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Neural Network-Based Market Clearing Price
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Abstract—Market clearing prices (MCPs) play an important
role in a deregulated power market, and good MCP prediction
and confidence interval (CI) estimation will help utilities and
independent power producers submit effective bids with low
risks. MCP prediction, however, is difficult, since MCP is a
nonstationary process. Effective prediction, in principle, can be
achieved by neural networks using extended Kalman filter (EKF)
as an integrated adaptive learning and CI estimation method. EKF
learning, however, is computationally expensive because it involves
high dimensional matrix manipulations. This paper presents a
modified U-D factorization method within the decoupled EKF
(DEKF) framework. The computational speed and numerical
stability of this resulting DEKF-UD method are significantly
improved as compared to standard EKF. Testing results for a
classroom problem and New England MCP predictions show
that this new method provides smaller CIs than what provided
by the BP-Bayesian method developed by the authors. Testing
also shows that our new method has faster convergence, provides
more accurate predictions as compared to BP-Bayesian, and our
DEKF-UD MCP predictions are comparable in quality to ISO
New England’s predictions.

Index Terms—Confidence interval, deregulated power market,
extended Kalman filter, market clearing price, neural networks,
prediction.

I. INTRODUCTION

THE MARKET clearing prices (MCPs) in a deregulated
power market are volatile. For an independent system

operator (ISO), the energy MCP is cleared by solving a unit
commitment and economic dispatch problem with the bids
and system conditions. High-quality MCP prediction and its
confidence interval (CI) estimation would help utilities and
independent power producers submit effective bids with low
risks, and make good bilateral transaction decisions. What is
a good MCP prediction and CI estimation method for a utility
company who only has limited information? This is a difficult
question because MCPs are heavily affected by load, which
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can go through rapid changes due to weather swings or sea-
sonal changes causing MCP to be nonstationary [1]. Different
estimation methods will have different CIs, while small CIs are
preferred, and this topic has not been adequately investigated.
How to develop an adaptive MCP prediction method with fast
convergence and small CIs is the major issue addressed in this
paper.

Among the variety of prediction methods, neural networks
have been widely used because of their strong learning capa-
bility [2]. They can approximate any continuous multivariate
function to a desired degree of accuracy [3], [4], or predict a non-
stationary process if the weights are adaptively adjusted during
on-line update [1]. The multilayer perceptron (MLP) network
is one of the popular networks and will be used in this paper,
with back-propagation (BP) and the Newton’s method as its
learning algorithms. Traditional BP is a first-order steepest de-
cent method and suffers from slow convergence, and may not
be effective for predicting nonstationary processes [4], [5]. Al-
though the Newton’s method requires less number of iterations
to converge, it suffers from excessive computational require-
ments for large problems [6], including the MCP prediction
under consideration.

The Kalman filter is a well-known method for recursive
state estimation of linear dynamic systems, and is a min-
imum mean-square-error estimator. Through linearization,
the extended Kalman filter (EKF) has been widely adopted
for state estimation of nonlinear systems [7], [8], and can be
used for state estimation of nonstationary processes because
of its tracking capability [9]. EKF has been used to train MLP
networks by treating weights of a network as the state of an
unforced nonlinear dynamic system [10]–[13]. Since it is a
second-order learning algorithm, fast convergence is expected.
In addition to providing predictions, EKF can also estimate
CIs based on its innovation covariance matrix. For nonlinear
systems, EKF has been shown to preserve most of the proper-
ties of Kalman filter if nonlinearities are not severe [8]. Small
CI estimation can thus be integrated with learning, as will be
briefly reviewed in Section II, and a modified EKF considering
the input uncertainty will then be developed in Section III.

Using EKF as a learning method for MCP prediction, how-
ever, may not be easy in view of the high dimensionality of the
weights involved (e.g., 500), causing excessive computational
requirements. Efficient implementation of EKF is therefore crit-
ical. A simplified EKF algorithm called the “decoupled EKF”
(DEKF) was developed in [12], ignoring the interdependency
of weights across neurons. Specifically, the input weights to a
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neuron are grouped, and the weight covariance matrix is as-
sumed to be block diagonal. The innovation covariance for the
entire network is first computed, and is then used within the de-
coupled groups to update Kalman gains, weight covariance ma-
trices, and weights. Testing results showed that the degradation
in prediction accuracy is minor.

