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This system is unobservable for mety constant  input. in fact, the intersec- 
tion of all the unobservable spaces with respect to all constant  inputs is 
nonempty, although the system is an observable bilinear system! 

The proofs of [9] are essentially of the existence type and the genericity 
of the required class of inputs is proved in an infinite-dimensional space 
( C ” ) .  This makes it difficult to use these results to obtain  an algorithm 
for generating the desired inputs. In contrast  to this we have proved 
genericity essentially in a finite-dimensional space. since Theorems 2 and 
3 guarantee that the set of piecemise constant  inputs with ) z i p  points of 
discontinuity is sufficient, This allows the development of the random 
algorithm presented in this section. Also. our proofs are straightfornard 
and algebraic in nature without any heaby mathematical machinery being 
used- this seems appropriate since we have considered a simple bilinear 
system. 
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Abstract-Recently there has been considerable activiw in the area of 
deterministic closed-loop Stackelberg games. It turns out that these results 
are closel) related to various incentive problems and pricing problems in 
economics. We propose in this paper a unified treatment of these problems 
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from the viewpoint of the information structure of a general two-person 
nonzero-sum game. This treatment lays bare the underlying ideas and 
permits easy estensions to stochastic cases. Single stage, linear-quadratic- 
Gaussian Stackelberg problems are then examined in detail. Examples 
from electriciv pricing  and organizational design are also discussed as 
illustrations of this general approach. 

I. INTRODLKTION 

Recently there has been considerable activity in the area of “closed-loop 
Stackelberg” problems. One reason for this interest is that it was thought 
for a long time that closed-loop Stackelberg solutions, even for the 
linear-quadratic deterministic problem. were difficult to obtain [I] .  Then 
independently. Basar and Selbuz [I]. Papavassilopoulos and Cruz [3]. [17]. 
and Tolwinski [4] all came up with solutions to this problem.What is more 
surprising. solutions in [2 ] .  (41. and (171 achieve the absolute optimal 
payoff  for the leader.’ In other words. the leader was able to induce the 
follouer to behave as if the  follower was also optimizing the payoff of the 
leader. and thus achieve the cooperative optimum. The techniques in [2].  
[3]. and [4] appear superficially rather different and somewhat specialized 
and magical. Partly, this is due to  the multistage nature of the problem. 
The  underly-ing idea actually is quite simple and can be explained in a 
unified manner which \vi11 permit further extensions.’ Moreover, Stackel- 
berg problem has its roots in economics and. as will be shown. can be 
applied to explain many interesting problems in the theory of price and 
monopoly [ 5 ]  and organizational design [6]. The purpose of this paper is 
to discuss these issues. 

11. THE STACKELBERG SOLUTION 

A. Basic Concept 

The Stackelberg solution concept, which was first introduced in eco- 
nomics in the 1930’s within the context of static economic competition [7], 
has entered the control and game literature through the works of men ,  
C m .  and Simaan [8], [9], [I]. The Stackelberg solution is mostly ap- 
propriate in nonzero-sum two-person games when one of the players (the 
leader L )  has the ability to declare and impose his strategy before the 
other player (the follower F ) .  Let rL and rF be the strategy spaces for L 
and F. respectively. with y L  E Tt. yF E TF. Let J L ( y L ,  y p )  and J F ( y L ,  
y F )  be their corresponding payoff functions as stated in the stratepic form 
of the game. The basic idea is as follows. For any given choice of strategy 
y L  made by L ,  F tries to choose a reaction strategy y: E rF which 
maximizes  his own payoff JF .  L homing P’s rationale. Nishes to an- 
nounce a strategy y t  such that with this strategy and F - s  reaction to  it, 
L’s maximum payoff is achieved. Mathematically. let 

R ( y l . ) = [ y ~ € r F : J , ( y , . . y : ! ) ~ J F ( y I . . y F )  for ally,^^;] (2.1) 

be the rational reaction set of F. Then L chooses y; such that 

i n f J , ( y ; . y F ) ~ i n f J , ( y l , , y , )  fordly,ET,. (2.2) 

where the infimum is taken over yF E R ( y ; )  on the left-hand side of the 
inequality and over y F  E R(y , . )  on the right-hand side of the inequality. 
Thus. unlike the Nash equilibrium solution concept. the roles of the 
players are not symmetric in the Stackelberg case. 

I t  is important  to note that strategies of both players are required to be 
declared prior to the beginning of the game. with L having the right to 
announce first. However. the sequence of actions during the course of the 
game involves  the  rules of the game in the extensive form. and F may be 
required to act before L. It I S  the order of urz~zou~zc.rrt,o srruregies rurher than 
the order of uct1or7s that drsri~zgu~shes L front F.  

‘ I n  [ ? I  J bet d nccc.wn conditions  lor Stackclhcrg %tr~tcgic> o f  a dctcrmini*tic. 
c l ~ n t i m w u .  d\n.muc .\,ten1 \\J> dcri\Ld Whcthcr thc a h 4 u t c  npt~rnal pa>eff could he 
. ~ h ~ c \ c d  \,.I. dlwu,.cd in S c . c t ~ ~ . n  4 of [.;I Rclcrcncc ! 1 ? 1  came to atrention  after t h e  
nr.,ttnp o f  thl, paper 

’After rrnring the earlier vcrson ~ N o \ c m k - r  13. l V 7 Y t  o f  th1, pJpcr. n c  ha\c dibcovcrcd 

k c  m w c  dl\currxw Iatcr tn Sccllon, 111 and IV. 
thJt In J p.1pcr IO he puhh-hcd [ Ih] Rawr 3 1 ~  cxtcndcd the prohlcm 10 the ~ x h a h t i c  ea.- 
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B. The  Role of Informutior? 

