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Abstract—The energy market clearing prices (MCPs) in
deregulated power markets are volatile. Good MCP prediction
and its confidence interval estimation will help utilities and
independent power producers submit effective bids with low risks.
MCP prediction, however, is difficult since bidding strategies
used by participants are complicated and various uncertainties
interact in an intricate way. Furthermore, MCP predictors
usually have a cascaded structure, as several key input factors
need to be predicted first. Cascaded structures are widely used,
however, they have not been adequately investigated. This paper
analyzes the uncertainties involved in a cascaded neural-network
(NN) structure for MCP prediction, and develops the prediction
distribution under the Bayesian framework. A computationally
efficient algorithm to evaluate the confidence intervals by using
the memoryless Quasi-Newton method is also developed. Testing
results on a classroom problem and on New England MCP
prediction show that the method is computationally efficient
and provides accurate prediction and confidence coverage. The
scheme is generic, and can be applied to various networks, such as
multilayer perceptrons and radial basis function networks.

Index Terms—Bayesian inference, cascaded structure, confi-
dence interval, market clearing price, neural networks, power
systems, prediction, risk management.

I. INTRODUCTION

T HE deregulated power market is an auction market, and
energy market clearing prices (MCPs) are volatile. High-

quality MCP prediction and its confidence interval (CI) estima-
tion can help utilities and independent power producers submit
effective bids with low risks. However, good prediction and con-
fidence interval estimation are difficult since bidding strategies
used by participants are complicated, and various uncertainties
interact in an intricate way.

Among the variety of prediction methods, neural networks
(NNs) have been widely used [1]–[3]. They can approximate
any continuous multivariate function to a desired degree of ac-
curacy, provided that there are a sufficient number of hidden
neurons [4], [5]. MCP prediction using NNs can generally be
divided into three stages: training, prediction, and update. An
NN is first trained by using historical data to approximate the
input–output relationship, with associated measurement uncer-
tainties in input (e.g., load) and output data (e.g., MCP). When
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Fig. 1. Structure of cascaded MCP prediction.

Fig. 2. Structure of MCP training and update.

training is finished and new input data are available, the NN
predicts MCPs. In practice, certain key input factors (e.g., load)
may not be available in real time and need to be predicted,
with associated uncertainties in predicted values. The prediction
system thus has a cascaded structure as shown in Fig. 1. Since
predicted data are generally less accurate than measured data,
an NN will be less accurate if predicted input data were used in
training or update. This is the reason that when measured values
of these factors become available at a later time, they are used
together with actual MCPs in update or retraining as shown in
Fig. 2. The uncertainties involved in a cascaded structure thus
interact in a complicated way, affecting confidence interval es-
timation. Such cascaded structures are generic and widely exist
in practice [1], [6].

Results on prediction distribution in a noncascaded structure
have been reported in [13]. Measurement uncertainties1 in
input and output result in weight uncertainty through training
and update. The prediction distribution is then developed using
Bayesian techniques combining weight uncertainty and the
measurement uncertainties in input and output. The derivation
of the prediction distribution for a noncascaded structure is
summarized in Section II.

In this paper, confidence interval estimation for a cascaded
structure will be addressed. For a cascaded NN, predicted values
are used for part of the input factors in the prediction stage while
measured values are used in training and update, as shown in
Figs. 1 and 2. How would prediction and measurement uncer-
tainties affect prediction distribution for such a network? The

1For simplicity, all data uncertainties in a noncascaded structure are called
measurement uncertainties in the paper.
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key is to examine the differences between a cascaded network
and a noncascaded network. We discovered that under some
general assumptions, a cascaded network can be regarded as
a noncascaded network with an additional error term for each
predicted input. The cascaded prediction distribution can thus
be derived based on a noncascaded structure by using Bayesian
techniques, and is approximated to be Gaussian as presented in
Section III.

With the prediction distribution approximated as Gaussian,
the variance of each output can be obtained from the cor-
responding diagonal element of the covariance, and the
confidence intervals can then be obtained by deviating a certain
number of standard deviations from the prediction. The calcula-
tion of the covariance involves the inverse Hessian matrix of the
cost function with respect to weights, and this computation is
expensive for practical MCP prediction. An important question
is how to develop a computationally efficient algorithm to eval-
uate MCP confidence intervals. In this paper, a fast algorithm
based on the memoryless Quasi-Newton method is presented in
Section IV. Numerical testing results for a classroom problem
and for New England MCP prediction presented in Section V
demonstrate that our method is computationally efficient, and
provides accurate confidence interval coverage. Although we
have much less information than ISO New England does, our
prediction is comparable in quality to ISO New England’s.

