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Abstract

A short product design cycle is critical to the success of companies in the era of time-based competition. The un-

derlying design activities, however, are often interlinked and quite uncertain. For example, some activities may have to

be iterated several times to meet the design criteria. Furthermore, time-critical projects su�er the risk of failure if they

cannot meet established target dates. Generating good and robust schedules is thus critical, especially under the con-

current engineering paradigm where the delay of a single task may have a domino e�ect on subsequent tasks and on

other projects sharing designers and/or resources. This paper studies the scheduling of design projects with uncertain

number of iterations while managing design risks. A ``separable'' problem formulation that balances modeling accuracy

and computation complexity is created with the goal to minimize project tardiness and risk penalties. An optimization-

based methodology that combines Lagrangian relaxation, stochastic dynamic programming, and ``ordinal optimiza-

tion'' is developed. Numerical results supported by simulation demonstrate that near optimal solutions are obtained,

and uncertainties are e�ectively managed for problems of practical sizes. Ó 1999 Elsevier Science B.V. All rights

reserved.

Keywords: Scheduling theory; Design project management; Integer programming; Stochastic dynamic programming;

Risk management

1. Introduction

1.1. Managing design projects with uncertain num-
ber of iterations

A short lead time for product development is
critical in the era of time-based competition. De-

velopment time determines how responsive a
company can be to competitive forces and how
quickly the company receives the economic returns
from the development e�orts. The importance of
time is well illustrated in a study that if a product
su�ers from a 50% over expenditure in product
development, the loss of total recoverable pro®t is
4%. However, if the product is late to market by 6
months for a life cycle of 5 years, it can lose one
third of its pro®t (Nichols, 1990). The completion
of design projects is thus required to be on-time
and predictable. The underlying design activities,
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however, are often interlinked and quite uncertain.
For example, iterations of a task (or a sequence of
tasks) may occur when the results of the task(s) fail
to meet speci®ed criteria, or when new information
from other tasks is obtained prompting changes on
the design (Nukala et al., 1995). Furthermore,
time-critical projects su�er the risk of failure if
they cannot meet established target dates. Uncer-
tain number of iterations and risks often intro-
duces major uncertainties on the commitment of
designers and resources and on project comple-
tion. With concurrent engineering principles
widely used to cut short lead time resulting in
tightly coupled tasks, the delay of a single task
may have a domino e�ect on subsequent tasks and
on other projects sharing designers and/or re-
sources. Generating good and robust schedules
and reducing the adverse consequences of risks are
thus becoming critical. E�ectively scheduling
multiple projects and managing risks, however,
have been proved to be extremely di�cult because
of the combinatorial nature of the problem and the
presence of uncertainties.

1.2. Literature review

After the introduction of network scheduling
techniques of PERT and CPM for project plan-
ning without the consideration of resource capac-
ities (Program Evaluation and Review Technique
(PERT) and Critical Path Method (CPM), see,
e.g., Elmaghraby (1977)), many e�orts have been
on expanding these techniques to handle ®nite re-
source capacities. Early attempts concentrated on
the formulation and resolution of mathematical
(usually integer) optimization problems. Since it
was discovered that these problems were a gener-
alization of the well-known job-shop scheduling
problems and as such is NP-hard (Blazewicz et al.,
1983), major e�orts shifted towards the develop-
ment of heuristic procedures for obtaining ``satis-
fying'' solutions (Davis and Patterson, 1975;
Patterson, 1984; Boctor, 1990). E�orts on the im-
provement of optimization methods for solving
certain variants of problems continue, including
branch-and-bound (Christo®des et al., 1987;
Demeulemeester and Herroelen, 1996). Most re-

sults reported were on the scheduling of a single
project having less than 50 activities and using
about 5 types of resources.

To deal with more general projects having
probabilistic routings and repetition of activities
via feedback loops, stochastic project networks
have been introduced. They are generalized PERT
networks (also called Graphic Evaluation and
Review Technique (GERT) networks), and most
problems with GERT precedence constraints are
NP-hard except for a few specialized cases with a
single-machine (Neumann, 1990).

For the management of design projects, design
structure matrices (DSM) have often been used to
analyze the technical relationships among design
tasks. In a DSM, a task is assigned to a row and a
column in the identical order. A row, corre-
sponding to one task, is annotated with marks
indicating those tasks (columns) on which it de-
pends. The relationships represented by a DSM
thus de®ne the technical structure of a project, and
can be used to ®nd alternative sequences of tasks.
The DSM is also useful for identifying where it-
eration is necessary, and to predict slow and rapid
convergence of iterations (Eppinger et al., 1994;
Smith and Eppinger, 1995). Most results using
DSM were obtained ignoring resource capacities.

Risk analysis models and methods for project
management have been presented in Cooper and
Chapman (1987). Recently, IDEF3 models have
been used for risk assessment in concurrent design
(Larson and Kusiak, 1996). Because of the di�-
culty of scheduling problems, not many results
have been obtained for simultaneously scheduling
projects and managing risks.

Much progress has recently been made on de-
terministic manufacturing scheduling problems. In
the work of Luh and Hoitomt (1993), a ``separa-
ble'' integer programming formulation for job
shops was created, and an optimization-based
methodology was developed by using Lagrangian
relaxation (LR) to exploit the separability of the
problem structure. Near optimal schedules are ef-
®ciently generated for practical size problems with
quanti®able quality. Following this approach, a
``forward'' dynamic programming algorithm was
embedded within the LR framework in Chen et al.
(1995) and Wang and Luh (1996) to alleviate
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convergence di�culties as reported in Czerwinski
and Luh (1994). However, not many optimization-
based results have been reported for stochastic
scheduling problems with more than two ma-
chines, since the problems are extremely di�cult
Pinedo (1982, 1995). To avoid the di�culties, an
intuitive approach is to replace random variables
by their means, consequently converting a problem
into a deterministic one (Pinedo, 1995), and re-
ferred to as the ``mean'' method in this paper.
Previous deterministic methods can then be ap-
plied, however, the performance of this approach
may not be good (Federgruen and Mosheiov,
1997).

