
For submission to the European Journal of Control

Scheduling Job Shops with Batch Machines Using the
Lagrangian Relaxation Technique

Jihua Wang and Peter B. Luh
The University of Connecticut

Dept. of Electrical & Systems Engineering
Storrs, CT 06269-2157, USA

Phone: (860) 486-4821 Fax: (860) 486-2447
Email: Jihua@brc.uconn.edu, Luh@brc.uconn.edu

Abstract

Scheduling is a key factor for manufacturing productivity. Effective scheduling can
improve on-time delivery, reduce work-in-process inventory, cut lead time, and improve
machine utilization. Motivated by the extensive use of batch machines in manufacturing
industries, the scheduling of job shops with batch machines is studied in this paper. Unlike
machines that can process one part at a time (called "standard machines" for simplicity), a
batch machine is the one that can simultaneously process several parts with the same
processing requirement as a batch, subject to the capacity of the batch machine. This
simultaneous processing requires the "synchronization" (batch formation) of different parts
for a batch operation. In view that a part may have to be processed by many standard and
batch machines, multiple batch formation and batch splitting result in complicated coupling
among the parts.

In this paper, batches are viewed as "virtual" facilities that host and "synchronize" parts
for processing, and compete for batch machine capacity. A novel integer programming
formulation with a "separable" structure is then obtained. To solve this problem, a
Lagrangian relaxation approach is used to decompose the problem into part and batch
subproblems that can be solved by using an efficient dynamic programming algorithm. The
multipliers are updated at the high level by using an “interleaved conjugate gradient method,”
and a heuristic is developed to obtain feasible schedules based on subproblem solutions.
Numerical testing shows that the integrated consideration of batch formation and sequencing
results in high quality schedules, and the algorithm is computationally efficient to solve
practical problems.

Keywords: Scheduling, Job shop, Batch machine, Lagrangian relaxation

For submission to the European Journal of Control

2

1. INTRODUCTION

Scheduling is a key factor for manufacturing productivity. Effective scheduling can improve on-

time delivery of products, reduce work-in-process inventory, cut lead times, and improve machine

utilization. In discrete manufacturing systems, a machine often processes only one part at a time

(called "standard machine" for simplicity). There are also many "batch machines," where a batch

machine is the one that can simultaneously process multiple parts with the same processing

requirement as a batch, subject to the capacity of the batch machine. For example, a heat-treat oven

can simultaneously process multiple parts with the same processing requirement (temperature,

processing time etc.) in a batch. A 3-axle NC machine can perform the same operation of up to three

parts simultaneously. The high utilization requirement and the long non-preemptive processing times

place great efficiency demand on these machines. Motivated by the extensive use of batch machines

in discrete manufacturing systems and the associated demand on high efficiency, this paper presents

an optimization-based method for the scheduling of job shops with both standard and batch machines.

The scheduling of batch machines requires the grouping of parts into batches (batch formation)

and the sequencing of batches. Parts with the same processing requirement belong to a "group," and

parts from different groups cannot be processed in the same batch. Since a batch machine can

simultaneously process multiple parts, it may be desirable to form a batch with as many parts as

possible. However, parts assigned to a batch may not be available at the same time, and the parts

available earlier have to wait for processing until all the parts become available. This waiting may

cause significant delay of the parts available earlier, resulting in poor scheduling performance. The

trade-off between utilization and due date performance has been observed to be a major difficulty for

many factories (Zijm, 1995). To overcome the difficulty, it is required to consider batch formation

and sequencing in an integrated fashion. However, in view that a part may have to be processed by

many standard and batch machines, multiple batch formation and batch splitting result in complicated

coupling among these parts.