II. L ITERATURE REVIEW

A. Confidence Interval Estimation Methods

NN prediction methods have been briefly described in
Section I. The methods to estimate confidence intervals can
roughly be classified into three categories: resampling [7], [8],
perturbation model [9]–[11], [17], [18], and Bayesian inference
[4], [12]–[14] to be briefly described below. Variations of these
methods were compared in [15] and [17].

The resampling method derives confidence intervals by ran-
domly selecting data points with replacement from an original
data set to form multiple sample data sets. The confidence in-
terval of the mean can then be calculated from the means of
the sample data sets. This method resamples output data, and
cannot effectively consider input uncertainties. The perturbation
model examines the effect on output if some parameters are per-
turbed. It uses Taylor series expansion to relate changes in the
output to perturbed parameters and obtains output covariance
matrix. Confidence intervals with input and weight uncertainties
by using perturbation model were presented in [11]. Confidence
intervals for a nonlinear regression using NN models were pre-
sented in [17] by using the least-square linear Taylor expansion
(LS LTE) approach, and a tool to detect the ill-conditioning of
NNs was provided. The perturbation model methods, however,
are difficult for high-dimensional NNs with multiinput multi-
output because it requires complicated covariance matrices.

Bayesian learning for NNs has attracted much attention re-
cently. Starting with a prior distribution of weights for an NN,
the method develops a posterior distribution of the weights from
historical data. By linearizing the NN, the prediction distribu-
tion conditioned on a new input and weights can be derived
and approximated as Gaussian for a noncascaded single-output

Fig. 3. Multilayer perceptron network.

structure [13]. A vector version will be briefly presented in the
next subsection. Since the Gaussian approximation was based
on simplification, general numerical techniques were developed
to obtain the prediction distribution by integrating over the mul-
tidimensional weight space. Among these methods, the Markov
chain Monte Carlo methods [4] and [13] obtain random sam-
pling of points in the weight space and approximate the in-
tegration using a finite sum. The name “Markov chain” was
given because a new sample depends on the previous one plus a
random walk. The Metropolis algorithm [16] is one of the best
Markov Chain Monte Carlo methods, and if a candidate sample
leads to a reduction in the value of the posterior of weights, that
sample will be rejected with a certain probability. For a prac-
tical NN with a high dimensional weight space, the proportion
of rejected samples is high, rendering the method impractical
[13, p. 1270]. For practical applications, such as MCP predic-
tion, efficiency of an algorithm is important even though some
assumptions have to be made. Gaussian approximations will be
used in this paper, similar to the linearization step taken in many
practical nonlinear system applications. A fast implementation
for confidence intervals will then be developed in Section IV
based on the Gaussian approximation. Numerical testing results
show that the Gaussian approximation is satisfactory.

B. Bayesian Prediction Distribution for a Noncascaded
Structure

To summarize the results of [13], consider a multilayer per-
ceptron (MLP) network with a single hidden layer, as shown in
Fig. 3. The MLP can be trained by using a set of historical ob-
servations , where is the input
vector set with vector element . The corresponding
output vector set is with vector
element . The measurement uncertainties in output
are assumed to be independent, identically distributed (i.i.d.)
zero-mean Gaussian with covariance matrix . The measure-
ment uncertainties in input are also assumed to be i.i.d.
zero-mean Gaussian with covariance matrix. The Gaussian
assumptions for measurement uncertainties are acceptable for
most cases. A measured input is then equal to the true input

plus the measurement uncertainty as follows:

(1)

The network is trained by using a cost function to maxi-
mize the posterior distribution of weights to be presented later.
Let the input–output relationship after training be expressed as

, where and are the weight vector
of the network. The prediction distribution given a
new true input has been approximated to be Gaussian [4]. If
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only a measured noisy input is available, the prediction dis-
tribution can be obtained by using the Bayes rule

(2)