1.3. Scope of this paper

This paper considers the scheduling of design
projects while managing design risks for an orga-
nization that pursues multiple projects concur-
rently with a ®nite number of shared designers and
resources. It is assumed that a design project is
divided into subprojects based on overall product
design strategy. A subproject is further broken
down into inter-related tasks, with the constitution
and precedence relationship of tasks given, and
risk factors identi®ed. A task may simultaneously
require multiple designers of distinct capabilities
and resources of di�erent types, and some tasks (or
sequences of tasks) may have to go through an
uncertain number of iterations for completion
where the time needed to perform each iteration is
assumed deterministic and given. Multiple tasks
and subprojects within a project may also be per-
formed in parallel, subject to precedence con-
straints as required by the technical structure to
receive design information and/or materials from
preceding tasks and/or subprojects. Our goal is to
develop a good problem formulation and an e�-
cient methodology to generate near-optimal
schedules with quanti®able quality for problems of
realistic sizes. The objective is to maximize ex-
pected on-time completion while minimizing pro-
ject risk penalties, subject to precedence
constraints and expected designer/resource capac-
ity constraints. The separable problem formula-
tion is presented in Section 2.

A combined Lagrangian relaxation (LR) and
stochastic dynamic programming (SDP) method is
developed in Section 3. The problem is ®rst re-
laxed and decomposed into subproblems, one for
each subproject. A subproblem is solved by using
SDP, where a stage corresponds to one iteration of
a task and state transitions governed by proba-
bilities and scheduling decisions. The close-loop
nature of SDP is fully exploited so that precedence
constraints are satis®ed for each possible number
of iterations, and the complexity is only slightly
higher than the one without uncertainty. A dual
solution is selected by using ``ordinal optimiza-
tion'' which saves simulation e�orts dramatically
(Ho, 1995; Chen, 1995), and schedules are dy-
namically constructed by using heuristics based on
the dual solution selected and the realizations of
random events.

Testing results reported in Section 4 demon-
strate that by satisfying iteration and task prece-
dence constraints for each possible number of
iterations, uncertainties are e�ectively handled.
The expected resource capacity constraints reduce
computational requirements without much loss of
scheduling performance, enabling the method to
solve problems of practical sizes. Furthermore,
project risk penalties are low, indicating that risks
are well managed.

2. Problem formulation

General description. In this section, an integer
optimization problem is formulated based on what
was presented in Czerwinski and Luh (1994) for
deterministic job-shop scheduling with the fol-
lowing new features: simultaneous use of multiple
types of resources, uncertain number of iterations,
and design risks. A list of symbols is provided in
Appendix A for easy reference.

As mentioned earlier, a task may simulta-
neously require designers of distinct capabilities
and resources of di�erent types. For simplicity of
presentation, both designers and resources are
considered as generic resources with given func-
tionality. There are H resource types, each con-
sisting of one or multiple units of identical
functionality from the scheduling viewpoint. The
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number of type h resource �16 h6H� available at
discrete time k �06 k6K ÿ 1� is assumed given
and denoted as Mkh.

There are P design projects, Project
p �16 p6 P � has given discrete due date dp and
contains Sp subprojects. Subproject i of Project p
consists of a series of tasks, and the set of these
tasks is denoted as Spi. Among all subprojects of
Project p, there are total Np tasks, and task j of
Project p is denoted as �p; j�. Task �p; j� simulta-
neously requires mpjh units of type h resource for
all h belonging to the ``resource set'' hpj (``multiple
resource constraints'' in the scheduling literature,
Gargeya and Deane, 1996). Sometimes it is possi-
ble for task �p; j� to be performed by a di�erent
resource set, and the set of all ``eligible resource
sets'' is denoted as Hpj.

In a project, multiple tasks and subprojects can
be performed in parallel, subject to precedence
constraints. A particular task of a subproject may
be required to be ``assembled'' with tasks in other
subprojects, e.g., tasks �p; 5� and �p; 8� in Fig. 1. In
this case, these two tasks must be completed before
the subsequent task �p; 9� can be started. Fur-
thermore, the design result of a particular task,
e.g., �p; 3� in Fig. 1, may be needed by several
tasks in other subprojects. This task �p; 3� should
thus be completed before the beginning of tasks
�p; 4� and �p; 6�. It is assumed without loss of
generality that a project begins and terminates
with a single subproject, subproject 1 and sub-
project Sp, respectively.

Uncertain number of design iterations. Some
tasks (or sequences of tasks) may need to be re-
peated several times to satisfy the design criteria,
and these tasks are called ``uncertain tasks''. For

simplicity of presentation but without loss of
generality, we shall consider the case where a task,
rather than a sequence of tasks, may have to go
through an uncertain number of iterations. To
model the repetition of such a task, an indepen-
dent random variable is used at the end of an it-
eration to determine whether to repeat the same
task with a given probability, or to move on to the
next task. The nth iteration of an uncertain task
�p; j� is denoted as �p; j; n�, and can be performed
by an eligible resource set hn

pj belonging to Hpj for a
speci®c period of time tn

pjh, where tn
pjh is a given

deterministic integer. At the end of �p; j; n�, the
probability of going to �p; j; n� 1� is denoted as
P n

pj. Since the number of iterations is usually small
as limited by due date and cost considerations, the
maximum allowable iteration number Npj can be
estimated and is given.

Tasks without uncertain number of iterations
are called ``deterministic tasks'', and such a task
requires a single iteration. For simplicity of pre-
sentation, deterministic task �p; j� will be denoted
as iteration �p; j; 1� with Npj equal to 1.

Design risk. As mentioned earlier, some time-
critical projects may fail and be dropped out of
consideration if they cannot meet established tar-
get dates. Such a risk is captured when Project p
cannot be completed by a given ``absolute dead-
line'' �dp (called ``time risk''), or when a speci®c
uncertain task �p; j� cannot meet the design cri-
teria within Npj iterations (called ``iteration risk'').
When Project p fails for either case, a ``risk pen-
alty'' Rp is incurred. This penalty depends on the
importance of the project (opportunity cost �Rp)
and the status upon failure (cost foregone). It is
assumed that the cost foregone consists of costs

Fig. 1. A simpli®ed design project.
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incurred on subprojects, one for each subproject.
Such a cost is denoted as Rpj if subproject i is at
task �p; j� upon failure for j 2 Spi, or is zero if the
subproject has not yet been started. The risk
penalty Rp is thus the sum of �Rp and these Rpj. In
reality, �Rp and Rpj can often be estimated, and are
given here.

