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Abstract—In a deregulated electric power system, multiple mar-
kets of different time scales exist with various power supply in-
struments. A load serving entity (LSE) has multiple choices from
these instruments to meet its load obligations. In view of the large
amount of power involved, the complex market structure, the risks
in such volatile markets, the stringent constraints to be satisfied,
and the long time horizon, a power portfolio optimization problem
is of critical importance for an LSE to serve its load, maximize its
profit, and manage its risks. In this paper, a midterm power port-
folio optimization problem with risk management is presented. Key
instruments are considered, risk terms based on semi-variances
of spot market transactions are introduced, and penalties on load
obligation violations are added to the objective function to improve
algorithm convergence and constraint satisfaction. To overcome
the inseparability of the resulting problem, a surrogate optimiza-
tion framework is developed, enabling a decomposition and coor-
dination approach. Numerical testing results show that our method
effectively provides decisions for various instruments to maximize
profit and manage risks, and it is computationally efficient.

Index Terms—Deregulated electricity market, power portfolio
optimization, risk management.

I. INTRODUCTION

I N a deregulated electric power system, multiple markets of
different time scales exist, e.g., forward market, day-ahead

market, and real-time market; each market has multiple power
supply instruments. A load serving entity (LSE) has multiple
choices from these instruments to meet its load obligations.
For example, in the forward market, different contracts for
purchasing or selling power at fixed prices are available months
before the operating day to hedge against risks. In the day-ahead
market, an LSE can submit demand bids and generation offers
to purchase and sell power at the market-clearing price (MCP).
Also, generation units can be self-scheduled to provide power
for the operating day. In the real-time market, certain contracts,
such as options, can be executed or not based on needs, and an
LSE can directly purchase power from or sell power to the spot
market at real-time market prices. In view of the large amount
of power involved, the complex market structure, and the risks
in such volatile markets, a power portfolio problem is of critical
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importance for an LSE to serve its load, maximize its profit,
and manage its risks.

A midterm power portfolio optimization problem with risk
management is presented in this paper. The time horizon ranges
from a month to a year. The problem is difficult in view that
the instruments of different markets have different time scales
but are coupled through load obligation constraints. Also, the
conventional risk term defined by portfolio variances [9] is not
appropriate in the power market because an LSE is at risk only
when purchasing power at prices higher than expected or when
selling power at prices lower than expected. It is difficult to de-
fine a risk term that captures this characteristic and can be ef-
ficiently managed within an optimization framework. Finally,
in view that some decision variables such as the amount of
strips/options and pumping levels of pumped-storage units have
discrete values and that there are tight limits on spot market pur-
chases/sales to bound market risks, it is difficult to obtain fast
convergence and good feasible solutions.

A literature review is presented in Section II, where it can be
seen that a good method that efficiently manages risks within
an optimization framework for a midterm large-scale portfolio
optimization is lacking. The problem formulation is described
in Section III. Risk terms based on semi-variances of spot
market costs are introduced. To improve algorithm convergence
and constraint satisfaction, quadratic penalty terms on the vio-
lation of load obligation constraints are added to the objective
function. In view that the penalty term is not additive, the
resulting problem is inseparable. To overcome this difficulty, a
surrogate optimization framework is developed in Section IV.
In the process, all decision variables associated with a particular
instrument are pulled out to form an instrument subproblem,
and decision variables for this instrument are optimized while
keeping all other variables at their latest available values.
Numerical testing results presented in Section V show that our
method effectively provides near-optimal decisions to serve the
load, maximize the profit, and manage risks, and the method is
computationally efficient.

II. LITERATURE REVIEW

Studies on midterm power portfolio optimization and risk
management can be categorized into three major approaches:
portfolio evaluation based on existing financial models;
Markowitz mean-variance based methods; and stochastic
programming.