To analyze the right-hand side of (2), it is noted that
can be obtained from (1) following the Gaussian assumption:

(3)

In addition, assume that the uncertainty in the measured input is
small, and in the can be linearized around
. The prediction distribution (2) can then be obtained as follows

by using the linearized model, the Bayes rule, and (3):

(4)

where

In the above equation, is a normalizing constant; is a pa-
rameter controlling the prior distribution of weights; andis
the gradient of with respect to the measured input (i.e.,
a Jacobian matrix with dimension )

(5)

To train the network, it is observed that the first exponen-
tial term in (4) is contributed by the new input, whereas the
second exponential term is from historical data, and can be
shown to be the posterior distribution of the weights .
The optimized weight vector is obtained by maximizing
the posterior distribution , or equivalently minimizing
the cost function below in the NN training stage [4]

(6)

The cost function is the usual sum of squares with an
additional “weight-decay regularization term” ,
which is from the Gaussian prior assumption for the weights,
and could reduce the sensitivity of model prediction with re-
spect to input uncertainty [4]. With noisy input and the use of
weight-decay regularization term, the estimator is biased and
the accuracy of the confidence intervals is affected [13], [17].

However, the effect of weight decay becomes minor when the
number of data sets is large, as the predictor becomes asymptot-
ically unbiased [17], [18].

With defined as

the Hessian matrix of with respect to the
weights can be expressed as

To further derive the prediction distribution, is approx-
imated by its second-order Taylor series expansion. Noting that
the first-order term is zero at the optimized weight ,
can be approximated as follows:

(7)

Substituting (7) into (4) leads to

(8)

To evaluate the integration over in (8), can be
linearized around the optimized weight (as opposed
to around input as before), since the change in weights
per iteration is small. The prediction distribution can then be
expressed as

(9)

which is Gaussian with the following covariance matrix:

(10)

where is the partial derivative of with respect to
weights (i.e., a Jacobian matrix with dimension )

There are three terms in the prediction covariance (10). The
first term is from output measurement uncertainty, the second
term is contributed by the weight uncertainty, and the third term
is propagated from the input uncertainty. These terms are addi-
tive in view of the linearization of the network.

III. B AYESIAN INFERENCE FORCASCADED PREDICTION

With the noncascaded prediction distribution expressed in
(9), we shall next develop the relationship between a cascaded
structure and a noncascaded one. The cascaded prediction dis-
tribution is then derived and the covariance matrix computed.
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Fig. 4. Predicted input expressed as a measured input plus an additional error
term for a cascaded structure.

A. Relationship Between Cascaded and Noncascaded
Structures

To develop the relationship between the two prediction struc-
tures, the key is to examine the difference in their inputs. In a
noncascaded structure, measured input is used in prediction as
expressed in (1). In a cascaded structure, predicted values are
used in prediction. Assuming that the prediction uncertainty
is i.i.d. zero mean Gaussian and independent of the measure-
ment uncertainty for the same input factor, the predicted
input is given by

(11)

With (1) and (11), the difference between the predicted input
and the measured input given by

is also i.i.d. zero mean Gaussian. Let its covariance matrix be
denoted as . The predicted input can then be expressed as

(12)

A cascaded structure can thus be regarded as a noncascaded
structure with the predicted input expressed as the measured
input plus an additional error term as shown in Fig. 4. The cas-
caded prediction distribution will next be derived from a non-
cascaded prediction distribution by using Bayesian techniques.

B. Bayesian Prediction for a Cascaded Structure

For a new predicted input in a cascaded prediction, the
prediction distribution of the output can be expressed by using
the Bayes rule as follows:

(13)

where is the noncascaded prediction distribution
in (9). To analyze the right-hand side of (13), it is noted that

can be obtained from (12) following the Gaussian
assumption:

(14)

In addition, assume that the uncertainty in the predicted input
is small, in can therefore be linearized
by using the Taylor series expansion around, that is

(15)

where

(16)

The prediction distribution (13) can then be obtained by using
the linearized model, the Bayes rule, and (14) as follows:

(17)

The integral in (17) can be calculated by using the following
Gaussian integral property [4, App. B]:

(18)

where is a -dimensional vector. Applying (18) to (17)
leads to

(19)