Precedence constraints. For an uncertain task
�p; j�, the iteration precedence constraints state
that the �n� 1�th iteration cannot be started be-
fore the completion of the nth iteration, i.e.,

cn
pj � 16 bn�1

pj ; p � 1; . . . ; P ; j � 1; . . . ;Np;

n � 1; . . . ; npj ÿ 1; �1�
where cn

pj is the completion time of �p; j; n�, and
bn�1

pj the beginning time of �p; j; n� 1�. The be-
ginning time of task �p; j� is the beginning time of
the ®rst iteration, i.e., b1

pj, and completion time cpj

is the completion time of the last iteration, i.e., cnpj
pj ,

if npj iterations occur.
Task and subproject precedence constraints

state that a particular task �p; j� must be com-
pleted before the beginning of its immediately
succeeding task �p; r�, i.e.,

cpj � 16 b1
pr; j 2 Spi; r 2 Spq; �p; r� 2 Ipj; �2a�

where Ipj denotes the set of tasks of project p im-
mediately following �p; j�. Constraint (2a) is called
subproject precedence constraint if tasks �p; j� and
�p; r� belong to di�erent subprojects, i.e., if i 6� q,
and called task precedence constraint otherwise.
Without loss of generality, it is assumed that r > j
if q P i, and specially r � j� 1 if q � i.

Iteration and task precedence constraints are
required to be satis®ed for every possible number
of iterations to accurately model the uncertainties.
Since tasks in di�erent subprojects generally are
less related than those within the same subproject,
subproject constraints are required to be satis®ed
in the expected sense in the model to reduce so-
lution complexity, and to re¯ect the common
practice in coordinating less related uncertain ac-
tivities, i.e.,

E�cpj� � 16E�b1
pr�; j 2 Spi; r 2 Spq; i 6� q;

�p; r� 2 Ipj: �2b�

Resource capacity constraints. Resource capac-
ity constraints state that the total number of type h
resource allocated to tasks at time k should not
exceed Mkh, the number of the resource available at
that time, i.e.,X
pjn

mpjhd
n
pjkh6Mkh; n � 1; . . . ; npj;

k � 0; . . . ;K ÿ 1; h 2 H ; �3a�
where dn

pjkh equals 1 if type h resource is assigned to
the nth iteration of task �p; j� at time k, and 0
otherwise. The simultaneous use of multiple re-
source types by �p; j� is captured through mpjh by
having mpjh > 0 for multiple h's. The parameter
mpjh can be a fractional number to re¯ect the fact
that the resource may not be needed 100% of time
during processing. Since it is very di�cult to
handle resource capacity constraints mathemati-
cally for all possible numbers of iterations, con-
straints (3a) are also required to be satis®ed in the
expected sense, i.e.,

E
X
pjn

mpjhd
n
pjkh

 !
6Mkh; n � 1; . . . ; npj;

k � 0; . . . ;K ÿ 1; h 2 H : �3b�
Processing time requirements. Processing time

requirements state that the nth iteration of task
�p; j� will be performed by an eligible resource set
hn

pj for a speci®c period of time, i.e.,

cn
pj � bn

pj � tn
pjh ÿ 1; p � 1; . . . ; P ;

j � 1; . . . ;Np; n � 1; . . . ; npj: �4�
Objective function. The objective of scheduling

is to meet on-time project completion while dis-
couraging starting earlier than necessary, and to
reduce project failures. The problem is thus to
minimize the sum of expected weighted tardiness,
earliness, and risk penalties by selecting appro-
priate task or iteration beginning times bn

pj and
resource sets hn

pj, i.e.,

min
fbn

pj;h
n
pjg

J ; with

J �
XP

p�1

E��Dp�wpT 2
p � bpE2

p� � �1ÿ �Dp�Rp�; �5�
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subject to constraints (1), (2a), (2b), (3b) and (4).
In the above, �Dp is one when Project p does not
fail, and zero otherwise. Tardiness Tp is the
amount of time Project p overdue, i.e.,
max�0; cp ÿ dp�, with cp � cpNp being the project
completion time. For a given project due date dp, a
desired project start date �bp can be roughly esti-
mated based on the project critical path (Czer-
winski and Luh, 1994). Earliness, Ep, is then
de®ned as the amount the project beginning time,
bp � b1

p1, leads the desired start date �bp, i.e.,
max�0; �bp ÿ bp�. The square on tardiness re¯ects
the fact that a project becomes more critical with
each time unit after passing its due date (Hoitomt
et al., 1993), and similarly for the square on ear-
liness. Parameters wp and bp are given weights
associated with tardiness and earliness penalties,
accounting for the importance of meeting on-time
completion and start. Since on-time completion is
the foremost criterion in Eq. (5), bp is an order of
magnitude smaller than wp. Risk penalty Rp rep-
resents the lost opportunity and the cost incurred
as explained earlier. The expectation is taken with
respect to the random number of iterations and
random decision variables.

A schedule satisfying Eqs. (1), (2a), (2b)±(4) is
called ``model feasible'', and a schedule satisfying
Eqs. (1)±(4) is called ``implementable''. A model
feasible schedule is usually not implementable
since constraints (2b) and (3b) are satis®ed in the
expected rather than exact sense.

Since Eqs. (1), (2a) and (4) are linear, and
Eqs. (2b), (3b) and (5) are additive in terms of
decision variables bn

pj and hn
pj, the formulation is

``separable'' down to the subproject level. La-
grangian relaxation technique can then be e�ec-
tively applied.

3. Solution methodology

Similar to pricing concept of a market econo-
my, the LR method replaces ``hard'' coupling
constraints (subproject precedence constraints and
resource capacity constraints) by ``soft'' prices
(Lagrange multipliers) for the violation of prece-

dence constraints and the use of resources at each
time. The original problem can thus be decom-
posed into smaller and easier subproject sub-
problems. The individual subproblems are solved
by using SDP. Those prices or multipliers are then
iteratively adjusted based on the degree of con-
straint violations following again the market
economy mechanism. Subproblems thus are re-
solved using the new set of multipliers. In mathe-
matical terms, a ``dual function'' is maximized in
this multiplier updating process. Since a good dual
solution may not necessarily be associated with a
good implementable schedule, a dual solution is
selected by using ``ordinal optimization''. At the
termination of the multiplier updating iterations,
on-line heuristics are applied to adjust the dual
solution selected to remove any infeasibilities and
dynamically construct an implementable schedule
based on the realizations of random events.