Literature Review

In view of the difficulties in scheduling batch machines, the problem is often separated into batch

formation and batch sequencing problems. In Ahmadi et al. (1992), the scheduling of a two- or three-

For submission to the European Journal of Control

3

machine flow shop with one batch machine is considered as a two-stage batch formation and

sequencing problem. Makespan and the sum of job completion times are used as the performance

criteria, and a heuristic method is presented. A two-stage batch formation and batch sequencing

algorithm for NC punch presses is developed in Lee et al. (1993). At the first stage, batches are

formed to maximize the number of parts in batches and the tool magazine utilization. At the second

stage, batches are sequenced to reduce the total setup time by using the "nearest neighbor" heuristic.

Methods for the integrated consideration of batch formation and sequencing have also been

presented. The scheduling of parts belonging to multiple groups on a batch machine are considered in

Uzsoy (1995). The objectives of makespan, maximum lateness and total weighted completion time

are discussed. It is shown that when all parts are available simultaneously, keeping a batch as full as

possible gives the optimal solution. Several heuristics are developed to minimize the maximum

lateness for dynamic job arrivals. In Dessouky et al. (1996), a mixed integer nonlinear model with the

objective to minimize the total tardiness is developed for the scheduling of batch chemical plants. A

heuristic algorithm is developed to determine the sizes of batches and their schedule to satisfy the

demand of outstanding orders.

Optimization-based approaches have also been reported. In Liao et al. (1993), a combined

Lagrangian relaxation and linear network flow algorithm is developed for the scheduling of a flow

line of semiconductor wafer fabrication with batch machines. Batch formation is to determine the

batch size, subject to the capacity of the batch machine and flow balance equations. In Wang et al.

(1994), the scheduling of a single batch machine is studied. A separable problem formulation

accommodating both batch formation and batch sequencing is presented. The large number of

constraints involved, however, limits its application to problems of small sizes.

Overview of the Paper

In this paper, the scheduling of a job shop with batch machines is studied with an integrated

consideration of batch formation and sequencing. Because of the combinatorial nature of the

problem, it is very difficult to obtain optimal schedules, especially within a limited amount of

computation time. The goal of the study, therefore, is to obtain near-optimal schedules with

quantifiable quality in a computationally efficient manner. To achieve this, a Lagrangian relaxation

For submission to the European Journal of Control

4

based method is developed to decompose the problem into smaller subproblems that can be efficiently

solved without encountering complexity difficulty. The key for the effective application of

Lagrangian relaxation is to have a problem formulation with a “separable” structure − the objective

function and all "coupling constraints" are additive in terms of basic decision variables. The

synchronization, however, leads to the strong couplings among parts, making it difficult to have a

separable formulation.

To overcome the difficulties, batches are viewed as "virtual" facilities that host and "synchronize"

parts for processing, and compete for batch machine capacity. The hosting of parts and the

competition for batch machines are delineated by two sets of linear constraints. A separable integer

programming formulation with manageable numbers of variables and constraints is then obtained in

Section 2. In Section 3, a solution methodology based on the synergistic combination of Lagrangian

relaxation and heuristics is developed. Within the Lagrangian relaxation framework, dynamic

programming (DP) is used to solve subproblems as in Chen, Chu and Proth (1995). The multipliers

are updated at the high level by using the "interleaved conjugate gradient (ICG) method," and a

heuristic is developed to generate feasible schedules based on subproblem solutions. The solution

method has been implemented using the object-oriented programming language C++. Numerical

testing presented in Section 4 shows that the integrated consideration of batch formation and

sequencing results in high quality schedules, and the algorithm is computationally efficient to solve

practical problems.

2. PROBLEM FORMULATION

The formulation to be presented is built on our previous work on job shop scheduling (Hoitomt et

al., 1993) and single batch machine scheduling (Wang et al., 1994) while considering multiple batch

machines and the interaction among standard and batch machines. A general description of the

problem is provided in Subsection 2.1. The constraints and objective function are then presented in

Subsections 2.2, 2.3 and 2.4. A list of symbols used is provided in Appendix A for easy reference.