Existing financial models have been used in portfolio opti-
mization to evaluate power supply instruments and portfolios.
For example, an option-pricing model, which evaluates an op-
tion by creating a replicating portfolio whose costs equal those
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of the option, was used to evaluate individual instruments in
[14]. The problem is then to maximize the overall profit, subject
to operational and financial constraints. The problem thus for-
mulated, however, is a large-scale, nonlinear, mixed-integer sto-
chastic optimization problem and cannot be directly solved by
using mathematical programming techniques. Heuristics were
used to solve the problem. A value-at-risk model, which mea-
sures the minimum expected cost of a portfolio within a given
confidence interval, was used to evaluate a power portfolio in
[5]. The problem is then to minimize the cost of the portfolio
subject to operational and financial constraints. The resulting
problem is also a nonlinear, mixed-integer, stochastic optimiza-
tion problem. Stochastic dynamic programming was used to
solve a small portfolio problem. A similar approach was pre-
sented later in [11].

The Markowitz mean-variance model has been widely used
in portfolio optimization [9]. The problem is to minimize the
risk, which is defined as the variance of a portfolio, for a given
return. Quadratic programming is used to solve the problem.
The mean-variance model was extended to power portfolio op-
timization problems in [4], [16], and [17]. A power portfolio
optimization problem considering forward contracts and gener-
ation units was presented in [17]. It is to minimize the cost vari-
ance of the portfolio subject to transaction cost limits, genera-
tion unit constraints, and financial constraints. Because of the
on/off decision variables of generation units, the problem thus
formulated is a mixed-integer programming problem. Heuris-
tics were used to solve a small problem. The risk definition,
however, is not appropriate in the power market as explained
before.

A stochastic programming model was presented in [13]. The
power supply instruments include forward contracts, generation
units, and spot market transactions. The problem is to maximize
the profit while serving the load. To solve the problem, a large
number of scenarios were generated through statistical models.
Scenario analysis based on a decomposition technique was then
used to select portfolio positions that perform well. A similar
approach was presented earlier in [12]. A shortcoming of this
method is that it is highly dependent on the choice of scenarios.

From the above, it can be seen that a good method that effi-
ciently manages risks within an optimization framework for a
midterm large-scale portfolio problem is lacking.

III. PROBLEM FORMULATION

Consider a midterm power portfolio optimization problem
with time horizon ranging from a month to a year. The time
horizon consists of K discrete time intervals of equal duration

, with time index k ranging from 1 to K. For simplicity, phys-
ical constraints such as network limitations (congestion) are not
considered. In view that decisions are made months before the
operating day, it is assumed that the day-ahead market is merged
with the real-time market. The power supply instruments in-
clude strips, call/put options, generation units, and spot market
purchases/sales. In the following, uncertainties, individual in-
struments, load obligation constraints, risk terms, and the ob-
jective function are presented in detail.

A. Uncertainties

There are various uncertainties in a deregulated electricity
market, such as spot market prices, load obligations, and strip/
option prices. In view that spot market prices are much more
volatile than other sources of uncertainties, they are modeled
as random variables, while others are considered as determin-
istic. Assume that probability density functions (pdfs) of the
spot market prices [S(k)] are given, e.g., lognormal distribu-
tions [5], [8], and are independent across hours in view of the
long-term prediction. Based on these pdfs, a set of price levels
are obtained for each hour after discretization.

B. Strips

A strip is a contract of purchasing or selling a fixed amount
of power at a fixed price months before the operating day. For
example, LSEs can purchase a December weekday on-peak strip
at the beginning of the year. The price and amount of power are
the same for every on-peak weekday hour in December.

To describe strips mathematically, let be the number of
available strips, ($/MW) the price of Strip i, and
(MW) the level of Strip i. For purchasing, is positive;
otherwise, is negative. Usually, strips are purchased or
sold at multiples of a discrete block

(1)

where (MW) is the size of a block, and is
the maximum number of blocks for Strip i. Binary indicators

are introduced to describe the strip type. For ex-
ample, for a weekday on-peak strip, is given as

if k is a weekday on peak hour
otherwise.

(2)

Among the above, is the decision variable, and other
variables are assumed given.

The cost of Strip i is given as

(3)

C. Options

Another contract in the forward market is an option, which
is the right to purchase or sell a fixed amount of power at a
fixed price months before the operating day. A certain amount
of premium will be paid, and the decision to execute the option
or not is made on the operating day/hour. There are two types
of options: call options (to purchase) and put options (to sell).