3.1. The Lagrangian relaxation framework

By using Lagrange multipliers gpjr to relax
subproject precedence constraints (2b) and using
multipliers pkh to relax resource capacity con-
straints (3b), the following relaxed problem is ob-
tained:

min
fbn

pj;h
n
pjg

J ; with

L � E
X

p

�Dp�wpT 2
p � bpE2

p� � �1ÿ �Dp�Rp

 "

�
X
jnkh

mpjhpkhd
n
pjkh

!
ÿ
X

kh

pkhMkh

#

� E
X

p;j;�p;r�2Ipj

gpjr cpj � 1ÿ b1
pr

� �24 35; �6�

subject to iteration and task precedence con-
straints (1) and (2a), and processing time require-
ments Eq. (4). By regrouping relevant terms, the
relaxed problem can be decomposed into the fol-
lowing subproject subproblems:
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min
fbn

pj;h
n
pjg

Lpi; with

Lpi � E �Dp�wpT 2
p DpSp � bpE2

pDp1�
24
��1ÿ �Dp��Dp1

�Rp � �DpjRpj�

�
X
j2Spi

Xnpj

n�1

X
h2Hpj

mpjhpkhd
n
pjkh

�
X

j;�p;r�2Ipj

gpjr�cpj � 1�ÿ
X

r:�p;j�2Ipr

gprjb
1
pj

35; j 2 Spi;

�7�
subject to Eqs. (1), (2a) and (4). In the above, Dp1

is an integer variable equal to one if subproject i is
the ®rst subproject of p, i.e., i � 1, and zero oth-
erwise, and DpSp is similarly de®ned for the ending
subproject Sp of p. The integer variable �Dpj equals
to one if subproject i is at �p; j� upon failure, and
zero otherwise.

Let L�pi denote the resulting minimal subprob-
lem cost. The high level dual problem is then ob-
tained as

max
p;g P 0

L�p; g�; with

L�p; g� �
X

pi

L�pi ÿ
X

kh

pkhMkh: �8�

3.2. Dynamic programming for solving subproblems

The forward dynamic programming algorithm
presented by Chen et al. (1995) can be used to
solve the decomposed subproblems in the deter-
ministic case. In this paper, a backward SDP is
developed to solve subproject subproblems Eq. (7)
to manage uncertainties. In the procedure, an SDP
stage corresponds to one iteration of a task, and at
each stage, the states (or nodes) are the possible
iteration beginning times. To clearly illustrate the
SDP procedure for a subproject, we shall assume
that Project p has only one subproject, there is no
project earliness penalty, and each task can only be
performed by a single eligible resource set. The
SDP algorithm starts by calculating terminal costs
at the last stage, then moving backwards to re-
cursively compute optimal cumulative costs at

preceding stages, and ®nally obtaining subproblem
solution at the ®rst stage. Project risk penalties are
imbedded within SDP cost to manage risks.

Calculating terminal cost. Without loss of gen-
erality, it is assumed that the last task �p;Np� is
deterministic. The DP algorithm starts with the
last stage having the following terminal cost:

V 1
pNp
�b1

pNp
� � wpT 2

p �
Xc1

pNp

k�b1
pNp

X
h2HpNp

mpNphpkh: �9�

Calculating optimal cumulative cost and man-
aging iteration risks. When moving backwards, the
optimal cumulative cost V n

pj of stage �p; j; n� at
state bn

pj is obtained recursively subject to iteration
and task precedence constraints. Deterministic and
uncertain tasks are separately considered in the
following.

Stage representing a deterministic task. At such
a stage �p; j; 1�, the optimal cumulative cost at
state b1

pj is obtained as

V 1
pj�b1

pj� � min
b1

p;j�1

Xc1
pj

k�b1
pj

X
h2Hpj

mpjhpkh

24 �V 1
p;j�1�b1

p;j�1�
35

�
Xc1

pj

k�b1
pj

X
h2Hpj

mpjhpkh �min
b1

p;j�1

V 1
p;j�1�b1

p;j�1�;

16 j6Np ÿ 1; �10�
where b1

p;j�1 is the decision variable. The second
equality in Eq. (10) is obtained since the ®rst term
is a ®xed value for the given b1

pj.
Stages representing iterations of an uncertain

task. For a stage �p; j; n�; n < Npj, two cases need
to be considered: move to �p; j; n� 1� of the same
task with probability P n

pj, or move to the next task
�p; j� 1; 1� with probability 1ÿ P n

pj. The optimal
expected cumulative cost at state bn

pj is thus cal-
culated as

V n
pj�bn

pj� �
Xcn

pj

k�bn
pj

X
h2Hpj

mpjhpkh � P n
pj min

bn�1
pj

V n�1
pj �bn�1

pj �

� �1ÿ P n
pj� min

b1
p;j�1

V 1
p;j�1�b1

p;j�1�;

16 j6Np ÿ 1; 16 n6Npj ÿ 1: �11�
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Minimum V n�1
pj �bn�1

pj � and minimum V 1
p;j�1�b1

p;j�1�
can be obtained by selecting bn�1

pj and b1
p;j�1, re-

spectively, as in Eq. (10).
At stage �p; j;Npj�, two di�erent cases need to

be considered: the project fails with probability
P Npj

pj as the speci®ed number of iterations has been
exceeded (iteration risk), or moves to �p; j� 1; 1�
of the next task with probability 1ÿ P Npj

pj . The
optimal expected cumulative cost is thus calculated
as

V Npj
pj �bNpj

pj � �
XcNpj

pj

k�b
Npj
pj

X
h2H

p
Npj

mpjhpkh � P Npj
pj ��Rp � Rpj�

� �1ÿ P Npj
pj �min

b1
p;j�1

V 1
p;j�1�b1

p;j�1�;

16 j6N ÿ 1; �12�
where ��Rp � Rpj� is the risk penalty. When P Npj

pj is
zero, i.e., no iteration risk, the right-hand side of
Eq. (12) is similar to that of Eq. (10).

Managing time risks. A time-critical Project p
fails at iteration �p; j; n� of either a deterministic or
an uncertain task if this iteration cannot be com-
pleted by �dn

pj, the ``absolute iteration deadline''
derived from �dp based on project critical paths.
For states with cn

pj greater than �dn
pj, optimal cu-

mulative costs are thus given by

V n
pj�bn

pj� � �Rp � Rpj; bn
pj � tn

pjh ÿ 1 > �dn
pj: �13�

For other states, V n
pj�bn

pj� is calculated by using
one of the above formulas (10), (11), or (12).