2.1 General Description

For submission to the European Journal of Control

5

According to processing capabilities, machines in the shop are grouped into a set of machine

types, denoted by H, where a machine type h ∈ H may consist of a few identical machines. The set

for all batch machine types is HB, and the set for all standard machine types is Η Β . The number of

machines available for a machine type h, denoted as Mhk, may change over a discretized time horizon

K with time index k ranging from 0 through K - 1. For a batch machine of type h, the number of parts

in a batch is restricted by the batch volume Vh of machine type h (e.g., the volume of a heat treat oven

or the maximum number of parts on an NC machine).

There are I parts to be scheduled. Part i (i = 0, 1, …, I - 1) has a desired release time bi and a

given due date Di, and it consists of Ji non-preemptive operations. Operation j (j = 0, 1, …, Ji - 1) of

part i, denoted as operation (i, j), requires a machine of type h belonging to a set of eligible machine

types Hij to process for Pijh amount of time. Operations to be performed on standard machines are

called "standard operations," and operations on batch machines are called "batch operations." All

operations that can be processed on a batch machine type h ∈ HB belong to Gh groups, and each

operation occupies the batch volume Vh with a size (or a volume) vij. Operations belonging to group

g (g = 0, 1, …, Gh - 1) are processed in Nhg batches, each requiring Phg amount of processing time,

and Phg = Pijh if operation (i, j) belongs to the group. The batches indexed by n (n = 0, 1, …, Nhg - 1)

are assigned to individual machines, and batches on each machine are processed in the ascending

order of n. The number of batches within a group is given, and is assumed to be large enough to hold

all batch operations of the group. Batch n (n = 0, 1, …, Nhg - 1) of group g on machine type h is

denoted as batch (h, g, n), and group g on machine type h denoted by (h, g).

In formulating the scheduling problem, batches are viewed as virtual facilities that host and

synchronize operations on parts. The synchronization among operations is modeled as that between

operations and the virtual facilities. To assign an operation to a batch machine type with beginning

time k, a virtual facility (batch) should be available to host the operation, and the volume sum of the

operations should not exceed the batch volume. Batches are also viewed as "virtual" operations that

compete for batch machine capacity, and a batch machine can process at most one virtual operation at

a time.

For submission to the European Journal of Control

6

Different from the above batch operations, operations performed on standard machine types

directly compete machine capacity, that can be modeled as in Hoitomt, Luh, and Pattipati (1993).

2.2 Modeling of Standard Machine Types

The machine capacity constraints for standard machines state that the number of operations

assigned to a standard machine type h cannot exceed the number of type h machines available at time

k, i.e.,

i

I

j B
ijhk hk

i

M
=

−

∈
∑ ∑ ≤

0

1
δ , h ∈Η Β , k = 0, 1, ... , K - 1, (1)

where δijhk is a 0-1 operation in-processing variable. It is 1 if operation (i, j) is performed on a

machine of type h at time k, and 0 otherwise. Set Bi is the set of all the standard operations of part i.

Although the number of operation in-processing variables δijhk is huge, these variables are not

independent decision variables. They are determined once the machine types for individual

operations are selected, and operation beginning times are determined, i.e.,

δijhk =
1

0

if operation i j is assigned to machine type h and b k c

otherwise
ij ij(,) ;

.

≤ ≤

(2)

2.3 Operation Precedence Constraints and Processing Time Requirements

The operation precedence constraints state that an operation cannot start until its preceding

operation is finished, i.e.,

cij + Sij -1 ≤ bi,j+1, ∀ (i, j), (7)

where cij is the completion time of operation (i, j), and bi,j+1 the beginning time of operation (i, j+1).

The parameter Sij is the required "timeout" between operations (i, j) and (i, j+1), representing the

For submission to the European Journal of Control

7

processes not explicitly modeled in the problem formulation (e.g., the transportation time required in-

between the two operations).

