and b,,; G 0 can 
be interpreted in the  same  fashon. Thus.  the  results we 
have are intuitively  appealing. 

B. Incentice  Pricing Scheme 

For any given pricing scheme, the  consumer  finds  opti- 
mal consumption strategies q:m such that J, is maximized. 
The goal of the  producer is to find  a  particular  pricing 
scheme such that  the  consumer  can  be  induced  to  act 
cooperatively, i.e., q,Tn, = q:,. to aclueve the  team  opti- 
mum.  Due  to  the  fact  that q:,, is an explicit function of 
information in the nth  and n - 1 th cycles only, we shall 
consider  functions of the following form: 

P , , 1 ( E n - 1 . 1 ) 4 n - 1 . 1 . E n - 1 , 2 r q n - 1 . 2  1 
knl(En-l.24-1.2) 
~ , , 2 ( E n - 1 . 1 , 4 n - 1 . I , E n - 1 . 2 , q n - 1 . 2 : ~ n 1 . 4 n l )  

kn2(En19 4 n l ) .  

From  the consumer’s  viewpoint, for any given pricing 
scheme of the above  form  he faces a  one-person  optimiza- 
tion  problem. The necessary conditions  for t h s  problem 
can  be  obtained  by using the  dynamic  programming  method 
and  are given  by the following proposition. 

Proposition 2: The necessary conditions  for  the  con- 
sumer  are 

Period n2: 

= 0. 

Period nl  

= 0. (4) 

Now we want to find somep  and k  such that q,?,>, = q;,,*. 
We shall start with simple  functional  forms. Let 

where the e ’s and d ’s are coefficients yet to  be  determined. 
Note  that P , , ~  is an affine  function. kni is  a  product of q and 
E ,  and k,, vanishes when the previous realized E equals  its 
expected value  (which is 1 in our case). Also  note  that k,,, 
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and even years. Thus, it is very important  to  examine  the 
asymptotic behavior of the  solution. Two questions will be 
addressed here. First. will the coefficients of the  solutions 
converge? That is.  will the  consumer face a fixed set of 
coefficients for  each cycle under  consideration? If  these 
coefficients do not converge. the  consumer will face a 
different set of coefficients each cycle.  which  is  very unde- 
sirable.  The second question is whether or not the system is 
stable. That is. if some small disturbance  occurred  at  the 
nth cycle. will it die  out  as time  passes? If the system  is not 
stable,  any small disturbance  occurring  either in consump- 

(6) tion or in pricing  will cause  future q. p .  and k to  oscillate 
forever. We shall investigate the  team solution first. 

I f  p,,l and p l l z  are  substituted by (5) with coefficients given 
above, then q,*l = q,:l and 4,Tr = qAr. 

Note  that  although  the  above  formulas for d , l / .  and 
ellh seem quite  complicated. it is only  important to know 
here that if ( A S 1 )  is satisfied, then the  consumer  can  be 
induced  to behave cooperatively,  and  the coefficients of 
pricing  strategies  can  be  precalculated. ( A S I )  is the second 
order  condition  that  guarantees q* to  be the true maximal 
strategies. We shall see in the next section that  as :V 
approaches infinity. the sequences  converge 
and ( A S I )  is satisfied. Note also  that dll l  > 0 (the coeffi- 
cient of the fixed charge for period n2)  which says that if  
the realized till is greater  than  its expected  value (a-hich is 
1). then the fixed  charge for the next  period ( k,f2  ) will be 
positive. Similarly. e,,l > 0. 

C. Comparison Betw3een Peak  Load Pricing and Loud 
Adaptice Pricing 

Let P l a p  and J{ap be, respectively, the  optimal payoffs 
for the  Stackelberg  game  and  its  corresponding team prob- 
lem under  the  load  adaptive  pricing  formulation. We can 
also  formulate  a Stackelberg game and its corresponding 
team  problem  under  the peak load pricing formulation 
having the information  structure  as shown in Fig. I(b). Let 
J&, and Jilp be. respectively, their  optimal payoffs. I t  is 
well-known that for team  problems.  more information 
means  equal or better payoffs. In our model it is easy t o  
show  by direct  calculation  that Jilp < J&,. Thus.  from 
Proposition 3. we have 

J& J& < J6, = .lip. 
Thus,  the model predicts  that load adaptive pricing is 
desirable. Note  that, however. the  implementation  costs of 
load  adaptive pricing are not considered here. If the energy 
costs increase at  a much faster rate  than the implementa- 
tion costs of hardware  and software. it is reasonable  to 
believe that the adoption of load adaptive pricing w i l l  be 
justified in the  future. 