From Eqs. (9)±(13), it can be seen that risks are
managed within SDP by appropriately trading o�
risk penalties vs. resource utilization costs and
project tardiness penalties.

Subproblem solution. The optimal L�pi is ob-
tained as the minimum optimal cumulative cost at
the ®rst stage. Finally, optimal iteration and task
beginning times and corresponding resource sets
can be obtained by tracing forwards the stages.

Example (SDP Procedure for solving a sub-
problem). In this example, there are three di�erent
resources available over a planning horizon of 7
time units. Project p has only one subproject with
due date 5 and without risks. Task �p; 2� may need
only one iteration (50%), or may require a second

iteration (50%). Other data are shown in Table 1,
with multipliers pkh given in Table 2. The state
transition diagram for the SDP procedure is
shown in Fig. 2.

To satisfy precedence constraints ((1) and (2a))
and processing time requirements (4), only the
shaded nodes in Fig. 2 need to be considered. At
stage 4, the terminal costs for nodes 3, 4 and 5 can
be calculated by Eq. (9), and are shown next to the
nodes. At stage 3, consider node 3 for example.
Since constraints (2a) must be satis®ed, only nodes
4 and 5 can be selected at stage 4, with the smaller
terminal cost 7.6 at node 4. The optimal cumula-
tive cost of node 3 at stage 3 thus is obtained as
17.6 by Eq. (12). Similarly, the optimal cumulative
cost for node 4 at stage 3 can be calculated. At
stage 2, consider node 1 for example. The node
may go to stage 3 (50%) subject to constraints (1)
or may go to stage 4 (50%) subject to constraints
(2a), and the optimal expected cumulative cost
15.05 is obtained from Eq. (11) by selecting nodes
4 at stage 3 and stage 4, respectively. At stage 1,
the optimal cumulative costs for node 0 and 1 are
calculated by Eq. (10), and are shown in Fig. 2.
The optimal L�p1 is selected as the minimum opti-
mal cumulative cost 26.05 at stage 1, and the op-

Table 1

Data of the SDP example

Task Resource needed tn
pjh

(p,1) Resource 1 and resource 3 1

(p,2,1) Resource 1 2

(p,2,2) Resource 1 1

(p,3) Resource 2 and 50% resource 3 2

Table 2

Multiplier pkh of the SDP example

p10 p11 p12 p13 p14 p15 p16

2.0 2.0 2.0 10.0 5.0 1.0 0.0

p20 p21 p22 p23 p24 p25 p26

)1.0 0.0 2.0 3.1 3.1 5.0 4.0

p30 p31 p32 p33 p34 p35 p36

9.0 10.0 9.0 3.0 0.0 )1.0 )1.0
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timal b1�
p1 is thus 0. Finally, b1�

p2 � 1 and b1�
p3 � 4

when task �p; 2� needs only one iteration; and
b1�

p2 � 1, b2�
p2 � 4, b1�

p3 � 5 if �p; 2� requires the sec-
ond iteration.

SDP for the general case and complexity. For
the general case where a project has earliness
penalty and multiple subprojects, and a task can
be performed by multiple eligible resource sets, the
SDP procedure presented before can be extended
as follows. At the last stage, terminal cost will be
calculated for each eligible resource set. Moving
backwards to a preceding stage, the optimal cu-
mulative cost for using an eligible resource set at a
state will be computed by selecting the beginning
time and resource set of the next iteration and/or
next task. For the ®rst stages of projects' ®rst
subproject and the stages with subproject prece-
dence constraints, the earliness penalty and the
cost for violating those subproject precedence
constraints will be added to the SDP cost, re-
spectively.

The complexity of this SDP algorithm is
O�KPj2Spi

NpjjHpjj� for subproject i which hasPjSpij
j�1 Npj stages, where jSpij and jHpjj are the car-

dinalities of Spi and Hpj, respectively. This com-
plexity is slightly higher than that for the

deterministic case, i.e., O�KPj2Spi
jHpjj� (Chen et

al., 1995).

3.3. Solving the dual problem

Among exiting methods for solving the high-
level dual problem, the subgradient method is
commonly used to iteratively update the Lagrange
multipliers. Since the subgradient method requires
minimizing all subproblems before each update of
multipliers, solving subproblems becomes very
time consuming for large problems. To overcome
this, an interleaved subgradient method (ISG) was
developed by Kaskavelis and Caramanis (1995)
with the proof of convergence provided by Zhao et
al. (1997). The ISG method updates multipliers
after solving each subproblem, and converges
faster than the subgradient method especially for
large problems. In this paper, the ISG method is
used to solve the dual problem (8). To update the
multipliers, their subgradients ��EPpjn mpjhd

n
pjkh�ÿ

Mkh�K�H and �E�cpj� ÿ E�b1
pr��Q�1 are needed,

where Q is number of gpjr multipliers. These sub-
gradients can be calculated from the optimal SDP
paths.

Fig. 2. SDP for subproject 1 of project p with uncertain number of iterations. Solid lines ± optimal SDP paths; dotted lines ± SDP

paths.
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The overall solution is of semi-close-loop nature
since the ``close-loop'' solution of the stochastic
subproblems are obtained by using SDP with
given (static) Lagrangian multipliers.

3.4. Selecting a dual solution and implementing the
schedule on line

The iterative multiplier updating process is
stopped after a ®xed amount of computation time
or after a ®xed number of multiplier updating it-
erations have been executed. Since capacity con-
straints (3b) and subproject precedence constraints
(2b) are relaxed when solving subproblems, sub-
problem solutions may not be model feasible when
put together. Furthermore, a model feasible
schedule may not be implementable since the
constraints (2b) and (3b) are approximations. A
heuristic procedure is developed to obtain an im-
plementable schedule on line based on subproblem
solutions and the realizations of random events.
How to select a good dual solution is presented
®rst.