Due to truncation and round-off errors, DEKF may lead to the
loss of symmetry and positive definiteness of the weight covari-
ance, causing difficulties when the number of data samples is
large [13], [14]. What method could be used to improve the nu-
merical stability and accuracy for DEKF? U-D factorization is
a generic method to improve matrix computation. It factorizes
matrices into unit upper triangular and diagonal matrices [7],
[13]. When used in EKF, standard U-D factorization needs to
update the innovation covariance matrix, Kalman gain, weight
covariance matrix, and weights at the same level, while the stan-
dard DEKF updates the innovation covariance at the high level
for the entire network and other matrices at the low level within
individual groups. To overcome this difficulty, our idea is to up-
date the innovation covariance at the high level for the entire
network, while implementing U-D factorization at the low level
within individual groups by modifying the standard U-D factor-
ization. The new DEKF-UD method will be presented in Sec-
tion IV with significant reduction in computation and improve-
ment in numerical stability.

Numerical testing results for a classroom problem and for
New England MCP prediction presented in Section V demon-
strate that neural network learning with DEKF-UD is much
faster than that with standard EKF or Joseph form covariance
update EKF implementation. Testing also shows that DEKF-UD
has faster convergence, and provides more accurate predictions
as compared to BP. DEKF-UD also provides smaller CIs as
compared to a BP-Bayesian method (a combined BP learning
and Bayesian-based CI method) developed by the authors [15],
with 50% reduction for a classroom problem and 7% reduction
for New England MCP prediction.

II. LITERATURE REVIEW

Neural network prediction methods have been briefly de-
scribed in Section I, and more detailed coverage can be found
in [3] and [16]. The methods to estimate CIs can roughly be
classified into three categories: resampling [17], [18], perturba-
tion model [19]–[23], and Bayesian inference [3], [15], [24],
[25] to be briefly described below.

The resampling method derives CIs by randomly selecting
data points with replacement from an original output data set
to form multiple sample data sets. The CI of the mean can then
be calculated from means of the sample data sets. This method
resamples output data, and cannot effectively consider input
uncertainties. The perturbation model examines the effect on
output if some parameters are perturbed. It uses Taylor series
expansion to relate changes in the output to perturbed parame-
ters. This method, however, is difficult for a neural network with
a large number of weights because it requires high dimensional
weight covariance matrices. Both the resampling and perturba-
tion model have difficulty to address the small CI issue.

Fig. 1. A MLP network.

Bayesian learning for neural networks has attracted much at-
tention recently. Starting with a prior distribution of weights
for a neural network, the method develops a posterior distribu-
tion of the weights from historical data . Optimized weight
vector is obtained by maximizing a posterior distribu-
tion , or equivalently minimizing a cost function with
sum-of-squares error plus an additional “weight-decay” regu-
larization term [3]. The Bayesian method is therefore a min-
imum mean square error estimator by using, for example, BP
to minimize the cost function. BP implements gradient descent
in the weight space, where partial derivatives of the cost func-
tion with respect to weights are computed backward in layers.
It is a first-order algorithm, and suffers from slow convergence.
By linearizing the neural network, the prediction distribution
conditioned on a new input and weights can be derived and ap-
proximated as Gaussian [15], [25]. Markov Chain Monte Carlo
methods [3], [25] or an efficient implementation method [15]
based on Gaussian approximation have been used to calculate
the CIs.

EKF has been used for neural network learning. It is also de-
veloped under the Bayesian framework, and CI estimation is in-
tegrated with the whole learning procedure. Updating is based
on each new observation, and the recursive implementation fa-
cilitates on-line operation.

III. EKF-BASED LEARNING WITH INPUT UNCERTAINTY

With the MCP prediction in mind, a modified EKF learning
method considering input uncertainty will be derived for multi-
layer perceptron networks in this section.

A multi-layer perceptron (MLP) network [4] with a single
hidden-layer is shown in Fig. 1. The MLP is trained by adjusting
its weights using a set of input–output observations

, where is the number of data samples, is an
input vector, and is the corresponding output

vector. When training is finished, the neural network predicts
the output for a new input. Weights are then updated when ac-
tual output becomes available. The learning procedure includes
training and update, and can be considered as a nonlinear esti-
mation problem where the weights are to be estimated.