The infurmution  structure for a game characterizes the precise informa- 
tion gained or recalled by each player at every stage of the game. Precise 
delineation of information structures is very important because different 
information structures characterize different rules, lead to different inter- 
pretations, and also yield different results. 

The class of Stackelberg problems studied in [2], [4]. and this paper can 
be interpreted (in  a sense that is loosely stated now, but will be made 
precise later) as having the following kind of information  structure: F is 
required to act first, L acts ufter F, knowing the actual choice of F. In 
other words, L's strategy can be a function of F's  decision. That is,  while 
L announces his strategy first. F actually acts first. For lack of a  better 
name. we call such problems Stackelberg problems with ra-ersed infurm- 
tion  strucmre or simply reversed  Stuckelberg problem. 

Several important conceptual points will  be noted with respect to the 
reversed information structure. Assume decisions of L affect the  payoff of 
F (if not, then there will not be a Stackelberg problem). There  are two 
reasons why L may be interested in the decision of F. 

RI): F may  know something (about the states of nature) that interests 
L .  Knowing F's  strategy and  what he has done may enable L to infer  the 
states of nature. This occurs in stochastic problems where F ' s  information 
structure is not nested in that of L. 

R2): F's  decision may directly affect the payoff of L.  This occurs in 
deterministic problems. as well as stochastic problems with both nested 
and nonnested information structures. 

The trick here is somehow to induce F to act in such a way that benefits 
L directly as in R2) and/or indirectly as in RI). The mechanism to do this 
is for L to include the proper inducement (incentives or threats) while 
announcing his strategy. It is not too surprising that in many cases this 
can be accomplished if L's strategy can be a function of F's  action. 

A simpleminded approach would be to declare that unless F chooses 
such and such action, L \vi11 severely punish F via L's decision, which  by 
assumption can affect F's  payoff. This is in fact the basic idea However, 
there are  a couple of minor problems with this. First, the severe penalty 
may also do damage to L's own payoff. Thus, such a threat may not be 
believable. We would like to avoid unbelievable threats. Second. in the 
case of Rl), L cannot simply force F to disclose his knowledge of the 
states of nature since there is no way for L to verify its  truth directly. 
Otherwise, L would not need F to tell him what he knows about the states 
of nature.  What L can do, however, is to induce F to act in such a way as 
to reveal the truth. For example, in a public project the government 
cannot simply declare that  the cost of the project will be divided in 
proportion to the benefit that the project accrues to each participant, 
since the government cannot easily  verify the  truth of what each par- 
ticipant may declare as the benefit. The government c a n ,  however, choose 
to declare how the project will be carried out based solely on \?hat each 
participant chooses to reveal as the benefit so as to induce each par- 
ticipant to reveal the truth in his own interest. Thus the crucial ingredient 
here is the specialized information structure: among  other things. L's 
strategy is a function of F's decision. The key problem is the design of 
L's strategy. 

In the work of Basar. Papavassilopoulos, and Tolwinski only R2) is 
operative since the problem is either deterministic or has  a nested infor- 
mation structure. However. R1) becomes important in economic problems 
of the type mentioned above. Of course, in general both RI) and R2) may 
be operative. In the next section we shall first formalize these notions in 
terms of a single-stage problem. 

111. SINGLE-STAGE STACKELBERG PROBLEMS (SSP) 

A. Clusri/cution of Single-Stage  Stuckelberg Problems 

Let E = ( < , .  Er:- . , [ , , , )T be a vector of random variables with  given 
distribution. 6 represents all the uncertainties that have a bearing on the 
problem and is often called "the states of nature." Let zI. be the informa- 
tion available to L ,  and yI. be a measurable mapping from the information 
space Z,,  generated by zI. to the decision space  ti)^ of.dimension rI.. Let 
the  payoff function for L be JI. =E[L, (y , ,  yF.  t ) ] .  Corresponding 
quantities for F are defined similarly. SSP can be classified into three 
categories according to the sequence of actions by L and F. 

SINGLE-STAGE STICKELBERG  PROBLEMS 

R m  SimullmmYS - 7 
~ e t ~ ~ ~ i ~ ~ ~ t ~ ~  s ~ ~ m t , ~  ~ e t ~ ~ ~ ~ ~ ~ ~ t ~ ~  s m t m w c  OelermmstK .StOdloshc 

- 
(2.3.4) - - - 

?Lc?F ?L*?F 1 L V F  ? L W F  '71.~7~ ?L'%?F 
(I - *  - - 

LOG Not COG L E  NOlLffi LOG WI LOG - m G  Not LOG 

"* 110) 

Fig. 1. Single-stage  Stackelberg  problems. '= The follower bar a permanently  optimal 
solution. ** = The class of problems discused in Section 111-B. 

I )  ."rrnul Version: L announces yl, and also acts first. The  information 
structure is 

V / . i  Z/.(t) 
VF: z F ( u / . y E )  

where 

U1.=Y/.(3/.), :/.=z/.(c) and z F = Z F ( U I . . < ) .  