Selecting dual solution. In view of the heuristic
procedure to construct feasible schedules, a dual
solution with a high dual cost may not necessarily
associate with a good feasible schedule. One
therefore has to try out several candidate dual
solutions having high dual costs to ®nd which one
generates a good feasible schedule. In the sto-
chastic setting, each dual or feasible solution is in
fact a policy, indicating what to do under which
circumstances. The tryout of a single dual solution
thus involves simulation, and is very time con-
suming. The idea of ordinal optimization (Ho,
1995; Chen, 1995) has been employed to perform
short simulation runs on selected candidate dual
solutions to determine the ``order'' or ``ranking'' of
their objective function values. The winner(s) of
the short tryout are then the dual solutions(s) to be
selected to generate implementable schedules, and
rigorous simulation runs are then performed to
obtain performance statistics.

Schedule implementation. The list scheduling
heuristics used here is a modi®ed version of what
was presented in Hoitomt et al. (1993). The dif-
ference is that the schedule is dynamically con-

structed here based on the realizations of random
events by exploiting the close-loop nature of SDP
solutions. A list U of ``assignable'' tasks that can
be started without violating precedence constraints
is created at time 0, and updated at subsequent
time units based on the realizations of random
events and SDP solutions. Tasks in U are sorted in
the ascending order of their beginning times, where
an uncertain task is considered one iteration at a
time. The required types of resources are then as-
signed to tasks according to list U as resources
become available. If at a particular time k there are
not enough resources for tasks, a greedy heuristic
determines which tasks should begin at that time
and which ones are to be delayed by one time unit.

If iteration �p; j; n� is completed and it has a
successor, �p; j; n� 1� or �p; j� 1; 1�, the succes-
sor's beginning time and the corresponding re-
source set are obtained from the SDP solutions.
Task list U is then updated by inserting the suc-
cessor in the ascending order of the beginning
times. If Project p fails, all tasks of p will be deleted
from further consideration. The heuristic is ter-
minated after all tasks are scheduled. Otherwise,
above procedure is repeated for the next time unit.

Because of the semi close-loop nature of the
overall solution, rescheduling is needed periodi-
cally or after a major random event occurrence.
Rescheduling can achieve better results without
much computational requirement if the multipliers
are initialized at their previous values.

3.5. Performance evaluation

Simulation. For a very small problem, algo-
rithm performance can be evaluated by enumer-
ating all possible events and determining their
associated possibilities. To analyze results for large
problems, a simulation shell has been developed.
Random numbers are generated according to their
discrete distributions, and Monte Carlo simulation
is performed based on the dual solution selected
and the realizations of random events. After N
Monte Carlo runs, tardiness Tpn, earliness Epn, and
sample cost Jn of each Project p are obtained for
each run n. We are interested in the expected cost J
and the weighted sum of project tardiness and
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earliness variances, r2 �Pp�wpr2
tp � bpr

2
ep�, where

r2
tp and r2

ep are Project p's tardiness and earliness
variances, respectively. Small r2 indicates predict-
able start and completion of projects, weighed by
the projects' priorities. The values of J and r2 can
be estimated as

�J � 1

N

XN

n�1

Jn; �14�

r2 �
X

p

Wp
1

N ÿ 1

XN

n�1

Tpn

 248<: ÿ 1

N

XN

n�1

Tpn

!2
35

�bp
1

N ÿ 1

XN

n�1

Epn

 24 ÿ 1

N

XN

n�1

Epn

!2
359=;: �15�

The accuracy of the above estimates can be
statistically evaluated by using the con®dence re-
gions for a given probability of error a. Further-
more, con®dence regions can be used as a simple
way to compare the performance, e.g., J, of two
algorithms using the same set of random variables.
If the con®dence regions of two methods do not
overlap, the one having smaller �J is better with
con®dence 1ÿ a. Otherwise, a so-called ``optimal''
comparison technique can be used based on hy-
pothesis testing (Bar-Shalom and Li, 1993).

Evaluating the solution via duality gap. Al-
though simulation can be used to obtain statistics
of schedules, it cannot tell how close the schedules
are to the optimal. It has been proved (Luh et al.,
1997) that any dual cost D is a lower bound to the
optimal expected cost J� for the stochastic case
under consideration. The relative duality gap
�J ÿ D�=D thus provides a measure about the
quality of schedules obtained. The optimal sched-
ule can be detected when the duality gap becomes
zero, and the iterative multiplier updating process
will then be stopped.

4. Numerical results

The method has been implemented in C++, and
testing has been performed on a Pentium Pro200
personal computer. In the results to be presented,

Example 1 shows the advantage of including risk
management in scheduling, and Example 2 shows
the solutions in detail and presents valuable in-
sights. Examples 3 and 4 draw data from Delta
Industries, an engine part manufacturer in Con-
necticut, demonstrating that our method (LR/
SDP) can e�ectively handle uncertainties for
problems of practical sizes. In Examples 2, 3, and
4, the performance of our method is compared
with that of the ``mean method'' where all uncer-
tain numbers of iterations are replaced by their
means, and the converted deterministic problem is
solved by using the approach of Wang et al.
(1997). The advantage of ordinal optimization for
selecting a good dual solution is then illustrated in
Example 4.

In the testing, all the multipliers are initialized
at zero. For simplicity of presentation, solving all
the subproblems once, i.e., updating multipliersP

p Sp times, is called an ``iteration'' for the inter-
leaved subgradient method (ISG). Based on the
dual solutions selected, our method and the mean
method use the same heuristics to allocate re-
sources to tasks without re-optimization. Numer-
ical results are summarized by the dual cost �D�,
expected cost �J�; duality gap (Gap), CPU time in
seconds (S, including ordinal optimization time
but not rigorous Monte Carlo simulation time),
and weighted sum of tardiness and earliness vari-
ances �r2�.

Example 1. This example is to show the e�ects of
risk management. There are two resource types
each with a single unit, and these resources are
available over a planning horizon of 10 time units.
Three equally weighted projects with 6 tasks in
total are to be scheduled as summarized in
Table 3. Project 2 fails if it cannot be completed
before time 5, or if task (2, 1) cannot meet design
criteria after the third iteration. Project 3 fails if it
cannot be completed before time 5. The problem is
solved by using LR/SDP method in two ways,
managing risks (Case 1) or ignoring risk penalties
(Case 2) in scheduling, and testing results are
summarized in Table 4 and Fig. 3. It can be shown
by exhaustive search that J � 30:5 of Case 1 is the
optimal expected cost. In Case 2, since the dual
cost is obtained based on a simpli®ed model, the
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duality gap is calculated using the dual cost of
Case 1 which is the actual lower bound of J.