Applying EKF to neural network training, the first step is to
organize all the network weights as a state vector . The
training can then be described as a state estimation problem with
the following unforced dynamic and observation equations [13]:

(1)

(2)

where is an state vector and is the MLP input-
output relationship. The measurement uncertainties in output
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are assumed to be zero-mean white Gaussian with covari-
ance matrix .

In practice, certain key input factors (e.g., load) for MCP pre-
diction may not be available in real time and need to be pre-
dicted, with associated uncertainties in predicted values. As-
sume that the predicted input is the true input plus
the input prediction uncertainty

(3)

where is zero-mean white Gaussian with covariance matrix
. The state estimation is then to determine to mini-

mize the following sum of squared error cost function:

(4)

EKF estimates the state based on feedback from measure-
ments [7], [8], and has two key steps: time update (propaga-
tion) and measurement update. The time update is to project for-
ward in time the current state to obtain an a priori estimate for
the next step. The measurement update then incorporates a new
measurement to obtain a posteriori estimate based on Bayesian
techniques. To derive the EKF formula considering input un-
certainty, a first-order Taylor series expansion of
around the estimated weights and predicted input is
performed

(5)

In the above, is the partial derivative of with respect
to at the estimated weights, i.e., a Jacobian matrix with
dimension

(6)

and is the partial derivative of with respect to
at the estimated input, i.e., a Jacobian matrix with dimension

(7)

and the higher order terms (HOT) may be neglected. Then the
estimated output is given by

(8)

with the measurement residual calculated as

(9)

The innovation covariance is the covariance of the
measurement residual (9). The difference between the modified
EKF and standard EKF [7], [14] is at the innovation covariance
in view of the input uncertainty. The rest of the derivation is
straightforward by following the standard EKF derivation. The
key steps are summarized below.

Time-update equations

(10)

(11)

Measurement-update equations

(12)

(13)

(14)

(15)

where is the Kalman gain and is the weight covari-
ance matrix. In the above, the term
in (12) is extra in view of input uncertainty, and input uncertainty
has a direct impact only on the innovation covariance. The vari-
ance of each output can be obtained from the diagonal elements
of the innovation covariance matrix , and the CIs can
then be obtained by deviating a certain number of standard devi-
ations from the prediction. CI estimation is thus integrated with
the learning process.

The recursive formula (10)–(15) can be used both for training
and update, and for update, only one new measurement is used
to fine-tune the weights.

IV. MODIFIED U-D FACTORIZATION WITHIN

THE DEKF STRUCTURE

Though a modified EKF learning method considering input
uncertainty was presented in the last section, it is difficult to
implement for MCP prediction in view of the computation with
high dimensional weight space. An efficient implementation
is then the focus of this section. The computational difficulty
for MCP prediction will be first analyzed, followed by the
standard DEKF and U-D factorization implementation. A
novel DEKF-UD algorithm with the combined DEKF and U-D
factorization will be developed to improve the computational
efficiency and numerical stability. The CIs from DEKF-UD
will then be compared to those from the Bayesian inference
method [15], [25].

A. Decoupled EKF

The primary deterrent to use original EKF for a neural net-
work with high dimensional weight space is the necessity of
computing a symmetric weight covariance matrix

. Assuming that intra-neuron weight correlation is high,
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and inter-neuron weight correlation is low, a simplified algo-
rithm called the “decoupled EKF” (DEKF) was therefore devel-
oped which ignores the interdependencies of weights from dif-
ferent neurons, thereby leading to reduced computational com-
plexity and storage [12]. In developing DEKF, the input weights
to a neuron are grouped, and the weight covariance matrix is
assumed to be block diagonal. An example was given in [12]
showing that DEKF is about 40 times faster than the original
EKF implementation.

Assuming that total number of neurons in the hidden layer
and output layer for a network is , the measurement update
equations for DEKF are given by

(16)

(17)

(18)

(19)

while for (17)–(19). In the above, is the
block weight covariance matrix, is the

Kalman gain, is a matrix containing the
partial derivatives of the output with respect to weights, is
the input weights, and all these are for neuron or de-
coupled group . It can be seen from these above equations that
DEKF has a two-level structure: the innovation covariance

for the entire network is first computed in (16) at the high
level, and is used at a low level within the decoupled groups to
update Kalman gains, weight covariance matrices, and weights
in (17)–(19). The innovation covariance could not be de-
coupled into groups since there is no meaning for decoupled in-
novation covariance. Analysis of the above equations indicates
a computational complexity of
for DEKF as compared to for the original
EKF [11].