2) Raersed Version (RSSP): L announces yl. first, but  acts  after F. We 
have 

?/.; z/.(uF.E) 

V F '  'F(6) 

where 

~ F = Y F . ( Z , ) .  z l .=z/ . (uF.6)  and Z F = ~ F ( < ) .  

3) Simulruneous  Version: L announces yr. first and the players act 
simultaneously in the sense that neither player knows the action of the 
other player, The information structure is 

91.: Zl.(E) 

1)F: ZF(E) 

where 

z/ .=Z/.(t)* z F = Z F ( E ) .  

We shall assume that observations on ul.. uF are noiseless. Thus, for the 
normal version we can separate uI ,  from Z, and write the information 
available to F as 

VFi ' / . * ' F ( t )  

wherey, =Y,([) is independent of uI..  Similarly, for RSSP we have 

V/ . :  ' / . ( t )  

where y/, = Y l ( [ )  is independent of u F .  
Each category of SSP can be further classified into different cases. as 

shown in Fig. 1. The cases which have been already treated in the 
literature. are indicated by appropriate references. Our conccrn in this 
paper is mainly the RSSP. 

B. A Method to Soke  RSSP With u Nested Information Sirucrure 

RSSP with nested information structure is considered in this section. 
The case \?here the information is not nested and RI) is operative will be 
discussed in Section VI. The essence of the method is to announce L's 
strategy in such a way as to induce F to choose the optimal team strategy. 
Assuming full cooperation. L's payoff function is first maximized over the 
strategy spaces of L und F, yielding optimal team strategies for  both 
players denoted as y; and y;. Now we consider the following strategy for 
I. 

Y ; . = f ( ' F . l . / . . Y ; ( z F ) . Y ~ . ( z I . ) )  (3.1) 
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wheref has the property that Lvhen u ,  =y;( 2,). thenf=y;.(z,) for all z ,  
and z l . .  For example. y ; = A ( u , - y ; ) + y l ,  where A is some constant 
matrix. For each declaration off and hence y;. F responds according to 
y : ) ( z F :  y;.) E R ( y l ) .  We wish to choose y; such that 

If this is possible. then we have achieved the absolute optimum for L's 
payoff which obviously upper bounds the solution of the RSSP. Conse- 
quently. we have solved  the RSSP.3 

The above discussion will  now be elaborated mathematically in terms of 
steps  SI)-S3). 

SI): Derermine Teunt Strutes-Let us consider the corresponding 
team problem. where  the two players work together to  maximize Jl. under 
the original information structure. that is,  the problem 

We shall assume: 
AI);  The team problem has a solution Cy;, y;). 
2 ) ;  Derernzine F's Reaction-For RSSP. given any y I ( u F .  F 

wishes  to  maximize J F  

or. in extensive form 

This optimization process yields 

Y a Z F ;  YI . )  E R(Y1.). (3.3) 

53): Deternlirle L's Stackelberg Srruregv-Taking (3.3) into account. L 
now has to maximize J,. 

If  we can find y;( u,. y / , )  such that 

and 

then (y;.. y;) achieves  the team optimal J:., and hence solves the RSSP. 
Thus. the problem is reduced to finding y; as in step S3). In [2].  [4]. and 

[ I  I ]  y;. has the form 

where g is some function having the property that when u F = y ; .  g=O. 
Kote that (3.5) is implementable if the following condition holds. 

.A?): The information structure is nested. Le., Z,cZ,. Also. note that 
when yi, has the form in (3.5). the satisfaction of (3.2') guarantees the 
same for  (3.1'). For our problem let us consider 

If an r[, X r ,  matrix A ( y / . )  can be determined such that y t  of (3.6) satisfies 
(3.2'). then our problem is solved. If such an A ( y , , )  exists. we say that the 
RSSP is lineurlv incenfice-controllable (1. i .c . ) .  

Iv. LINEAR-QuADRATIC-GhUSSlhN STACKELBERG PROBLEM 

We shall illustrate linear incentive controllability for the LQG Stackel- 
berg problem where: 

A 3); JI.. .IF are quadratic in the decision variables of L and F and in the 
nature's decision ( u l . .  u,. and E .  respectively); 5 is Gaussian: J~ and y l .  

are linear in 5. 
More specifically, 

~ ~ . = E [ L , ] = E [ ~ U ~ . ~ ~ , U / . + U ~ D I ~ U ~ + ~ U ~ ~ I ~ U F + U ~ ~ ~ ~ *  1 I 

+ u ~ C 1 2 x + u ~ k , l L u ~ k 1 2  1 

I 
J,=E[L,]=E ? u ~ D , ~ u F ~ U ~ D ~ ~ u ~ . + ~ u ; . D ~ ~ U ~ . + u ~ C ~ ~ x  [ '  1 

- 

+ ~ F C , ~ . x + c " : k , ,   + u ; k , ,  

where x - N ( O ,  E). with dim ( . x ) = n .  D , j .  C,,, i. k =  I. 2 , j =  1,  2. 3, are 
constant matrices of appropriate dimensions, D,, <O; k , ,  are appropriate 
dimensional constant vectors. The observations are 

);=H,xSn~,:, i z 1 . 2  

where dirn(y,)=m,, n; --N(O, A,) ,  and H, are  appropriate dimensional 
constant matrices for i =  1. 2. x ,  w I .  and y are independent random 
variables with P>O and A ,  2 0 .  Note that x. w I .  and w 2  now constitute 
the state of nature ( 5 ) .  T3e information structure is 

91.: u F .  yl 3 y2 
1)F: y2. 