In the schedules obtained, the schedule for re-
source 1 is (2, 1), (3, 1), and (1, 1) in Case 1, and
(1, 1), (2, 1), and (3, 1) in Case 2. In Case 1, a
tradeo� between the tardiness of Project 1 and the

failures of Projects 2 and 3 has been made so that
Project 2 is started ®rst, and the optimal expected
cost 30.5 obtained. In Case 2, since risk penalties
are ignored in the simpli®ed scheduling problem,
Project 1 is started earlier than Projects 2 and 3,
resulting in a much higher expected cost J than
that of Case 1 because of the higher failure prob-

Table 3

Data of Example 1

Project Due date Task/iteration Resource needed tn
pjh P n

pjh
�Rp Rpj wp bp

1 2 (1,1) 1 2 1 0.1

(1,2) 2 1

2 4 (2,1,1) 1 1 0.15 50 50 1 0.1

(2,1,2) 1 1 0.2 50

(2,1,3) 1 1 0.1 50

(2,2) 2 2 55

3 3 (3,1) 1 3 50 55 1 0.1

(3,2) 2 1 55

Table 4

Results of Example 1

Case J D Gap (%) Failure probability

Project 2 (%) Project 3 (%)

1 (Managing risks) 30.5 30.2 1.0 0.3 15

2 (Ignoring risks) 115 10.53 280.8 15 100

Fig. 3. Gantt charts of Example 1.
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abilities of Projects 2 and 3 as shown in Table 4.
The results thus illustrate that managing risks in
scheduling can achieve better solutions with lower
expected costs and lower project failure probabil-
ities, implying reliable on-time completion.

Example 2. There are three resource types each
with a single unit, with Type 1 unit not available in
time periods 2, 3, and 7±10. Three unequally
weighted projects (8 tasks in total) are to be
scheduled over a planning horizon of 50 time units
as summarized in Table 5. Each task can be
performed by one eligible resource type except
that task (3, 2) can be performed either by
resource Type 1 or Type 2. Task 2 of Project 1
may be completed in one iteration (85%), or needs
a second iteration (15%). Results are summarized
in Table 6 and Fig. 4. It can be shown by
exhaustive search that the schedule obtained by
the LR/SDP method has the optimal expected
cost. In the mean method, the mean number of
iterations of task (1, 2) is 1.3, and is rounded to 1.
At the same time, the round-o� error is compen-
sated by enlarging processing time t1

12h with 15% of
t2
12h to 15.95, which is rounded to 16. Similar to

Case 2 of Example 1, the duality gap of the mean
method is calculated based on the actual lower

bound of J, the D obtained by the LR/SDP
method.

In the mean method, the uncertain task (1, 2) is
treated as having a single iteration, and Project 1 is
started before Project 2 in Fig. 4(c). This sequence,
however, fails to consider that both Projects 1 and
2 will have large tardiness when the second itera-
tion of task (1, 2) is needed (Fig. 4(d)). In our
method, Project 1 is started after Project 2, and
only Project 1 has large tardiness in Fig. 4(b). Our
method thus has lower expected cost and lower
variance than those of the mean method, implying
better on-time project completion with higher
predictability. The reason is that the mean method
handles uncertainties based on their mean values,
and cannot adequately manage the realizations of
individual events although the same heuristics is
used.

Example 3. This example draws data from Delta
Industries with contrived uncertainties, and is to
show the e�ects of various levels of uncertainties
on algorithm performance. Eighteen resource
types of 35 units are available over a planning
horizon of 150 time units. Twenty projects are
scheduled, with 23 subprojects decomposed into
123 tasks. A task may be performed by an eligible

Table 5

Data of Example 2

Project Due date Task Resource needed tn
pjh wp bp

1 1 (1,1) 1 1 2 0.1

(1,2,1) 2 14

(1,2,2) 2 13

(1,3) 3 1

2 1 (2,1) 1 1 1.9 0.1

(2,2) 2 8

(2,3) 2 6

3 3 (3,1) 3 2 1 0.1

(3,2) 1 2

2 2

Table 6

Results of Example 2

Method J D Gap (%) r2 S.

LR/SDP 2162.2 2159.63 0.12 43.10 0.8

Mean 2189.2 2107.30 1.37 84.04 0.6
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Fig. 4. Gantt charts of Example 2.
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resource set, with the number of eligible resource
sets ranging from one to three. There are 2703
multipliers. Four cases are considered, having 0%,
10%, 30%, and 55% projects with uncertainties,
respectively. The uncertain numbers of iterations
are randomly generated. For each case, a dual
solution is selected after 100 ISG iterations, and
1000 Monte Carlo runs are then conducted.
Testing results are summarized in Tables 7 and 8,
and con®dence regions are obtained with error
probability a � 0:05: Another stopping criteria for
the LR/SDP method is examined where the
multiplier updating process is terminated when
the duality gap is reduced to less than 5%, and the
corresponding results are presented in Table 9.

The two methods generate identical results for
the deterministic case (0% uncertainties). For cases
with 30% and 55% uncertainties, our method is
better than the mean method by having lower ex-
pected costs and lower variances with non-over-
lapping con®dence regions. For the case with 10%
uncertainties, the con®dence regions of the two

methods overlap, and the result of ``optimal''
comparison technique is also inconclusive. This
implies that the two methods tend to the same
result when uncertainties are low. The CPU time
needed for our method increases with the levels of
uncertainties, but is only slightly higher than that
of the mean method.