B. Novel DEKF-UD Algorithm

Due to truncation and round-off errors, DEKF may lead to
the loss of symmetry and positive definiteness of the weight co-
variance, causing difficulties when the number of data samples
is large. Possible methods to overcome such difficulties include
singular value decomposition (SVD), U-D factorization, square
root filtering, and Joseph form covariance update. Among them,
U-D factorization is a way to implement “square root filtering”
without actually computing square roots, and is considered to be
efficient, stable, and accurate [7]. In the standard U-D factoriza-
tion, the covariance matrix is decomposed into ,
where is unit upper triangular and is diagonal. U-D fac-
torization for EKF neural network learning has been reported
in [13], however, it by itself is not sufficient for MCP predic-
tion. The purpose of this paper is to integrate U-D factorization
within DEKF to further improve its efficiency and stability. The
combination of these two methods, however, is difficult since

Fig. 2. Structure of the DEKF-UD algorithm.

the standard U-D factorization updates all the matrices at the
same level, while the standard DEKF updates the innovation co-
variance at the high level for the entire network and other ma-
trices at the low level within individual groups. To overcome this
difficulty, our idea is to update the innovation covariance at the
high level for the entire network, while implementing U-D fac-
torization at the low level within individual groups. The overall
structure of DEKF-UD algorithm is shown in Fig. 2.

A remaining difficulty for this new structure is the excessive
computational requirements to compute the inverse innovation
covariance (an matrix) in (17) when the
dimension of the output is high. To overcome this difficulty, our
approach is to transform the problem into a sequence of single
output problems [7], [8], [14]. The -dimensional output is
thus sequentially processed, and for each one, there is only a
single output. Consequently, the computation of
from is trivial. In the following, the DEKF-UD algo-
rithm will be illustrated for the single output case.

To develop the core of the DEKF-UD algorithm corre-
sponding to the measurement update equations (16)–(19), the
notation of [7] will mostly be followed. The factorized weight
covariance is represented as

(20)

where is a unit upper triangular matrix with value 1 on the
diagonal and is a diagonal matrix. The factorized
is represented as

(21)

These matrices can be described as
with vector element

with vector element
Diag and Diag .

Assume that the neural network can be linearized as in (5)
with and . The innovation vari-
ance (a scalar) can be obtained from (16). The core
of the DEKF-UD algorithm can then be derived by following
the derivation of Theorem V.3.1 (U-D update algorithm, [7, p.
77]) and the Agee-Turner factorization update theorem (page
44, [7]). The steps of DEKF-UD corresponding to (16)–(19) are
as follows.

Step 1) Calculate innovation variance for the entire net-
work: according to (16).

For group to , cycle through Step 2 to
Step 5.1

1For notational simplicity, steps 2 to 5 ignore the subscript k indicating the
decoupled groups.
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Step 2) Intermediate steps for (17) and (18)

(22)

(23)

(24)

Step 3) Intermediate steps for (17) and (18).
For down to , cycle through

(25)–(27)

(25)

(26)

(27)

For , cycle through (28)–(29)

(28)

(29)

Step 4) The Kalman gain is given by

(30)

Step 5) Update weight estimate

(31)

In (25) and (26), recursively cycles from down to 2,
instead of cycling from 2 up to as in the standard U-D fac-
torization version in [7]. The innovation variance for the entire
network is thus used within decoupled groups through

. This modification is the key for the com-
bination of the standard U-D factorization and DEKF.

C. Comparing EKF With the BP-Bayesian Method

Bayesian-based CIs using BP (BP-Bayesian) [15] have
been described earlier in the Literature Review section. CIs
by using EKF presented above in Section III are also based
on the Bayesian framework. What are the similarities and
differences between these two methods? From [25, eq. (31)],
Bayesian-based prediction covariance considering input uncer-
tainty is given by

(32)

where is the Hessian of the cost function (4) with respect to
the weights. This is very similar to formula (12) for EKF, and
the only difference is that (the weight covariance matrix)
in (12) is replaced by . The weight covariance matrix has
been shown to be statistically the same as the inverse Hessian

[22]. The appearances of the two formulas are therefore
identical.