Let be the number of available options,
($/MW) the premium, ($/MW) the price, and
(MW) the level of Option i. For purchasing, is positive;
otherwise, is negative. Similar to a strip, Option i is
purchased or sold at multiples of a discrete block

(4)
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where (MW) is the size of a block, and is
the maximum number of blocks. The option type is described
by defined similar to (2), and option executions
are described by binary decision variables . Among
the above, the option amount and execution variables

are decision variables, and other variables are assumed
given.

The cost of Option i is given as

(5)

D. Generation Units

LSEs may possess generation units, including thermal,
pumped-storage, and hydro units, and these units can be
self-scheduled to serve load obligations. The decision variables
are the generation or pumping levels.

Let be the number of thermal units, (MW) the gen-
eration level, ($) the generation cost, and ($)
the start-up cost of Unit i. Detailed description of individual
thermal units can be found in [7]. The costs of Unit i include
the generation cost and start-up cost given as

(6)

Let be the number of pumped-storage units and
(MW) the generation/pumping level of Unit i at k. For gener-
ating, is positive; otherwise, is negative. For the
units under consideration, generation levels are continuous, but
pumping takes a few discreet levels. Detailed description of a
pumped-storage system can be found in Ni and Luh [10], where
the operation cost is assumed zero.

Let be the number of hydro units and (MW) the
generation level from Unit i at k. Detailed description of a hydro
unit can be found in [7], where the operation cost is assumed
zero.

E. Spot Market Purchases/Sales

In the real-time market, an LSE can directly purchase power
from or sell power to the spot market based on the stochastic spot
market prices. The decision variables are power purchases or
sales (MW). When purchasing power from the market,

is positive; when selling power to the market,
is negative. The spot market purchase/sale cost is

(7)

To confine market risks, a strict limit may be imposed on the
power purchased from or sold to the spot market

(8)

F. Load Obligation Constraints

The power from the above instruments must equal the given
load obligation at each time k

(9)

In view of the stochastic spot market prices, constraints (9)
have to be satisfied for various scenarios. The problem is there-
fore complicated because of the large number of scenarios. For
simplicity, the load obligation constraints (9) are approximated
in the expected sense

(10)

G. Risk Terms

In view that spot market prices are assumed random and
others, e.g., load obligations and strip/option prices, are con-
sidered deterministic, market risks can be analyzed by spot
market purchases/sales. However, the conventional risk term
defined by variances of costs is not appropriate in the power
market because an LSE is at risk only for purchasing power
at prices higher than expected or for selling power at prices
lower than expected. A risk term is thus introduced based on
semi-variances of spot market transactions as follows:

(11)

where S(k,j) is price level j at k, is the set of possible price
levels at k, E(S(k)) is the mean spot market price at k, and

if and
or and
otherwise.

(12)

H. Objective Function

The profit of a portfolio equals its income from load sales
minus costs for different instruments. In view that an LSE sells
power to its customers at fixed prices, it is assumed that the
income is given. The problem is then to minimize the total cost
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while serving the load obligations (10) and managing risks. In
addition, in view of the discrete characteristic of certain decision
variables such as strip/option levels and pumping for pumped-
storage units, the strict limit on spot market purchases/sales, and
a long time horizon, the speed of algorithm convergence is an
issue. To overcome the difficulties, quadratic penalty terms on
the violation of load obligation constraints, , are
introduced to the objective function, where ($/MW ) is
the weight for load obligation violation at k. The total cost is
thus the expected costs from different instruments plus risk and
penalty terms as follows:

(13)

The overall problem is then to minimize (13) subject to ex-
pected load obligation constraints (10) and individual instru-
ment constraints.1 The decision variables are strip/option levels,
option executions, power levels for generation units, and spot
market purchases/sales. Among them, strip/option levels must
be decided now and are therefore deterministic, and other deci-
sion variables are stochastic in view of stochastic spot market
prices.

The problem thus formulated, however, is not “separable”
since quadratic penalty terms are not additive. This presents
challenges to the standard Lagrangian relaxation method.