The operation processing time requirements state that each operation must be assigned the

required amount of processing time Pijh on the machine type selected, i.e.,

cij = bij + Pijh - 1, i = 0, 1, …, I - 1; j = 0, 1, …, Ji - 1 and h ∈ Hij. (8)

With processing times specified, operation completion times cij can be eliminated from the

problem formulation. For notational convenience, they still appear in later derivation.

2.4 Modeling of Batch Machine Types

As mentioned in Section 1, parts to be performed in a batch should be synchronized to have the

same operation beginning and completion times. By viewing batches as virtual facilities, the difficult

synchronization among these parts can be accomplished by synchronizing individual parts to batches.

The batch constraints thus state that the total volume of parts beginning at time k for a batch

operation may not exceed the total volume of batches beginning at time k, i.e.,

i

I

j B
ij ijhk h

n

N

hgnk
i

hg

v V
=

−

∈ =

−
∑ ∑ ≤ ∑

0

1

0

1
$ $δ ϕ , h ∈ HB, g = 0, 1, ... , Gh - 1, k = 0, 1, ..., K-1, (3)

where $δ ijhk is a 0-1 operation beginning variable. It equals 1 if operation (i, j) starts on machine

type h at time k (i.e., bij = k), and 0 otherwise. Similarly, $ϕhgnk is a 0-1 batch beginning variable. It

equals 1 if batch (h, g, n) starts at time k (i.e., bhgn = k), and 0 otherwise.

Since batches act as a virtual parts that compete batch machines, the machine capacity constraints

for batch machines state that the number of batches performed on a batch machine type h may not

exceed the number of batch machines available, i.e.,

For submission to the European Journal of Control

8

g

G

n

N

hgnk hk

h hg

M
=

−

=

−
∑ ∑ ≤

0

1

0

1

ϕ , h ∈ HB, k = 0, 1, ... , K-1, (4)

where ϕhgnk is a 0-1 batch in-processing variable. It is 1 if batch (h, g, n) is performed on a machine

of type h at time k, and 0 otherwise.

Similar to the operation in-processing variables δijhk defined by (2), the operation beginning

variables $δ ijhk , the batch beginning variables $ϕhgnk and the batch in-processing variables ϕhgnk are

not independent decision variables. They can be determined by the machine types for individual

operations and operation beginning times.

The batch precedence constraints provide the processing sequence of batches on each machine,

i.e.,

chgn + 1 ≤ bhg,n+1, h ∈ HB, g = 0, 1,..., Gh - 1, (5)

where chgn is the completion time of batch (h, g, n), and bhg,n+1 the beginning time of batch (h,g,n+1).

The batch processing time requirements state that each batch must be assigned the required

amount of processing time Phg,

chgn = bhgn + Phg - 1, h ∈ HB, g = 0, 1, …, Gh - 1, n = 0, 1, …, Nhg - 1. (6)

2.5 Objective

Various objective functions such as makespan have been used in literature. Study of practical

scheduling, however, shows that the tardiness objective is likely to be more useful than other criteria

such makespan (Blackstone et al., 1982). In addition, the additivity of the tardiness objective function

facilitates the decomposition approach. The following objective function of weighted part tardiness

and earliness is used to model the goal of on-time delivery and low work-in-process inventory.

For submission to the European Journal of Control

9

J ≡ []
i

I

i i i iW T E
=

−
∑ +

0

1
2 2β , (9)

where Ti = max [0, ci,Ji-1-Di] is the tardiness, and Ei = max [0, bi - bi0] the earliness. The coefficient

Wi is the tardiness weight of part i, and βi the earliness weight.

The overall problem is therefore to minimize the part tardiness and earliness penalty function (9),

subject to the above machine capacity, batch, operation and batch precedence constraints. The

decision variables are the machine types {hij} for individual operations, operation beginning times

{bij}, and batch beginning times {bhgn}. Once these decision variables are determined, other

variables {cij}, {δijhk}, { $δ ijhk }, {ϕijhk}, and { $ϕhgnk } can be easily derived. Among the constraints,

machine capacity and batch constraints are "coupling constraints" as they couple together decision

variables associated with different parts and batches. Since all the coupling constraints and the

objective function are additive in terms of decision variables, the problem formulation is separable.