Though EKF and BP are based on the same Bayesian concept,
they have major differences in performance. EKF is a second-
order algorithm with a recursive implementation, and reaches
a steady state much faster than BP for nonstationary processes.
The CIs are obtained based on its innovation covariance ma-
trix, which is embedded in the learning procedure to update

the weights in EKF. BP is a first-order algorithm, and the CI,
as second-order information, could not be used in its learning
procedure. BP also needs to trade off between two implementa-
tion modes, batch mode or incremental mode. Batch mode could
reach good weights in training but has difficulty for on-line im-
plementation because of its computational requirements and the
nonstationarity of the process. Incremental mode has the dif-
ficulty to select the number of update iterations for each new
data point, since too few iterations may result in slow conver-
gence, and too many iterations may lose the information ob-
tained from earlier training. EKF therefore performs better in
practice in terms of better prediction and smaller CIs that were
preferable in a nonstationary environment. This will be demon-
strated in Section V.

V. NUMERICAL TESTING RESULTS

The DEKF-UD algorithm for neural network learning and
CI estimation has been implemented in C++ on a Pentium IV
PC with 1.3-GHz CPU and 128-MB memory. Two examples
are presented below. The first classroom problem shows that
DEKF-UD has faster convergence and better prediction, and
provides smaller CIs than what provided by the BP-Bayesian
method. The second New England MCP prediction example
demonstrates that DEKF-UD is practical for problems with
high dimensional weight space in terms of computational
efficiency and numerical stability. DEKF-UD also outperforms
the BP-Bayesian method as in the first example, with prediction
quality comparable to that of ISO New England. This example
also shows the input factors for MCPs, and their partial corre-
lation to the MCPs.

Example 1: An MLP network was used to approximate the
following nonlinear function:

(33)

which was composed of a sigmoidal activation function plus
sinusoidal and rational terms. The function input and output

in (33) are noiseless, while noisy input and output will
be used for neural network training and prediction as described
in Section III. Specifically, 20 noisy data sets were ran-
domly generated for training with

, and , where is the data set index,
, and . In prediction, another

20 random data sets were generated with the same noises as in
training.

Results obtained by using the DEKF-UD and BP-Bayesian
[15] methods were compared, where for the BP-Bayesian
method, the incremental mode was used with one update itera-
tion for each data sample in training and in update. Fig. 3 shows
the training performance for these two methods. It demonstrates
that DEKF-UD converges fast, and the mean absolute error
(MAE) in training reduces below 0.05 within ten iterations,
while the reduction of MAE for BP-Bayesian is very slow.
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Fig. 3. Training comparison: DEKF-UD and BP-Bayesian.

Fig. 4. DEKF-UD prediction and CIs.

Fig. 5. BP-Bayesian prediction and CIs.

Fig. 4 shows the prediction and one-sigma CIs for DEKF-UD.
The prediction curve matches the desired curve y very well, and
the CIs are small. Fig. 5 shows the results obtained by using the
BP-Bayesian method, with much larger CIs than those obtained
by using DEKF-UD. Table I presents the statistics for these two
methods based on 100 Monte Carlo runs, where for each run, a
fixed number of training iterations are executed for a method to
roughly reach a desired level of prediction accuracy. The table
shows that the training time required by DEKF-UD is much
smaller than that required by BP-Bayesian, and one-sigma CIs
obtained by DEKF-UD are less than half of the size of those
obtained by BP-Bayesian.

Example 2: In this example, MLP networks were used to
predict day-head on-peak New England MCPs (average MCPs
from 7 A.M. to 11 P.M.) and their CIs. The results from the
DEKF-UD and BP-Bayesian methods, and ISO New England’s
(ISO-NE) predictions were compared.

ISO-NE’s predictions were obtained by solving a unit com-
mitment and economic dispatch problem based on bids sub-
mitted, and were available from its website. For the DEKF-UD

TABLE I
COMPARISON OF DEKF-UD, BP-BAYESIAN

TABLE II
PREDICTION RESULTS FOR THE THREE METHODS

and BP-Bayesian methods, ISO-NE’s data were collected from
May 1, 1999 to the end of May 2001 from ISO-NE’s website
(www.iso-ne.com). The input factors for MCP prediction in-
clude load, surplus, historical MCPs, gas and oil prices, and the
aggregation of these data. The surplus is the total available ca-
pacity minus the required capacity at the peak hour. Qualitative
variables, such as “day of the week” and holidays, are difficult to
model. In this paper, there are seven extra zero-one input factors
indicating day of the week, and holidays are treated as Saturday.
The total number of the input factors is 50. The neural network
thus had a total number of weights close to 500 and was trained
on data from May 1, 1999 to June 30, 2000, then predicted from
July 1, 2000 to May 31, 2001.