IV. SOLUTION METHODOLOGY

To overcome the inseparability difficulty, surrogate La-
grangian relaxation [18] is used to solve the problem by
relaxing the expected load obligation constraints (10) using
multipliers

with (14)

subject to individual instrument constraints. The key idea is then
to pull out all decision variables associated with a particular in-
strument to form an instrument subproblem, and decision vari-
ables for this instrument are optimized while keeping other vari-
ables at their latest available values. A two-level structure is
therefore formed where the low level consists of solving indi-
vidual instrument subproblems, and the high level is to update
the multipliers.

1The above formulation is a snapshot of an ongoing midterm portfolio opti-
mization process and is generally solved periodically, e.g., every month, using
the latest available information. To indirectly consider future opportunities such
as new strips and options, the load obligations are assumed declining toward the
future.

A. Solving the Strip Subproblem

By pulling out all terms related to from L in (14), the
subproblem for Strip i is given as

with

(15)

where is calculated based on (10) by dropping the
term and using latest expected values for other
variables, including other strip terms j , i.e.,

(16)

The problem is subject to discrete values of in (1).
There is no expectation in (15) because the decision variable

is deterministic as discussed before, and all other
variables are also deterministic. For this quadratic optimization
problem, the solution is obtained by setting the first-order
derivative of (15) equal to zero and selecting the discrete value
in (1) closest to the solution.

B. Solving the Option Subproblem

By collecting terms related to Option i from L in (14), the
option subproblem is given as

(17)

where is calculated based on (10) by dropping the
term and using latest expected
values for other variables. The subproblem is subject to dis-
crete values of in (4). The decision variables are the
deterministic option level and stochastic execution
variables . In view that stochastic spot market prices,
which cause to be stochastic, do not appear in this
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subproblem after decomposition, and all the parameters here
are deterministic, the expected execution variables
are therefore considered as decision variables in (17).

There are only a few discreet option levels since they are de-
fined to be the same for hours. Also, for a given option level,
the subproblem can be decomposed into K independent small
problems, one for each k, in view that binary execution vari-
ables are independent across hours. There are therefore only a
limited number of solutions for the option subproblem, and the
problem is solved by using exhaustive search.

C. Solving the Thermal Subproblem

By collecting terms related to from L in (14), the
thermal unit subproblem is given as

with

(18)

where is calculated based on (10) by dropping the term
and using latest expected values for other variables.

The problem is subject to thermal unit constraints. Similar to
what was discussed for the option subproblem, the decision vari-
ables are the expected generation levels. Dynamic programming
is used to solve the subproblem, with time instances as stages
and generator statuses as states [7].

D. Solving the Pumped-Storage Subproblem

By collecting terms related to from L in (14), the
pumped-storage subproblem is given as

with

(19)

where is calculated based on (10) by dropping the term
and using latest expected values for other variables.

The problem is subject to pumped-storage unit constraints.
The decision variables are the expected generation or pumping
levels. In view of discrete pumping levels together with a long
time horizon, the traditional LR-based method (Ni and Luh
[10]) is difficult to converge. In this paper, dynamic program-
ming is developed with time instances as stages and pond
levels as states. One limitation of the DP method is the curse
of the dimensionality. Because of the small number of discrete
pumping levels, the number of feasible states is limited, and the
DP method is computationally efficient.

E. Solving the Hydro Subproblem

By collecting terms related to from L in (14), the hydro
unit subproblem is given as

with

(20)

where is calculated based on (10) by dropping the term
and using latest expected values for other variables.

The problem is subject to hydro unit constraints. The decision
variables are the expected generation levels. The problem is
solved by using a merit order allocation method, and the details
can be found in [7].

F. Solving the Spot Market Subproblem

By collecting terms related to from L in (14), the
spot market subproblem is given as

with

(21)

where is calculated based on (10) by dropping the
term and using latest expected values of other vari-
ables. The problem is subject to spot market constraints (8), and
the decision variables are the stochastic power purchases/sales

. In view that is a sum of costs over all the hours
and the spot market prices are assumed independent
across hours, the subproblem can be decomposed to K small
problems, one for each k. Solutions are obtained by solving a
quadratic optimization problem at each time k for each price
level. The outputs are a set of spot market purchase/sale poli-
cies based on stochastic spot market prices.