We shall now solve  the LQG-RSSP following the steps Sl)-S3). 
SI): Determine  Team  Srrufegy- In view  of the nested LQG assumption 

[A2),  A3)]. the solution to the team problem [which exists by must 
be such that y; and y; are affine in z I .  and z ,  [ 121. TIUS solution. obtained 
using standard techruques, is 

Y ~ = - D , ~ D , ~ U F . - D ~ ~ ' C I I E [ . ~ I . V I . J ~ ] - D I ; ' ~ I I  (4.1) 

- D ~ D , ' k l , + k I l ] .  

Note that 

E[*l.Y2l=Z,y, 

E[y1(y21=H,Z,?., 

E [ X ~ J ~ . V , I = K ~ ~ + ( ~ - K H I ) Z ~ ~  
where 

z,=zH,T(H,XH:+:\,)-I 

K = P H : ( H , P H : S , ) - I  

P=E-EH'E; 

assuming. as we do here. that the inverse matrices are well defined. For 
simplicity. we shall  JUS^ write 

Y 1 = h , l ? . , f h , , ? , ' h l ; u , - h t , )  

y; =If2?', +hz0 

\vhere h , , .  i = l ,  2. j = O .  I .  2. 3, are constant matrices of appropriate 
dimensions. For ease of discussion. we shall make the following worhng 
assumption. 

A4): J, and y2 are independent. Note that if A4) does not hold we can 
ahvays subtract from  the orthogonal projection of on J: ( N l l ' : j * ?  ) to 

'In rhc LQCi ccwtcxt us .hall  further J ~ ~ U ~ C  llII<O. D , , - D ~ , l l , , l D l 2 < O  
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obtain j , ,  which can be thought of as the “innovation” part of y , .  The 
new, but equivalent, fI, y 2  then satisfies A4). 

S?): Determine Fs Reuction-We rewrite (3.6) as 

~ ~ = ~ ( . ~ ’ ~ ~ ~ ~ ) ( ~ F . - ~ ~ 2 ~ 2 - h 2 O ) t h l l ~ ~ l + h l 2 ) ? ; ? + h l 3 U F + h 1 0  

(4.3) 

and then substitute it into J F  and differentiate the resulting function with 
respect to u,. Thus, we obtain the necessary condition for y; 

E / ~ 2 [ ~ ~ 2 ~ ~ ~ ~ 2 l ( ~ ( ~ F ~ h 2 ~ ~ ~ ~ h ~ O ) ~ h i l ~ i t h l 2 ~ ~ - t h l 3 u F  

+ h 1 0 ) + ( h ~ 3 f A T ) D 2 7 u F f ( h : 3 + A r ) D 2 3 ( A ( u F - h 2 2 . ~ 2  

- ~ 2 0 ) t ~ l I ~ I + ~ l Z ~ 2 f h 1 3 U F ~ + h 1 0 ) ~ ( h ~ + A 7 ) ( C ~ I X + k 2 1 )  

+C2,x+k2,] =o. (4.4) 

To enable us to solve for u F  explicitly, we shall further assume that 
A 5): 

E/.V2[D,,+021(h11+A)+(h:3tA7)D~ 

+(h:3+Ar)D23(h13+A)]<0 

for all possible,vz. Note that A5) is guaranteed if DZ1 = O ,  i.e.,  the effect of 
u,. on J ,  is additive. Also, if A is not a function of y, ,  then  the left-hand 
side of the above equation is a  constant [in view of A4)] and A5) will be 
easy to check. 

S3): Determine L’s Srackelberg Struregv-  We  now seek to determine 
the conditions under which  (3.2’)  is satisfied. We shall first consider A ( J ~ ,  
v 2 )  of the following additive form: 

A(yl..2)=AO+AI(Yl)+A,(n) (4.5) 

where A, is a function of .v, only for i= I ,  2, and A. contains all the 
constant terms. With A as in (4.5) and u, =y;, (4.4) then becomes 

[ (D~,+D~I~I~+~:~D: ,+”~~D,~~I~) ’~O+D~I ’ IO 

+hf,D,,hl,+h:3k,,+kz,]+(A,T+E(A:))(D27hro 

+D?,~,,~~~+D~,~~,,+~~I)+E[A:DD~~~~IIYI]+E[A:CZI~;I I  

+[(D,2+D21hl)+h:,DZ:+hf3D23h13)hZ~+D~1h1~ 

+h:jD,,h,,+(h:,C?I+C,,)~.r+(A,T+E(A:))(Dz:hzz 

+ D 2 ? h 1 3 h ? 2 + ~ 2 3 h 1 2 + c ~ I ~ 2 ) ] ~ 2  

+ A ~ ( D , : h , , + D 2 3 h 1 3 h 2 0 f ~ 2 3 ~ , 0 + ~ l l )  

+ A i (  DAh,, +&hI,h,, +D,3hl2 + C Z I ~ ~ ) . V ~  =O. (4.6) 

Now in order for (4.6) to be an identity for all possible y2, we  need 

A~(D1:h22~’23h,3h?2+D23hl?fCzIZ2)K=O. 