The overall prediction performance from July 1, 2000 to
May 31, 2001 for these two methods and ISO-NE’s predictions
are summarized in Table II. It demonstrates that DEKF-UD has
smaller MAE and mean absolute percentage error (MAPE) than
what BP-Bayesian has, and DEKF-UD also provides smaller
CIs than what BP-Bayesian provides. In view that the current
New England market follows a single-settlement system and
prices are not financially binding until real-time, the day-ahead
MCP prediction by ISO-NE based on bids submitted has large
errors. With much less information than what ISO-NE has, our
neural network predictions are comparable in quality to the
ISO’s predictions.

To examine MCP predictions in hot summer days when
price spikes are likely to happen, results for DEKF-UD,
BP-Bayesian, and ISO-New England for July and August
2000 are summarized in Table III. It is clear that DEKF-UD
outperforms BP-Bayesian for this critical period.

To graphically see the results, DEKF-UD predictions for
November 2000 are shown in Fig. 6. The MAE for this month
is $3.8, and MAPE is 7.3%. Fig. 7 demonstrates the CIs of
DEKF-UD for the same month, with one-sigma CI coverage
73%, and this coverage is close to 68% Gaussian coverage.
These CIs are significantly smaller than those obtained by
BP-Bayesian as shown in Fig. 8, both cover one-sigma CIs.
Tables I, II, and Fig. 7 also show that the CIs developed by
our method are not always consistent with the 68% Gaussian
coverage for each case. The inconsistency might be caused
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TABLE III
2000 SUMMER PREDICTION FOR THE THREE METHODS

Fig. 6. New England on-peak MCP prediction (DEKF-UD).

Fig. 7. New England on-peak MCP CI estimation (DEKF-UD).

by abnormal behaviors in the markets or by the inaccuracy of
Gaussian approximation [22].

From the above results and many other tests not reported here,
our DEKF-UD method is shown to be computationally efficient
and numerically stable. Our method is also shown to outperform
BP-Bayesian and the standard EKF method for problems with
a high dimensional weight space.

To assess what inputs are most closely related to MCPs, a
kind of “sensitivity method” was used. For each input factor,
the sensitivity is calculated by using a kind of “central differ-
ence formula.” With all other input factors at their means, the
sensitivity for a particular input factor is obtained by the MCP
with that input factor set to be its mean plus one standard de-
viation, minus the MCP with the input factor set to be its mean
minus one standard deviation. Part of input factors is shown in
Table IV. The left column of the table lists the input factors for
MCP prediction. The input variables are ranked by the degree
they affect the output, or the absolute values of the sensitivity.

The three input factors which are most closely related to the
day ahead MCPs are the average day-ahead load, the maximum
day-ahead load and the day-ahead surplus, as shown in Table IV.
Following them are the day ahead gas price, historical MCPs

Fig. 8. MCP CIs comparison, one-sigma CI of DEKF-UD smaller than that of
BP-Bayesian.

TABLE IV
PART OF THE SIGNIFICANT INPUT FACTORS

(including two days before daily average MCP, on-peak average
MCP, on-peak maximum MCP, daily minimum MCP, on-peak
minimum MCP, and one week before maximum MCP). The
day-ahead surplus has a negative correlation with MCPs since
more surplus generally lowers MCPs. Other negative correla-
tions are less easy to explain as they are related to historic MCPs
with effects coupled in a complicated way.

VI. CONCLUSION

A method with fast and accurate learning and small CIs is
crucial for prediction in an uncertain and nonstationary envi-
ronment. This paper investigated EKF-based neural network
learning, and developed a novel method to significantly reduce
computation and improve numerical stability. The resulting
DEKF-UD learning is practical for neural networks with a
high dimensional weight space such as MCP prediction, and
provides smaller CIs than what provided by BP-Bayesian. Our
DEKF-UD MCP predictions are better than the predictions
obtained by using the BP-Bayesian method, and are comparable
in quality to ISO New England’s predictions. The method is
currently being extended to predict locational marginal price
using congestion information in deregulated power markets
such as PJM.
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