G. Solving the High-Level Surrogate Dual Problem

The high-level problem is to find a set of optimal multipliers
to maximize the surrogate dual function, i.e.,

with

(22)
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where is the optimal in (15) by dropping the
penalty terms and similar for others. To solve the problem, the
surrogate subgradient method [18] is used as presented below.

The surrogate subgradient component with respect to is
obtained from (10) as

(23)

The multipliers are updated according to

(24)

In the above, is the iteration index, is the step size at the
th iteration given as

(25)

where is the optimal dual value, and is the surrogate dual
value obtained at the th iteration. Since is not known, it is
estimated as

(26)

where is the best current surrogate dual, and is a posi-
tive number.

Given , one subproblem is selected and solved. To
guarantee algorithm convergence, the following surrogate op-
timization condition is checked after solving each subproblem:

(27)

where refers to the set of decision variables. If such an
cannot be obtained, set , and the next subproblem is
solved.

H. Checking Stopping Criteria

The iterative optimization process is terminated if the number
of iterations is greater than a preset number or if the level of
constraint violation, i.e., the L2 norm of the subgradient vectors
(23), is less than a specified small number.

I. Obtaining a Feasible Solution

The solutions for subproblems, when put together, however,
are generally infeasible, i.e., the expected load obligation con-
straints (10) are not satisfied for some hours. To obtain feasible
solutions, heuristics have been developed stepping through k
from 1 to K. Based on the flexibilities of decisions, the method

first adjusts the power levels of generation units in the sequence
of thermal, hydro, and pumped-storage units within their capac-
ities. If a feasible solution is obtained, the method stops. If not,
option executions for the infeasible hours are checked and ad-
justed. Because of the discrete characteristic of option values,
the adjustment of options alone may not be able to meet the
load obligations. The adjustment of generation units is needed.
If a feasible solution is obtained, the method stops. Otherwise,
the spot market purchases/sales are adjusted within spot market
transaction limitations (8).

J. Summary of the Algorithm

The overall algorithm is summarized as follows.
Step 1) [Initialize.] Initialize the multipliers

.
Step 2) [Solve one subproblem.] In the sequence of strip,

call, thermal, hydro, pumped-storage, and spot
market subproblems, one is selected and solved
using (15)–(21).

Step 3) [Update the multipliers.] Update the multipliers
using (23)–(27).

Step 4) [Check stopping criteria.] If stopping criteria have
not been satisfied, go to Step 2 and solve the next
subproblem. Otherwise, go to Step 5.

Step 5) [Generate feasible solutions.] Use heuristics to ob-
tain feasible solutions if the supbroblem solutions
obtained are infeasible.

K. Monte Carlo Simulations and Feasible Solutions

The outputs of the algorithm are deterministic strip/option
values, expected option executions, expected generation levels,
and spot market purchase/sale policies. The outputs, however,
need to be verified because our problem formulation is a simpli-
fied one with expected load obligation constraints. Monte Carlo
simulation (for a single snapshot of an ongoing midterm port-
folio optimization process) was therefore used to check the total
cost of each simulation run and the sample mean/variance and
to compare the sample mean with the expected costs from the
algorithm.

For each Monte Carlo simulation run, the spot market price
for each hour is generated based on its distribution, and the
spot market purchases/sales are determined based on the poli-
cies from the spot market subproblem. Because the solutions
for subproblems are generally infeasible, e.g., the load obliga-
tion constraints (9) are not satisfied for some hours, heuristics
similar to those in Section I were used to obtain feasible solu-
tions for each simulation run.

After M simulation runs, the sample mean provides an
estimate of the expected cost J

(28)

To measure the optimality of the algorithm, the relative du-
ality gap is estimated by

(29)

where is the surrogate dual cost in (22).
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Fig. 1. Predicted spot market price confidence region and actual price.

The sample standard deviation from Monte Carlo runs is
given by

(30)

By using (28) and (30), different methods can be compared
based on the confidence region for a given probability of error.

V. NUMERICAL TESTING RESULTS

The algorithm was implemented using C++ and ran on a Pen-
tium 4 2.5-GHz PC with 512 MB memory. In the following,
hourly resolution is used. Lognormal distributions were used to
describe the random spot market prices. The pdf is

(31)

where and are the mean and variance of the normally dis-
tributed , respectively. In the testings, the standard devia-
tion for the logarithm of a spot market price is set to be 10% of
logarithm of the corresponding hourly mean price.