V. THE CASE WITH INFINITE CYCLES 

In  the previous section,  the load adaptive pricing prob- 
lem  was treated  for the general .V-cycle case. As mentioned 
earlier. a cycle may  be a day. a week. etc. Once  a pricing 
scheme is set. it may  remain in effect for several months 

- 

4 .  Conrergence of the Team Solution atld Its  Stahilig, 

The team solution is  given  by (3), where the coefficients 
are  determined by Proposition 1. In the investigation of 
convergence of coefficients, plays a key role. I t  is easy 
to see that if the sequence {.x,ll} converges.  then the rest of 
the sequences will converge. We have the following results. 

Proposition 4: As 3 approaches infinity. {.x8,,} con- 
verges to xI where 

, 1 . '2  
- 1  y =;[-s,+(.xi-4) - ] forw,*O 

= 0 for 1r4 = 0 

and when vv, i 0, 

<xj = 2 + lt'? / 114 
+ ( I ~ l + c ) ( M ' Z T C ) / [ l ~ ~ ( M ~ I ~ I ~ ~ ~ + c ) ] .  

As a result, {xllz}. {.xII3} and all the  coefficients of the 
team solution {a, , ,} ,  {hli.,} converge (to I,. .x3. a,. and b,. 
respectively). Furthermore. 

- I < s , G O  

x-, > ( M'? + lt'? + "j T c ) > 0 

.xj >[( + c ) (  lt?? + c )  

- ( M3 + ) t i ) (  IC? + 2 c ) ]  > 0 (7) 

and the team solution exists. 
I t  is easy to derive from Proposition 4 that 

l > a , > O .  a,<O. a;GO 

I>h,>O. b3G0  

and the interpretation which  \vas applied to the finite-cycle 
case still prevails. 

We shall now investigate the stability  property. assume 
some  disturbance occurred at  the  n'th cycle and  the team 
strategies  are still followed afterwards.  From (3). dis- 
turbances  propagate  according  to the following formulas: 

~ ~ , l l = ~ ~ ~ ~ ~ , l ~ l . l + ~ ~ , , - l . , ~  

~ ~ , , , = ~ ~ ~ ~ , l l + ~ , ~ ~ ~ l l ~ l . l + ~ ~ l l - l . , ~  

= ( ~ , + ~ , ~ , ) ( ~ ~ , l - l , l + ~ ~ , i ~ ~ l . , ~  (8) 

and 
( ~ ~ , I I + ~ ~ , I ~ ) = - ~ I ( ~ ~ , I ~  l. l+Aqt?-l .2) (9)  
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where Aq,,, is the deviation from the  nominal-consumption 
level. Since - 1 < x l  G 0 as  stated in Proposition 4, the  sum 
of deviations Aq,, + Aqn2 will die  out. So will Aq,, and 
Aqn2 [from (8)]. Thus, the  team solution is stable. This is 
intuitively reasonable since optimality usually implies sta- 
bility. 

B. Conoergence of the Pricing Scheme  and Its StabilitJl 

The pricing scheme is  given by (5) where the coefficients 
are  determined by Proposition 3. In order to investigate the 
convergence of these coefficients, we shall assume that  all 
ani and b,,, have converged. Similar to the case  treated  in 
the previous subsection, ynl plays a key role here. If {y,,} 
converges, so do all other sequences. The following pro- 
position  states  the results. 

Proposition 5: As N approaches infinity, 0 < (a :  - b: - 
a i  6:) < 1, and { y,,} converges to 

y,= -[ l+(a:+b:-a ib: )] - I  

. [ ( a : + b : - a i b : ) ( x , - c )  

+ w4xl + b,Z( W ,  - w,)]. (10) 

As a result, {yni} and all the coefficients of the pricing 
rules {d,,} and {e,,} converge (to y,, d,. and e,, respec- 
tively). y 2  > 0 and y3 > 0, i.e., ( ASl) is  satisfied;  thus q:,,,, 
prim, and k, ,  exist and q,*n, = q:,,,. 

Since the consumer can  be induced to behave coopera- 
tively (q:,, = q:,), one would expect that  the  stability of 
the system follows from  the  stability of the team problem. 
This is indeed the case. More precisely, disturbances  prop- 
agate according to the following formulas  [from (5) and 
(611: 

which is identical to (9). Thus, Aqnl + Aqnz will die out; so 
will Aq,,,  Aqn2, Ap,,,, and Ap,,,, and  the system is  stable. 

Example I: Consider an infinite-cycle load  adaptive 
pricing model with the following parameters: 

w ,  = w2 = 1, w3 = 1/2, 

rv4 = 1/4, c = 2. 

q:,,,, P,,,, k,,,, and qzm are given by (31,  (51, and (6), 
respectively, where the coefficients are  determined by Pro- 
positions 1, 3, 4, and 5 as follows: 

a ,  = 0.497, a2 = -0.245, a3 = -0.063 

b ,  = 0.465, b3 = - 0.05 1 

y,  = 1.987, y3 = 1.868, yj = -0.219 

dl = 919 d ,  = -0.500, d ,  - 0.125 

e ,  = 9 2 3  e3 = -0.125. 