A sufficient condition for this would be either 
A6): A,(?’z)’O 

or 
Ah’): D,, =O. D,, =0, C,, =O. 
The assumptions A6) and A6‘) deserve further comment. One reason 

that A6) is required is this: The strategy (4.3) when substituted into JF 
yields the nonlinear term A2(y2)y2 which can not be equated with the 
linear term y2 in y i  , Similarly, requiring A6‘) means that u 1. only enters JF 
linearly. Consequently. by choosing A 2 ( y 2 )  to be linear, one  can hope to 
realize (3.2’) or yi. In view of the above discussion, several cases of 
A(?.,, y 2 )  are distinguished. 

Case 1 : A = A o ,  a  constant. 
Case 2: A = A ,  +Al(yl). 

Case3: A = A o + A 2 ( y 2 ) .  

For each case, a sufficient condition for linear incentive-controllability 
is obtained. Essentially, it requires the existence of the matrix A satisfying 
(4.6) for all possibley2. The results are summarized in three propositions 
after  stating  further assumptions. The messy details of the  proofs are 
omitted since they are straightfonvard. 

Cuse I: A =A,. 
A 7 )  There exists at least one  constant matrix A, that satisfies the 

follonlng equations: 

B , A ,  = B, (4.7) 

B,A,  = B, (4.8) 

where 

B ~ = ( ~ ~ h 2 0 f D 2 3 h 1 3 h 2 0 + D ? 3 h I O + ~ Z I ) 7  

B , = - [ ( D , z + ~ z l ~ I 3 + ~ ~ ~ 1 : + ~ ~ D Z ~ ~ 1 3 ) ~ * O + ~ 2 l ~ l O  

+h:3D,3hlo+h:,k,l+k22]7 

B3=(D27; i222+D23h~3h22iD23h12+C~~~2)T 

B,= - [( 022+D2lhl3 fhLD23i113)hzz +D2lh,2 

+hf3D23hl?+(h:3c2,+c~2)ZZ]1.5 

Proposirion I :  If AI), A4),  A5), and A7) hold, then the LQG-RSSP is 
I.i.c..y; is given  by (4.5), where A = A ,  is obtained from (4.7) and (4.8). 

This proposition is the same result as Theorem 3.1 of 1161. Note  that the 
dimensions of A,, B , ,  B2,  B3, and B4 are rl.XrF. IXr,., IXrF, nXr, . ,  
n X r F ,  respcctively. We have rl,rF variables to choose to satisfy ( n i  I)rF 
equations. Since the satisfaction of A7) is not generally guaranteed when 
n>r,, - I ,  one might be tempted to conclude that 7; can be induced only 
by making the penalty infinite. Cases 2  and 3 show otherwise. 

Y; =u;. 

Cuse -7: A = A , + A , ( y , ) .  
A8): There exists at least one matrix A ( y I ) = A o  + A , ( y , )  that satisfies 

the following equations: 

B , ( A , + E ( A , ) ) = B ,  (4.9) 

€ [ A : ( - D z ~ D I ; ~ C I I + C Z I ) K ~ , ] = B ~  (4.10) 

where 

B=(D,:h?z+D23h13h22+023111?+CzIZ2)7  

$=-[(D,Z+D,,h,,+h:3Dz:+h:3Dz3h13)A?2+Dz1h1, 

+~~&D23h12 +(/2:3C21 +C,z)z~] 

B,=-[(~~2+D~lhl3+h:3d2:+h: jD,3~l~)h, ,+D2lh, ,+h:3D23~l ,  

+ h ~ ~ k ~ ~ + k ~ ~ i ( ~ ~ + ~ ( ~ ~ ) ) ( ~ ~ h 2 0 + ~ ~ 3 h l 3 h ~ 0 + ~ 2 3 h l 0 + k ~ l ] .  

Proposirion 2: If  AI), A4). A5), and A8) hold, then the LQG-RSSP is 
1.i.c.. y; is  given  by (4.5). xvhere A = A ,  ? A , ( J ~ )  is obtained from (4.9) and 
(4. IO). y: = yk. 

In this case the dimensions of B,. B6. and B ,  are rn2 Xi-/,. nz2  Xr,, and 
r, X 1. respectively. Equation (4.7) contains m2rF equations arith rI.rF 
degrees of freedom. Thus, in general it is required that rl, Equation 
(4.10) contains r, equations. If  we let each component of A ,  to be a linear 

‘NOIC that h,: arc rclatcd to bptcm parameters  via (4.1) and (4.2) 
hTht\ i, a rcnsonahlc  rcquircmcnt: aftcr 011. we arc attcmpting 10 use u,. (dim r,  ) to 

inducc y;. Khich dcpcnds  on y 2  (dim ,>I?) .  
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function ofvl ,  then we can, in general. choose the r,.rF variables to  satisfy 
(4. IO). 

CUR 3: A = A o  + A 2 ( y 2 )  and A6‘). 
A9): There exists at least one matrix 

“ 1  2 

A(.Y2)=A,+A2(y2)=Ao+ 2 Yr,A2, (4.1 1) 
i =  I 

whereyZi is the i th component ofy2 that satisfies the following equations 
for all possible y2:  

kTIAO= -( &h2, +hf3kzI +kZ2)’ (4.12) 
111 2 x . ~ ~ , A L k 2 1 = - ( D 2 z h z z + C 2 2 z , ) y 2 .  (4.13) 
,= 1 

Proposirion 3: If AI). A4). A5), A6’). and A9) hold, then the LQG- 
RSSP is 1.i.c.. y; is  given by (4.5)  and (4.1 l), where A(yr) is obtained from 
(4.12) and (4.13). y; =y;. 