Lagrangian relaxation can therefore be effectively used to solve it, as will be presented in the next

Section.

3. SOLUTION METHODOLOGY

Lagrangian relaxation (LR) is a mathematical programming technique for performing constrained

optimization. It has been successfully applied to various manufacturing systems to obtained good

schedules with quantifiable quality in a reasonable amount of computation time (Hoitomt, et al.,

1993; Liao et al., 1993; Luh et al., 1995). Recently, the embedding of dynamic programming within

the Lagrangian relaxation framework for solving subproblems has improved algorithm convergence

and schedule quality (Chen et al., 1995; Kaskavelis et al., 1995 and Wang et al., 1997).

Similar to the pricing concept of a market economy, the Lagrangian relaxation method replaces

"hard" coupling constraints (e.g., the machine capacity constraints) by the payment of a certain

"prices" (i.e., Lagrange multipliers) for the use of machines at individual time units. The original

problem can thus be decomposed into many smaller subproblems. These subproblems are much

For submission to the European Journal of Control

10

easier to solve as compared to the original problem, and solutions can be efficiently obtained by using

"dynamic programming." These prices or multipliers are iteratively adjusted based on the degree of

constraint violations following again the market economy concept (i.e., increase the prices for over-

utilized time units and reduce the prices for under-utilized time units). Subproblems are then re-

solved based on the new set of multipliers. In mathematical terms, a "dual function" is maximized in

this multiplier updating process, and the dual costs (values of the dual function) are lower bounds to

the optimal feasible cost. At the termination of such price updating iterations, a few constraints may

still be violated when subproblem solutions are put together. Simple heuristics are thus applied to

adjust subproblem solutions to form a feasible schedule satisfying all constraints. Heuristics can also

be run after selected optimization iterations to check convergence status or to generate more candidate

feasible schedules. Optimization and heuristics thus operate in a synergistic fashion to generate

effective schedules. The quality of the feasible schedule can be quantitatively evaluated by

comparing its cost to the largest lower bound provided by the dual function.

3.1 The Lagrangian Relaxation Framework

Standard machine capacity, batch machine capacity, and batch constraints are first “relaxed” by

using nonnegative Lagrange multipliers {πhk, h ∈ Η Β }, {πhk, h ∈ HB} and {γhgk}, respectively.

The Lagrangian is formed as:

[]L W T E hk M
k

Mi i i i
i h H

ijhk
i j

hk
h H

hk hgnk
g nk

hk
B B

≡ +∑ + ∑ ∑ −∑ + ∑ ∑∑ −
∈ ∈

2 2β π δ π ϕ() ()
, ,

+ ∑ ∑ − ∑∑∑
∈ ∈h H

hgk
kgB

γ δ ϕ(v $ V $)
i, j B

ij ijhk h hgnk
ni

. (10)

In the above, { πhk, h ∈ Η Β } are the prices for performing operations on standard machines, and

{ πhk, h ∈ HB} the prices for processing batches. The multipliers { γhgk} are the prices for an

operation to occupy the batch volume. With the multipliers given, the "relaxed problem" is to choose

the decision variables to minimize the Lagrangian L subject to operation and batch precedence

constraints. After regrouping relevant terms within L, the problem is decomposed into part and batch

subproblems.