To examine how the lognormal distribution characterize the
spot market prices, the 95% confidence intervals of the predicted
spot market prices for New England Connecticut zone from Jan-
uary 6–10 and the actual spot market prices are depicted in
Fig. 1. It shows that 86% of actual spot market prices are within
the predicted confidence region. Therefore, lognormal distribu-
tions can be used to approximate the spot market prices.

Three examples are presented. In Example 1, a simple
problem is tested to demonstrate how our risk manage-
ment scheme affects the cost variance and decisions. In
Example 2, a realistic yearly portfolio problem is tested.
Algorithm performance and decisions on different instru-
ments are analyzed. In Example 3, portfolio problems with
different numbers of instruments and time horizons are
tested to examine the algorithm scalability. The complete
input data and results for the three examples are available at
http://www.engr.uconn.edu/msl/test_data/JunX/Portfolio.txt.

A. Example 1

A simple portfolio problem of one day duration is tested.
Available instruments include two strips, two hourly call op-
tions, and spot market purchases/sales as presented in Table I.
The load obligations are shown in Fig. 2, and the mean spot

TABLE I
INSTRUMENT PARAMETERS

Fig. 2. Load obligations for Example 1.

Fig. 3. Mean spot market prices for Example 1.

market prices are shown in Fig. 3. It can be seen that both fig-
ures have peaks at around 6 P.M.

To demonstrate how our risk management scheme affects the
cost variance and decisions, three cases are tested. In Case 1, risk
management is not considered, i.e., in (11); in Case
2, risk is defined by variance as opposed to semi-variance of
spot market transactions; and in Case 3, risk is defined by semi-
variance of spot market transactions as presented in our method.
Results obtained after 50 Monte Carlo runs are summarized in
Table II.

The low duality gaps for the three cases show that near-op-
timal solutions are obtained. By comparing the expected total
costs after our algorithm and the sample mean of total cost
after 50 runs for all three cases, it can be seen that the sim-
ulation results match the expected results from our algorithm.
By comparing Cases 1 and 3, it can be seen that our semi-vari-
ance-based risk management scheme significantly reduces the
expected total cost by 33% and the sample standard deviation
by 47%. The reason is that more power is purchased from spot
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TABLE II
SIMULATION RESULTS (AFTER 50 MONTE CARLO RUNS)

TABLE III
DECISIONS FOR STRIPS AND CALLS OF ONE SCENARIO

Fig. 4. Spot market purchases/sales of one scenario.

market at stochastic spot market prices in Case 1 by not con-
sidering the risks, resulting in higher total costs and larger vari-
ances. By comparing Cases 2 and 3, it can be seen that our semi-
variance-based risk management scheme reduces 5% expected
cost with 2% higher sample standard deviation. The reason is
that less power at low prices is purchased from spot market in
Case 2 by overestimating the risks, resulting in higher call costs
but smaller variances.

To illustrate in detail how our risk management scheme
achieves the savings, the decisions of three cases are compared
for a particular scenario. The values of strips and calls are
depicted in Table III, and spot market purchases/sales are
shown in Fig. 4. It can be seen that on/off-peak strips are
purchased at their capacities for all three cases because of the
low prices. Comparing Cases 1 and 3, more power is purchased
from the on-peak call, and less power is purchased from the
spot market during 5–10 P.M. for Case 3 because of high spot

TABLE IV
MAJOR PARAMETERS

Fig. 5. Load obligation for Example 2.

Fig. 6. Mean spot market prices for Example 2.

market price uncertainties around 6 P.M. To purchase less from
the spot market and use other available instruments such as
calls effectively reduces risks. Comparing Cases 2 and 3, spot
market purchases/sales are further reduced for Case 2 because
the variance-based method overestimates risks by weighting
both sides of semi-variances of spot market transactions. In
view that the expensive Call 1 is purchased more to reduce
stochastic spot market purchases/sales, the total cost for Case
2 is higher than that for Case 3, although the sample standard
variance is reduced as shown previously in Table II.