Note that in (4.12) there are r,.rF variables to choose with rF equations 
to be satisfied. In (4.13) there are m2rl.rF variables to choose B6th r ,m,  
equations to be satisfied. Thus, solutions will, in general, exist. 

We can also derive sufficient conditions for 1.i.c. with A(yI,y2)=Ao * 
A l ( x , ) ~ A Z ( . ~ 2 )  under A6‘) when neither A ,  nor A ,  is identically equal to 
zero. It turns  out that the result is  very similar to Proposition 3. Also, by 
allowing cross-product terms of y,. y 2 ,  in A, instead of the adhtive form 
(4.5), the above results can be extended somewhat. However, the underly- 
ing principle of solving the problem is still the same. We shall just 
illustrate this in the scalar case by adding a cross-product term A3y,x2 to 
(4.5). This adds only one  extra term to the left-hand side of (4.6) 

A,(&h,, +C,IK)E[Y:lY* 

which is linear in yr .  All other terms remain unchanged. Sufficient 
conditions can then be derived in the same manner as we have done. 

The above development shows that there is considerable flexibility in 
these problems, and solutions are generally not unique. We shall illustrate 
further by means of examples. 

Esumple I: Consider an RSSP problem with LQG structure. where 

J / . = E I L , . I = E [ - ~ u : + u , u , - u ; + * l u , ~ - r , u ,  - 1 
J F = E [ L F ] = E [ - 2 u : + ( x l + . x r ) u F + h u , . - u F ]  

and I, and .xZ are independent zero-mean Gaussian random variables. Let 
the information structure be 

‘I/.: U F q  .XI. x ?  
’ I F :  x? .  

From (4.1)  and (4.2) the  team solution is 

y;. = u F  +x, 
y;=x2. 

Since  A6‘)  is satisfied, w’e shall use Proposition 3. Plugging appropriate 
numbers, (4.12). (4.13) become 

h A , = l - h  

hA2 =3. 

Thus, we can solve for the coefficients A ,  and A,, if hfO.  In th s  case we 
have ,4, =3/h and A,, = ( I  - h ) / h ,  and hence the  RSSP  is linearly incen- 
tive-controllable. When h=O, L’s strategy does not affect the  payoff 
function of P,  and the  RSSP  is not linearly incentive-controllable. 

E.\-umple 2: This is  the same as Example I .  except that JF is modified 
as follo\vs: 

PI C-l 
Prlce 

bl b, b, total 
consumpllon 

Revenue 

I 

b, b, b3 I O t O I  
consurnptlon 

Fig. 2 Dechning b!ock rate 

Since A6‘) is not satisfied. we shall use Proposition 2. Equations (4.9) and 
(4.10) now become 

A o + E [ A , ] = 2  

E[Aly,]=3h-  1 

We can l e t . A , ( ~ , ) = , i ~ l .  where k, is a  constant. then 

A” =2  

.j, =(3h- I ) / € [  X;] 
Thus. 

y;=(2+(3h--l)?,/E[ \ - ~ ] ) ( u F - ~ 2 ) - u f - . x ,  

Y?’ =vi  
and the problem is  1.i.c. 

v. DECLINING BLOCK R U E  V I A  THE REVERSED STACKELBERG 
PROBLEM 

In the electricity pricing context. the utility company (the producer) 
plays the role of the leader, and the customer (the consumer) plays the 
role of the  follower.’ For a given pricing strategy. the consumer de- 
termines his consumption strategy. The producer foresees this reaction 
and decides the optimal pricing strategy. 

In general, the price of electricity may depend on the time of consump- 
tion and/or the level of consumption. Declrnirlg block rute is an example 
where the price depends on the level of consumption rather than on the 
time of consumption. The price is  the hghest for the first block of units 
consumed. after which it declines in a series of steps to lower and lower 
levels. As shown in Fig. 2, the dollar revenue r ( q )  is a monotonic 
increasing piecewise linear function of q. the total ktch consumption of 
electricity. Let r,. be the  set of all such functions. 

In th s  section we shall show that the declining block rate problem (or 
the more general nonlinear pricing problem [5] )  can be formulated as a 
recersed single-stage Stackelberg game. We shall assume a simple, but 
meaningful deterministic model. 

J,  =r (  (7) - -cq2 
1 
2 

Capacity constraint: q<ij (5.1) 

Regulation: J,  < k q  (5.2) 

where S ,  4, c, 4. and k are some positive constants. The first term in JF 
represents the degree of satisfaction that the consumer achieves by 
consuming at the level q. and the second term r( q )  is the cost of electricity 
to the consumer. It  can be shown that JF defined here is the conventional 
“Consumer’s Surplus” 1131.  1141. For the producer, Ij2cq’ represents the 
generating cost and J,. is  the profit. Thus. the utility company in this 
model is a regulated profit maximizing monopoly with capacity limited to 
6. For any given r( .)E r,. the consumer chooses his consumption level q. 
The actual cost to the consumer will depend on 9. The producer foresees 
this in deciding the optimal r( .). Thus. the problem is a RSSP with the 
following information structure: 

rc.c:trch u t  \ h I I  con\ldcr muI1~plc cultonlcr c l d ~ e \  
‘In thc m t l a l  anal\..,\ \\c aggrcgn~c all cu~tomcr. tntn a \Ingle c ~ ~ t o r n c r  clab.. In larcr 
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91. 4 
qp :  e ! ,  no information. 