It is noted that (19) is close to Gaussian when the terms can be
organized. With the following obtained from (10) and matrix
operation:

(20)

the cascaded prediction distribution can then be expressed as

(21)

which is Gaussian with the covariance matrix.
As shown in (20), the covariance matrix of the cascaded pre-

diction distribution is similar to the covariance of a noncascaded
structure in (10), with one extra term . This is intuitively
plausible since the predicted input has been decomposed into
the measured input related to plus an independent Gaussian
noise related to in (12). The contribution of output measure-
ment noise remains the same, and so does the contribution
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Fig. 5. Flowchart of the CI algorithm.

of weight uncertainty since predicted input is not used
to update the weights. The covariance matrix in (20) is the in-
teraction of the four uncertainties and the structure of the net-
work, and can be obtained for a differentiable NN. Our method
is therefore generic in terms of model independence.

IV. COMPUTATIONALLY EFFICIENT ALGORITHM

A utility company needs to consider predicted prices and
other market information to prepare bids within a short time
window before bid submission deadline. The allocated time
for price prediction is limited (e.g., 10 min). It is therefore
necessary to implement the method in an efficient way for it to
be used on a daily basis. Instead of using the time-consuming
Markov chain Monte Carlo algorithms to evaluate an integra-
tion such as (4) over a high dimensional weight space, the
prediction distribution and covariance in (20) and (21) will be
based on the Gaussian approximation in conjunction with the
memoryless Quasi-Newton method to be explained next.

Quasi-Newton methods approximate the Newton direction
to solve an optimization, while avoiding second derivative cal-
culations associated with the Newton’s method [19]–[21]. The
methods approximate inverse Hessian of the cost function (6),

, they could thus be used to help calculate the second term
of the prediction covariance (20). Memoryless Quasi-Newton
method [19, p. 158] further reduces computational requirements
by avoiding the calculation of inverse Hessian matrix and
requiring no matrix manipulation. With this method, the second
term in (20) can be iteratively approximated as

(22)

where is the iteration number and

and

The gradient information can be easily obtained by using back-
propagation. The flowchart of the method is shown in Fig. 5.

Fig. 6. CI with a cascaded structure.

V. NUMERICAL RESULTS

The NN prediction and confidence interval estimation
method has been implemented in C++ on a Pentium III
500-MHz personal computer (PC). Two examples are pre-
sented below. The first classroom-type problem shows that
the cascaded structure provides accurate confidence intervals.
The second New England MCP prediction problem shows that
our method provides accurate confidence intervals, and the
prediction is comparable to ISO New England’s prediction.

Example 1: A three-layer MLP network with neuron num-
bers of 1–5–1 was used to approximate the following nonlinear
function:

which was composed of sigmoidal activation functions plus a
sinusoidal term. To simulate the cascaded prediction structure,
there were measurement uncertainties in training and predicted
uncertainties in prediction for input; and measurement uncer-
tainties for output. Specifically, 20 noisy data sets were
randomly generated for training with ,

, where , and
. In prediction, another 20 random data sets

were generated with , where the input
standard deviation was changed to 0.6.

Two cases were tested in this example. In the first case, con-
fidence intervals derived from (20) were used, and input in pre-
diction was known to have a standard deviation 0.6. One-sigma
confidence intervals covered 70% with six points outside inter-
vals among the 20 points, and this coverage was close to 68%
Gaussian coverage. The noisy data, confidence interval lower
bound, and upper bound for data points from 11 to 20 are shown
in Fig. 6, where four points (points 14, 16, 17, and 19) are out-
side the confidence intervals. It can be seen that the cascaded
structure provides accurate confidence intervals. In the second
case, the noncascaded confidence intervals from (10) were used,
with the assumption that the inputs for training and prediction
had a same standard deviation 0.1. The one-sigma confidence
intervals only covered 40% in this case. The prediction results
for data points from 11 to 20 are shown in Fig. 7, where seven
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Fig. 7. CI with a noncascaded structure.

TABLE I
ONPEAK MCPS PREDICTION AND CI ESTIMATION

points (points 12, 13, 14, 16, 17, 19, 20) are outside the con-
fidence intervals. This case shows that the noncascaded confi-
dence interval scheme should not be used in the cascaded pre-
diction structure and cascaded prediction structure provides ac-
curate confidence interval for a classroom problem.