The condition a ,  > 0, a2 < 0, a3 < 0. b ,  > 0, b, < O1 d l  > 0, 
and e , > 0 can be interpreted as before. In this example we 
also have 

d ,  (0: d,<O,  e3 (0 .  

The negativity of d 2  indicates  that if q,,, is small and  the 
deviation from  the ideal consumption in period nl: (E,,,q, 
- qn,) is large, then pn2 will be high. The utility company 
does this since it  anticipates  a high demand in period n2 
caused by the  large deviation in  period nl. Similarly, if q,,, 
is very large and ( tn lq1  - q,,) becomes negative, piZ2 will be 
low. d ,  < 0 and e3 < 0 are  interpreted  in  the  same way. 

VI. CONCLUSIONS 

The  motivation for our research may be  stated in 
Schweppe’s words [26]: “Computing  and  communication 
are among the few thngs left in our society that  are 
decreasing in cost. Furthermore,  data-network  communica- 
tions  and mini- and microcomputer technology are evolv- 
ing  at  a  rate  that parallels the needs of electric power 
systems. Future  control systems will exploit this technology 
extensively.” And by the year 2000, “multilevel controls 
and home minis will enable utilities to buy and sell power 
at real time rates  determined by supply  and  demand.” 

The research work reported here was initiated by peak 
load pricing problems of electric systems. From a game 
theoretic  point of view, peak load pricing problems  are 
Stackelberg games where the utility company  (the  leader) 
has only open-loop  control  and  customers (followers) are 
not provided with any system demand/supply  informa- 
tion. In recognizing the limit of the peak load pricing 
formulation  and  the persuasive breakthroughs in micro- 
electronic technology, we formulate  the load adaptive pric- 
ing problem mathematically where the utility  company 
sells power at  “real time” rates. 

Load  adaptive pricing is a closed-loop Stackelberg prob- 
lem. In this paper, we have solved a load adaptive pricing 
problem  for  a  particular  producer/consumer model by 
using the methodology developed in [ 131 and [14]. We 
demonstrated  that it is possible for the utility company  to 
induce the customer  to behave cooperatively to achieve the 
team  optimum. As the number of cycles approaches  infin- 
ity,  our results show that the solution converges and the 
system is stable. 
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An Optimal Control Approach to Dynamic 
Routing in Networks 

A bstrucl -This paper explores  the application  of  optimal  control  theory 
to the problem of dynamic  routing in nehvorks. The approach derives from 
a continuous  state  space model for dynamic  routing  and  an associated 
linear  optimal control problem  with linear  state and control  variable 
inequality constraints.  The  conceptual form  of an algorithm is presented 
for finding  a feedback solution to  the optimal control problem  when the 
inputs  are assumed to be constant in time.  The algorithm employs a 
combination  of  necessary  conditions. dynamic  programming,  and linear 
programming to construct  a set of convex polyhedral cones which cover the 
admissible  state  space with  optimal controls. An implementable form of the 
algorithm, along with a  simple example, is presented  for a special  class  of 
single  destination nehvorks. 

I.  INTRODUCTION 

T HE MODEL considered in  this  paper is motivated by 
the following problem: given a  capacitated network, 

an initial  accumulation of traffic at the nodes, and possible 
input  traffic  and assuming that the accumulated traffic can 
be measured at all times at all nodes, clear the traffic 
congestion so that the total  traffic delay is minimized. The 
problem can be applicable  to  the  communication networks 
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where messages may accumulate in node buffers, transpor- 
tation networks where we have vehicle traffic [8]. or  other 
types of networks. In all cases, we address  the  problem of 
dynamic routing [ 11, whereby the decision on how to for- 
ward traffic through the network is based  on  measurement 
of the  instantaneous  queue lengths at the network nodes. 

A model for the analysis of dynamic network routing  has 
been proposed in [l], whereby it  has been shown that  the 
problem gives  rise to  a  dynamic linear continuous  state 
space  equation. The criterion considered in [ I ]  is the 
minimum weighted message delay throughout  the network 
giving rise to a linear optimal control problem with linear 
state and control variable inequality constraints and with 
linear integral cost functional. The  inputs  are assumed to  be 
deterministic  functions of time, and  a feedback solution is 
sought which drives all of the state variables to zero at the 
final time. 

Little theoretical or  computational  attention  has been 
paid  to  the class of control  problems with state variable 
inequality constraints  and the control  appearing linearly in 
the dynamics and  performance index. In this case, the 
control is of the bang-bang variety and  the  costates may be 
characterized by a high degree of nonuniqueness.  In [ 2 ]  the 
necessary conditions associated with this problem  are ex- 
amined when the control  and  state  constraints  are  both 
scalars, and  an interesting analogy is presented between the 
junction  conditions associated with state  boundary  arcs 
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