B. Example 2

A yearly portfolio problem is tested for an LSE in New Eng-
land for 2004. The input data include available instruments, load
obligations, and predicted spot market prices at the beginning
of 2004. Key parameters of major instruments are presented in
Table IV.

For illustration purpose, the load obligations and mean spot
market prices of January 2004 are depicted in Figs. 5 and 6, re-
spectively. It can be seen from the figures that spot market prices
are much more volatile as compared to load obligations. The av-
erage on-peak spot market price for the month is $70.7/MW.

The CPU time for this yearly problem is 302.3 s after 50 itera-
tions. Simulation results of 50 Monte Carlo runs show that there
are on average six hours of violations of constraint (9), and all of
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Fig. 7. Decisions for strips of one scenario.

Fig. 8. Decisions for options of one scenario.

Fig. 9. Power from generation units and spot market.

them are caused by discrete values of certain decision variables.
The relative duality gap (29) is 0.9%, showing that near-optimal
solutions are obtained.

To examine various decisions, the results of strips and options
for January 1–10 are displayed in Figs. 7 and 8, respectively,
for one scenario. It can be seen that strips are the major sources
to serve the load and hedge against risks (the minor strip value
differences in hours 1–25 and 49–97 are due to on/off peaks
in weekends/holidays). It can also be seen that call options (to
purchase) are usually executed during high spot market price
days/hours (e.g., January 5 on-peak hours from 104 to 119 with
average spot market price $83.7/MW), and put options (to sell)
are usually executed during low spot market price hours (e.g.,
January 9 on-peak hours from 200 to 215 with average spot
market price $61.5/MW).

The sum of three thermal unit generations, the pumped-
storage unit decisions, and spot market purchases/sales for Jan-
uary 5 (a weekday with high spot market prices) are depicted
in Fig. 9. It can be seen that the units are scheduled to generate
at high levels during most on-peak hours with high spot market
prices (except for Hours 15–17, where spot market prices are
low). During off-peak hours with low spot market prices, the
pumped-storage units are scheduled to pump at high levels

TABLE V
TWO SETS OF INSTRUMENTS

TABLE VI
COMPUTATION TIME AND PERFORMANCE OF SET 1

TABLE VII
COMPUTATION TIME AND PERFORMANCE OF SET 2

(except for Hour 7, where the load obligation is high). It can
also be seen that the power is sold to the market during most
hours in view that spot market prices are high for the day, and
the pumped-storage unit is well scheduled.

C. Example 3

To examine the scalability of the SLR-based method, port-
folio problems with different numbers of instruments and dif-
ferent time horizons are tested. Two sets of instruments as sum-
marized in Table V are used, where Set 1 contains the same set
of instruments as those in Example 2, and Set 2 consists of in-
struments of Set 1 plus the duplication of all the instruments
except the hydro unit and the spot market. The load obligations
for Example 2 are used for Set 1 and are increased by 95% for
Set 2. Spot market prices of Example 2 are used for both sets.
Three time horizons, 1-month, 6-month, and 1-year, are tested.
For easy comparison, the iteration number is set as 50 for all the
testings.

The simulation results of 50 Monte Carlo runs for different
time horizons are summarized in Table VI for Set 1 and in
Table VII for Set 2. It can be seen from the tables that com-
putation time grows linearly with respect to the number of in-
struments and time horizons. For all the cases, the numbers of
constraint violations are small, and by checking the results, the
violations are all caused by discrete values of decision variables.
Also, the small duality gaps (below 1% for all the cases) demon-
strate that near-optimal solutions are obtained.

VI. CONCLUSION

This paper presents a midterm power portfolio optimization
model and the corresponding methodology to serve the load,
maximize the profit, and manage risks. Risk terms based on
semi-variances of spot market transactions are introduced, and
penalties on load obligation violations are added to the objective
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function to improve algorithm convergence and constraint satis-
faction. A decomposition and coordination methodology based
on surrogate optimization framework is then developed to solve
the problem. Numerical testing results based on a load serving
entity in New England show that our method provides near-op-
timal solutions with quantified quality for a large complex port-
folio problem with different instruments to maximize the profit
and manage risks, and it is computationally efficient.
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