For submission to the European Journal of Control

11

3.2 Part Subproblems and Their Resolutions

Part Subproblems

Collecting all the terms in (10) related to individual parts leads to the following part subproblems:

min (,),
{ , }b h

i i i i i i ij ij ij
j

J

ij ij

i
L with L W T E L b h≡ + + ∑

=

−
2 2

0

1
β ∀i, with

L b hij ij ij h k
k b

c

ij
ij

ij

(,) ,≡ ∑
=

π if hij ∈ Η Β , and

L b h vij ij ij ij h gbij ij
(,) ,≡ γ if hij ∈ HB, (11)

subject to operation precedence constraints. The decision variables are the machine type {hij} and

beginning times {bij} for individual operations of part i. Since multiplier πhijk, hij ∈ Η Β is the price

for a operation to use a standard machine, and γhijgk the price for an operation to occupy the batch

volume, Lij(bij, hij) is the utilization cost of operation (i, j). A part subproblem thus reflects a balance

between part tardiness and earliness penalty and the utilization cost of operations.

Dynamic Programming for Part Subproblems

Dynamic programming (DP) is an effective method for solving multistage optimization problems,

and can be implemented in the forward form as in Chen et al. (1995) or in the backward form. In

either forward or backward form, DP stages correspond to individual operations, the states at a stage

correspond to possible operation beginning times for each possible machine type of the operation. In

this study, the backward DP is used to solve part subproblems for possible future extensions to deal

with uncertainties (Luh, et al., 1997). It starts with the last operation (stage), and computes the

following terminal cost for all possible machine type hi,Ji-1 and possible operation beginning time

bi,Ji-1:

Vi, Ji - 1(bi, Ji -1, , hi, Ji -1) = W Ti i
2 + Li, Ji -1(bi, Ji -1, hi, Ji -1). (12)

For submission to the European Journal of Control

12

The cumulative cost when moving backwards to the preceding stage is then obtained recursively

according to the following DP equation subject to operation precedence constraints:

Vij(bij, hij) = min
{ , }, ,b hi j i j+ +1 1

{Lij(bij, hij) + Vi,j+1(bi,j+1, hi,j+1)}

= Lij(bij, hij) + min
{ , }, ,b hi j i j+ +1 1

Vi,j+1(bi,j+1, hi,j+1), 0 ≤ j < Ji - 1. (13)

The minimization in the above DP equation is to find the minimum cost for all possible machine

types {hi,j+1} and beginning times {bi,j+1}. The optimal subproblem cost Li
* is obtained as the

minimal cumulative cost at the first stage, i.e., Li
* = min

,b hi i0 0
 βi iE2 +Vi0(bi0, hi0). The optimal

machine types and beginning times for individual operations can then be obtained by tracing forwards

the stages. The computation complexity for the above backward DP algorithm is O(K Σj |Hij|).

3.3 Batch Subproblems and Their Resolutions

Batch Subproblems

By collecting all the terms in (10) related to batches on individual machines, batch subproblems

are obtained as

min , (),
{ }b

hg hg
n k b

c

hk hgb h
hgn hgn

hgn

hgn
L with L V≡ ∑ ∑ −

=
π γ

 ∀ h ∈ HB; g, (14)

subject to batch precedence constraints (5). The decision variables are batch beginning times {bhgn}.

Since multiplier πhk, h ∈ HB, is the price for the use of batch machines, and γhgk the price for the use

of virtual facilities, a batch subproblem thus reflects a balance between batch machine utilization cost

and the value for hosting operations.

For submission to the European Journal of Control

13

DP for Batch Subproblems

Similar to part subproblems, a batch subproblem is a multi-stage optimization problem with each

stage corresponding to a batch, and the states at a stage correspond to possible batch beginning times.

The backward DP algorithm presented in Subsection 3.3 can thus be used to solve the batch

subproblems.