Example 4. This example also draws data from
Delta Industries with contrived uncertainties. It is
to show the improvement in schedule quality as
the number of multiplier updating iterations
increases, and to demonstrate that ordinal optimi-
zation can select a good dual solution in a timely
fashion. In this example, 47 projects are scheduled
on 18 resource types of 35 units over a planning
horizon of 160 time units, with 24 projects having
uncertain number of iterations. The projects con-
sists of 55 subprojects that are decomposed into
292 tasks, with a total of 2888 multipliers. A task
may be performed by an eligible resource set, with
the number of eligible resource sets ranging from

Table 7

Results of the LR/SDP method after 100 ISG iterations

Percentage of uncertainties (%) �J ; [con®dence region] r2; [con®dence region] D Gap S

0 5301.6, [5301.6, 5301.6] 0, [0, 0] 4926.6 7.6 20.1

10 5591.5, [5493.4, 5689.6] 115.1, [98.1, 132.1] 5201.6 7.5 22.3

30 6476.8, [6395.8, 6557.8] 180.5, [170.7, 190.3] 5900.3 9.8 28.3

55 7600.1, [7500.8, 7699.4] 226.3, [211.4, 241.2] 6871.8 10.6 39.8

Table 8

Results of the mean method after 100 ISG iterations

Percentage of Uncertainties (%) �J ; [con®dence region] r2; [con®dence region] S

0 5301.6, [5301.6, 5301.6] 0, [0, 0] 19.0

10 5650.9, [5549.7, 5752.1] 102.5, [94.0, 111.0] 20.2

30 6712.1, [6612.1, 6812.1] 212.0, [196.6, 227.4] 26.5

55 9020.5, [8843.6, 9197.4] 1214.0, [1122.9, 1305.1] 35.0

Table 9

Results of the LR/SDP method when duality gap less than 5%

Percentage of uncertainties (%) �J r2 D Gap (%) S

0 5151.0 0 4962.4 3.8 39.0

10 5499.5 100.9 5282.9 4.1 45.9

30 6266.9 177.7 6037.5 3.8 102.0

55 7321.7 195.7 6986.4 4.8 230.2
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one to four. Four cases are considered, with 50,
100, 200, and 500 ISG iterations, respectively.
Ordinal optimization conducts 30 simulation runs
for each dual solution of the last 5% ISG
iterations, and selects the best one. Based on
1000 Monte Carlo runs, testing results are sum-
marized in Tables 10 and 11, where the con®dence
regions are obtained with error probability
a� 0.05.

From the testing, it can be seen that our
method is better than the mean method for a ®xed
number of ISG iterations. As the number of ISG
iterations increases, better dual costs are obtained
for both methods at the increase of computation
time. Good expected costs, however, can generally
be obtained within a reasonable number of ISG
iterations (200 here).

To examine the advantage of using ordinal
optimization in the LR/SDP method, 1000 Monte
Carlo runs are conducted using the dual solution
with the highest dual cost for the four cases, and
the resulting average duality gap is 10.3% larger
than that of Table 10. On the other hand, 1000
Monte Carlo runs are conducted on every dual
solution of Case 4 to ®nd the best implementable
schedule. The minimum expected cost 7511.9 with
a 4.1% duality gap is obtained in 1000 min, only
slightly smaller than 7606.1 with a 5.4% gap of
Table 10. Above comparison demonstrates that
ordinal optimization can select a good dual solu-

tion while saving signi®cant amount of simulation
e�orts.

5. Concluding remarks

A new problem formulation and a novel solu-
tion methodology that synergistically combines
Lagrangian relaxation, stochastic dynamic pro-
gramming, ordinal optimization, and heuristics are
presented for scheduling design projects with un-
certain number of iterations while managing de-
sign risks. Uncertainties are appropriately handled
by satisfying iteration and task precedence con-
straints for each possible number of iterations. The
expected capacity constraints and expected sub-
project precedence constraints maintain the com-
putational complexity at a manageable level
without much loss of modeling accuracy and
scheduling performance, enabling the method to
solve problems of practical sizes. Testing results
supported by simulation demonstrate that near
optimal schedules are obtained in a computation-
ally e�cient manner with low expected tardiness
and earliness penalties and low project failure
probabilities, implying reliable completion with
short lead times.

Although only uncertain number of iterations is
considered, the formulation and method can be
extended to handle other kinds of uncertainties,

Table 10

Results of Example 4 (LR/SDP method)

ISG iteration no. �J ; [con®dence region] r2; [con®dence region] D Gap (%) S

50 9878.8, [9266.5, 10491.1] 1313.6, [1243.5, 1383.7] 6410.4 54.1 36.2

100 8661.0, [8489.1, 8832.9] 688.0, [647.7, 728.3] 6769.4 27.9 72.1

200 7675.0, [7476.9, 7873.1] 441.3, [400.5, 482.1] 6938.8 10.6 157.4

500 7606.1, [7508.0, 7704.2] 202.9, [161.6, 244.2] 7216.0 5.4 400.0

Table 11

Results of Example 4 (mean method)

ISG iteration no. �J ; [con®dence region] r2; [con®dence region] S

50 10511.2, [10199.7, 10822.7] 2011.0, [1910.9, 2111.1] 35.0

100 9354.6, [9053.4, 9655.8] 1832.0, [1726.3, 1937.7] 67.3

200 9034.9, [8735.4, 9334.4] 1704.1, [1598.9, 1809.3] 144.1

500 8975.2, [8734.6, 9215.8] 1690.4, [1579.9, 1800.9] 377.0
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e.g., random processing time, uncertain project
importance and due date (Luh et al., 1997).
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b1
pj beginning time of task (p, j)

bn
pj beginning time of iteration (p, j, n)

cpj completion time of task (p, j)
cn

pj completion time of iteration (p, j, n)
dp due date of Project p
�dp absolute deadline of Project p
Ep earliness of Project p
H number of resource types
Hpj the set of all eligible resource sets that

are capable of performing (p, j)
hn

pj an eligible resource set to perform
(p, j, n), 16 n6Npj; hn

pj 2 Hpj

Ipj set of immediate succeeding tasks of
(p, j)

J objective function, also called (ex-
pected) cost

K planning horizon of scheduling
k discrete time index, 06 k6K ÿ 1
Lpi subproblem of subproject i of Project

p
L�pi minimal cost for subproblem Lpi

Mkh number of type h resource available
at time k; h 2 H

mpjh number of type h resource units in hpj

npj number of actually happening itera-
tions of uncertain task (p, j)

Np number of tasks in Project p

Npj allowable (maximum) number of it-
erations of uncertain task �p; j�

P total number of projects to be
scheduled

P n
pj probability to need another iteration

after ®nishing the nth iteration of
uncertain task (p; j)

(p, j) the jth task of Project p
�p; j; n� the nth iteration of uncertain task

(p, j), a deterministic �p; j� also de-
noted as �p; j; 1�

Rp risk penalty of Project p
�Rp opportunity cost when Project p fails
Rpj incurred cost on subproject i which is

at task �p; j� upon failure
Sp number of subprojects in Project p
Spi set of serial tasks of subproject i of

Project p
Tp tardiness of Project p
tn
pjh deterministic integer processing time
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