Example 2: In this example, a cascaded MLP NN model was
used to predict day-head onpeak New England MCPs (average
MCPs from 7AM to 11PM) and its confidence intervals. A three-
layer MLP was constructed for MCP prediction.

The New England energy market follows a single-settlement
system. After receiving generator offers, ISO runs a unit com-
mitment program and selects generators based on merit order.
Prices are not financially binding until after the fact, also gen-
erators and load sell and buy at real-time price. The real-time
market activities can affect MCPs, thus, the day-ahead MCP
prediction is difficult under this market structure.

ISO New England’s predicted load and actual load, predicted
MCP, and actual MCP, etc., were collected from May 1, 1999
to the end of November 2000 from ISO New England’s website
(www.iso-ne.com). More than 50 input factors were used for
MCP prediction, including predicted load, historical load, his-
torical MCPs, projected surplus (total available capacity minus
required capacity), etc. The NN thus had a total number of
weights over 500 and was trained from May 1, 1999 to June 30,
2000, then predicted from July 1, 2000 to November 30, 2000.

The onpeak MCP prediction results are summarized in
Table I. The mean absolute percentage error (MAPE) of the
prediction is 8.8%. One-sigma confidence intervals have a
coverage of 66.6%, which is close to 68% of Gaussian cov-
erage. The MAPE for ISO New England’s prediction for the
same period was 9.73%. While having less information than

Fig. 8. On-peak MCP confidence intervals for October 2000.

Fig. 9. Histogram-to-density estimation of on-peak MCP prediction error.

what ISO New England had, our NN prediction is comparable
in quality to ISO New England’s prediction. To elaborate the
prediction results, the confidence intervals for October 2000
with upper bounds, lower bounds, and actual MCPs are shown
in Fig. 8. There are 11 days outside the confidence intervals
with 64% coverage.

The confidence intervals for cascaded prediction are overall
satisfactory and the Gaussian assumption of the prediction dis-
tribution is overall acceptable, as shown in Fig. 9 the histogram
to the density estimation of onpeak MCP prediction error. How-
ever, Table I also shows that the confidence intervals are not
always consistent with the 68% Gaussian coverage for each
month, and the coverage in August is only 42%. The inconsis-
tency might be caused by abnormal behaviors in the markets or
by the inaccuracy of Gaussian approximation [18].

Since MLPs are sensitive to their configuration, the structure
of the MLP needs to be fine-tuned based on applications. The
number of output is decided by the problem. For this example,
since onpeak MCP is to be predicted, the MLP has one output.
The input factors are decided by their relevance to the output,
including load, historical MCP, etc., with a total number of 56
factors. The number of hidden neurons is a parameter adjusted to
yield the best prediction result, which is eight. In this example,
prediction results are acceptable for a network with six to ten
hidden neurons with a slight increase in prediction error. It is
important to note that by using the memoryless Quasi-Newton
method, the computational requirements to obtain confidence
intervals are not significant. It took 0.08 s to provide the five
months’ MCP prediction only, while taking 0.1 s to provide
MCP prediction and confidence interval estimation. Another
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note is that this paper is for MCP prediction and confidence in-
terval estimation to be used for bidding preparation, but does not
directly address bidding preparation. ISO New England’s MCP
prediction cannot be used by market participants to prepare their
bids, since it is published after market participants submit bids.

VI. CONCLUSIONS

Cascaded prediction structures are widely used, however,
they have not been adequately analyzed. This paper presents
an NN prediction and confidence interval estimation method
for a cascaded structure and develops a fast implementation
algorithm. The method obtains predictions and confidence
intervals accurately and efficiently for a classroom problem
and for New England ISO’s MCP prediction. While MCP
prediction by ISO New England is decided by solving a unit
commitment and economic dispatch problem based on the bids
submitted, our NN prediction is comparable in quality to ISO’s
prediction. As the New England energy market will be changed
to a multisettlement system with separated day-ahead and
real-time markets by the end of 2002, our method is currently
being extended to predict both markets’ MCPs. The method
is also generic in the sense that if the gradient information is
available, confidence intervals can be derived. Our method
can therefore be extended to a broad class of differentiable
NNs such as multilayer perceptrons and radial basis function
networks.
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