3.4 Dual Problem and Lagrangian Multiplier Updating

Let Li
* denote the minimal part subproblem cost of part i, and Lhg

* the minimal group

subproblem cost for group g on machine type h, the high level Lagrangian dual problem is obtained as

max , .
{ , }

* *

,π γ
π

hk hgk B

D with D L L Mi
i h H

hg
g

hk hk
h k

≡ ∑ + ∑ ∑ − ∑
∈

(15)

The Lagrangian dual function D is concave and piece-wise linear, and consists of many "facets"

(Tomastik and Luh, 1993), with each facet corresponding to a set of decision variable values in the

relaxed problem. Subgradient methods are commonly used to update the Lagrange multipliers in

solving the dual problem because of their simplicity and the global convergence property. The

methods update multipliers along the direction of subgradient1 for some distance. The updating of

multipliers requires the dual function to be evaluated many times. Each function evaluation involves

solving all the subproblems once, and is extremely "expensive" for large problems. For example, it

takes about 57% of total computation time for the Case 3 in Section 4 with 82 parts and 14 machines.

To efficiently update multipliers, the interleaved subgradient (ISG) method was thus developed

(Kaskavelis and Caramanis, 1995). Instead of solving all subproblems before updating multipliers,

the ISG method updates multipliers after solving each subproblem. Numerical results show that the

ISG method converges faster than a subgradient method, especially for problems of very large size.

The algorithm convergence was established in Zhao, Luh and Wang (1997).

1 The component of subgradient corresponding to a machine capacity constraint of standard machine type h at time k is

i

I

j B
ijhk hk

i

M
=

−

∈
∑ ∑ −

0

1
δ .

For submission to the European Journal of Control

14

 Because of the combinatorial nature of the problem, the number of facets in the dual function

increases drastically as the problem size increases, and the dual function approaches a smooth

function. (Wang et al., 1997). This "smoothness" of the dual function motivates the use of

optimization methods for smooth functions. Among these methods, conjugate gradient methods have

attractive convergence properties and computation efficiency (Bertsekas, 1995). The conjugate

directions are generated by

d g dn n n n= + β , with d g
g g

g g
n

n T n

n T n
0 0

1 1= = − −,
()

()
,β (16)

where dn and gn are the conjugate direction and gradient at iteration n. The step size for updating

multipliers is determined by performing a line search along the conjugate direction.

By combining the "interleaved" concept with the conjugate gradient method, an interleaved

conjugate gradient (ICG) method was developed that utilizes the "smooth" property of the dual

function and efficiency of the interleaved method for problems of large sizes (e.g., 1000 multipliers or

more). In this paper, the ICG method is used to update the multipliers. The ICG algorithm is

summarized as follows.

Step 0: [Initialize.] Set iteration index n = 0. Given a set of initial multipliers, solve all the

subproblems, and compute the dual cost and subgradient. Update multipliers along the

direction of the subgradient with the step size computed as in subgradient methods (e.g.,

Bertsekas, 1995) by

α γ γn
n

n T n
D

g g
=

−
< ≤

J n

()
, 0 2 , (17)

where Jn, αn, Dn and gn are respectively the lowest feasible cost, the step size, the dual cost

and the subgradient at iteration n. Set subproblem index s = 1.

For submission to the European Journal of Control

15

Step 1: [Solve a subproblem.] Solve subproblem s while keeping other subproblem solutions

unchanged. Compute the surrogate dual cost according to (14) and surrogate subgradient

with the current multipliers and the latest available solutions for individual subproblems.

Step 2: [Update multipliers.] Compute conjugate direction according to (16) with the surrogate

subgradient, and update multipliers along the direction. The direction is reset as the

surrogate subgradient after a given number of iterations. Since only one subproblem is

solved for a set of multipliers, line search cannot be used to determine the step size. The

step size is therefore computed according to (17).

Step 3: [Check stopping Criteria.] The maximum amount of computation time or the maximum

number of iterations can be used as the stopping criteria. If the stopping criteria is satisfied,

stop. Otherwise, increase s by one (Reset s to 1 if it is larger than the total number of

subproblems), and go to S1.