We shall now  solve this deterministic RSSP problem by the method 

SI): Determine Teum  Strutegy 
described in Section 111. 

maxr(q)--cq’ subjectto(5.1)and(5.2). 
I 

r (  ’ ). 4 2 

The solution is 

q‘ =(j 

and any r ( . ) E r l .  such that r ’ (4)=k$+1/2c( j2 .  

is 
S2): Determine F‘s Reuction- For  any given r( .)Er/., the reaction of F 

m,“ 9 [ q 2 - ( q - a Z I  - r ( q ) .  

The necessary condition is 

sq=sq-qq) (5.3) 

where P( q )  = dr( q ) / d q .  

such that r ’ ( ( j )=r‘ ( ( j )  and qS=4 .  Consider r S ( . ) E r L ,  with 
S3): Determine L’s Stackelberg Struregy-Now we want to find rS( .) 

1 
rr( rj)=kQ+ -cQ* 

2 (5.4) 

and 

P( 4’) = p  

where P(q ” )  is the value of dr’ (q) /dq  evaluated at q’. From (5.3) we have 

q s = ( S q - p ) / S .  

To ensure qS = 4, we need 

p = S ( j - B ) .  (5 .5)  

For f 3 0 .  it is necessary that 
AIOJ: 
If AIO) holds, then any r ( . ) E T , , ,  such that (5.4) and (5.5) are satisfied, 

is a  candidate solution for the producer. However, since JF is not concave 
( J F  is piecewise concave), (5.3) is not a sufficient condition for the global 
optimum of JF. We  need to check and make sure that the q derived from 
(5.3) is actually the global maximum of JF.  If that is true, then r ( - )  is a 
Stackelberg strategy for the producer. The optimal consumption level is 4. 
Note that (5.4) and (5.5) can also be implemented by a two-part tariff 
with unit pricep and fixed charge F, i.e., r ( q ) = p q + F ,  where 

p=s(q-rj), F = k g + - c 4 2 - S ( j ( q - 4 ) .  1 
2 

In this case. the RSSP is linearly incentive-controllable. 

VI. INCENTIVES IN A DIVISIONALIZED FIR?? 

When A2) does not hold, i.e., the information structure is not nested. 
R1) becomes operative. In this case the method proposed in Section 111-B 
cannot be used. However. a related team theoretic concept applies. as 
illustrated by the folloahg example of organizational design. 

Consider the problem of a firm with two more or less autonomous 
divisions A and B. Let the  firm’s payoff function be 

J / . = 3 4 ( U A . S A ) + J , ( U B . C , )  (6.1) 

where JA ( J , )  is the part of payoff gained by division A( B ) ;  E A  ( t B )  is a 
local parameter vector known only to A (8). The  central  headquarter 
needs to allocate some scarce resources uA and u, to divisions A and B. 
The choice of uA and u B  is  to be done so as to maximize J,, ivithout direct 

q:J-L-pq-y E, UB JL 

7s“ 

Fig. 3. Illustrating  incentives  in a divisionalized firm. 

knowledge of [ A ,  C B .  Driven by selfish interests, division A may want to 
misrepresent [A to  the  headquarter as C A ,  so as  to increase JA at the 
expense of J,. (The same applies to B.) The problem here is to devise an 
incentive system so as  to elicit honest responses. More specifically. the 
headquarter needs to decide, besides uA and u,, some boncses u L A ,  u , . ~  
such that the payoff functions to divisions A and B are JA =JA + u L A .  
jB =JB + uI.,. respectively. The basic idea works as follows. 

1 )  Consider the problem Max,+ with full knowledge of la and 6,. 
Let the solution be 

u A  ‘yA* (  E A  I E , ) ?  u B  = Y B * (  [A 7 [ B ) .  (6.2) 

Now suppose we implement yA*. ye* and consider the related problem, as 
illustrated in Fig. 3. 

We are asked the  question: “If we observe t A  and then should we 
report the truth or something different to the box ( y A * .  y,*) in order to 
maximize JI.?” It is intuitively obvious that nothing can be gained by not 
telling the truth,  and the box (?) is the  identity  function. The mechanism 
for eliciting honest response simply builds on this idea.x 

2) Let the headquarter declare a  bonus to division A such that the 
combined return  to division A becomes 

Then for the purpose of Maxi,L, djvision A faces essentially the same 
problem as  that of Fig. ?; hence, [ ,4 =[,4.9 Note that (6.3) does not 
depend  on E B ,  but only on tB .  Thus, true response is optimal for A even if 
he knows that B didpot respond correctly. 

3) The term h A ( t B )  is more or less arbitrary and can be chosen to 
satisfy 

so that the center always has the money to  pay for the bonus. The ideas in 
I )  and 2) are more general than th is  specific application and  can be 
considerably extended [6]. 

From the view  of the Stackelberg problem with reversed information 
structure. the center declares to A the incentive policy 

u A = y A * ( i A . i B ) .  u B = Y B * ( ~ . ~ . ~ B )  

But A is required to act-first by declaring i,, (and similarly for B )  
knowing the payoff to beJ, = J 4  + u I A .  

VII. DETERWINIS~C MULTtSTAGE D w A h t I C  PROBLEMS 

The heart of the multistage dynamic Stackelberg problem is the single 
stage case just treated. The only difference is that the possibilities for 
different incentive or threat mechanism due to different information 
structures increase enormously. The problem treated in [2]. [4], and [I71 
are only special cases. The surface has only been scratched. A separate 
and detailed discussion will be presented elsewhere [18]. However. the 
main idea can be sketched out here. First, we have decision variables 
u,,(O). u , ( l ) , . . . . u / . ( t ) : . . . ~ , . ( T -  1) and u F ( 0 ) .  u F ( l ) : . . , u , ( r ) ; . . ,  
u F ( T -  1). and the corresponding strategies. It is customary, although by 
no means necessary, to assume that 

”Theorem 4 I I o f [  151. 
’It ib rcawnahle  and acccptcd (ace 115. page IXY])  to assume that If a player i5 indiffcrcnt 

hetwccn tru~h telling  and  chcating  he w i l l  tcll thc  truth.  Thus. w’e permit nonunique 
nxnlma in 3,.  
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Fig. 4. Decompo5ition of a multistage  problem 

A i l ) .  

? l , . ( r ) :  x(0) I . . . . .  .(t), U , ( O )  ..... U [ . ( P I )  

T F (  I ) :  x ( O ) . .  .. , x( t ) ,  U F ( 0 )  ,... * UF( I -  I ) ,  

i.e.. each player has perfect memory of the state ( x )  and his own control 
history. The point here is that given . x ( t ) .  u,.(t- I ) ,  X([- I). we can in 
general calculate u F (  t - 1) or vice versa [4]. As shown in Fig. 4, the leader 
at time r can choose h s  decision u , ( f )  based on u F ( r -  I )  (or the entire 
past decisions of the follower). thus L essentially imposes a kind of 
reversed information structure on F. Note  that whoever  gets to declare his 
strategy First becomes the leader. This approach requires separate-treat- 
ments at t = T -  1 and 0 by solving u,(T-  1) first which has a perma- 
nently optimal solution, and considering uF(  - I )  to be  fixed at zero as is 
evident in the works of Basar and Tolwinski. Also. bear in mind that the 
distinction between closed-loop Stackelberg controls and Stackelberg 
feedback strategies [I] still exists. With this understanding. closed-loop 
Stackelberg strategy for linear quadratic deterministic problem can be 
solved using the basic idea discussed in Section 111. It is clear that many 
strategies y;, are possible due  to the enormous flexibility here. For 
example, L’s strategy may punish a  nonrational behavior of F for one 
stage only (as in (41). two stages, etc.. or for the rest of the game (as in [2]). 
It is thus possible that different y;. may enjoy various advantages. 

VIII. CONCLIXON 

In this paper we have identified two reasons why L may be interested in 
the decision of F. First. knowing F’s  strategy and h s  decision may enable 
1. to infer the states of nature [RI)]. Second, F‘s decision may directly 
affect L’s payoff [R2)]. We then discussed mechanisms by  which L can 
induce F to behave cooperatively. In case RI)  the mechanism is to 
transform F’s payoff function so that it looks like L‘s ow-n. In case  R2) it  
is to make directly any choice of F’s strategy other than the cooperative 
one unpalatable. In either case the crucial requirement is that we have the 
reversed information structure as defined in Section 111. It serves as a 
unifying ingredient in diverse applications. 
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A New  Computational  Method for Stackelberg and 
Min-Max Problems by Use of a Penalty Method 

KIYOTAKA SHIMIZU AND EITARO AIYOSHI 

Abstract-This paper is concerned  with the Stackelberg problem  and 
the min-max  problem  in  competitive systems. The Stackelberg approach is 
applied to the  optimization of two-level systems where the higher level 
determines  the optimal  value of its decision variables  (parameters for the 
lower  level) so as to minimize its objective, Hide the lower  level  minimizes 
its own objective with respect to the  lower  level  decision  variables under 
the given parameters.  Meanwhile, the min-max problem is to determine  a 
min-max  solution  such that a  function  maximized  with  respect to the 
maximizer’s  variables is minimized with respect to the  minimizer‘s  varia- 
bles. This problem is also characterized by a parametric  approach in a 
two-level  scheme. New computational  methods  are  proposed  here;  that is, a 
series of nonlinear  programming  problems  approximating  the  original 
two-level  problem by application of a  penalty  method to a constrained 
parametric  problem in the  lower  level  are  solved  iteratively. It is proved 
that  a  sequence of approximated solutions converges to the  correct Stac- 
kelberg solution, or  the  min-max solution. Some numerical  examples are 
presented to illustrate  the  algorithms. 

I. INTRODUCTION 

This paper is concerned d t h  the Stackelberg problem and the min-max 
problem in competitive systems. 

The Stackelberg solution [ 141, [ 121. [ 131. [8] is the most rational one to 
answer a question: what will be the best strategy for Player 1 who knows 
Player 2’s objective function and has to choose his strategy first, while 
Player 2 chooses his strategy after announcement of Player I ’s strategy. A 
problem in the field of competitive economics is one such problem. 

The min-max problem [3].  [2]. [4]. [9].  [6]  is formulated so that a 
function, maximized with respect to the maximizer‘s variables. is mini- 
mized with respect to the minimizer’s variables. The min-max solution is 
optimal for the minimizer against the worst possible case that might be 
taken by the opponent (the maximizer). Thus. the min-max concept plays 
an  important role in game theoq. 

Many articles on  the equilibrium solutions. such as the Nash solution 
and the saddle-point solution. have been published. However, the Stackel- 
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