3.4 Obtaining a Feasible Schedule

Since machine capacity and batch constraints have been relaxed, subproblem solutions, when put

together, generally do not constitute a feasible schedule. A heuristic procedure is used to adjust

subproblem solutions to form a feasible schedule. A list is created for batch operations within each

group in the ascending order of their beginning times in subproblem solutions. Operations with

beginning times ranging in a certain period are put into the same batch, subject to the volume of the

batch. After a batch are formed, batch beginning time is decided according to operation beginning

times and the operation precedence constraints.

A list of standard operations and batches is then created in the ascending order of their beginning

times. The list heuristic presented in Hoitomt et al. (1993) is then extended to obtain a feasible

schedule. Standard operations and the batches are scheduled on the required machine types according

to the list as machines become available. If the capacity constraint for a particular machine type is

violated at time k, a greedy heuristic based on the incremental change in J (the objective function in

(9)) determines which operations or batches should begin at that time and which ones are to be

delayed by one time unit. In computing the incremental change in J, higher priority is given to

operations that are immediately followed by batch operations, since the delay of a batch causes delay

For submission to the European Journal of Control

16

of all operations in the batch. The process repeats till the end of the list, and a feasible schedule is

then obtained.

The cost J of the feasible schedule is an upper bound on the optimal cost J*. The optimal dual

value D*, on the other hand, is a lower bound on J*. Since it is usually difficult to find J* and D*, the

(relative) duality gap (J - D)/D × 100% is often used as a quality measure of the feasible schedule.

4. NUMERICAL RESULTS

The method has been implemented using the object-oriented programming language C++. The

testing of three cases is presented below to demonstrate the performance of the method developed.

The first case considers the scheduling of a single batch machine, and the second a job shop with one

batch machine and four standard machines. The testing of the two cases is to show that the algorithm

provides high quality schedules by the integrated consideration of batch formation and sequencing.

The third case is created based on the data from a practical job shop. The testing show that the

algorithm is computationally efficient to solve practical problems. The resulting schedules of the

three cases were obtained on a Pentium Pro200 personal computer.

Case 1.

In this case, 48 single operation parts with various due dates are to be scheduled on a single batch

machine. According to their processing requirements, parts are classified into four groups. There are

twelve parts in each of the first two groups, 15 parts in the third group, and nine parts in the fourth

group. The processing times of the four groups of parts are 3, 4, 5 and 6, respectively. All parts have

the same size of one, and the machine can process up to three parts simultaneously. All parts have the

same tardiness weight of one, and there is no earliness penalty. Data of parts is summarized in Table

1.1. The scheduling time horizon is 100, and the total number of multiplier is 500.

Table 1.1. Input Data for Case 1

Part i Group ID Proc. Time Due date Part i Group ID Proc. Time Due date

1 2 4 5 25 2 4 6
2 2 4 5 26 2 4 6
3 2 4 15 27 2 4 15
4 3 5 10 28 3 5 12

For submission to the European Journal of Control

17

5 1 3 8 29 1 3 8
6 3 5 7 30 3 5 7
7 3 5 8 31 3 5 8
8 4 6 9 32 3 5 4
9 1 3 6 33 1 3 6
10 1 3 6 34 1 3 6
11 4 6 9 35 4 6 8
12 4 6 8 36 4 6 8
13 2 4 15 37 2 4 15
14 2 4 1 38 2 4 2
15 2 4 1 39 2 4 2
16 3 5 7 40 3 5 1
17 1 3 8 41 1 3 8
18 3 5 10 42 3 5 9
19 3 5 1 43 3 5 2
20 3 5 4 44 4 6 18
21 1 3 12 45 1 3 14
22 1 3 12 46 1 3 14
23 4 6 10 47 3 5 5
24 4 6 20 48 4 6 20

The feasible schedule shown in Table 2 is obtained in 47 CPU seconds. It has a cost of 44,142

with a relative duality gap 3.0%. According to the schedule, 16 batches of different groups are

formed to process the 48 parts. Each batch is fully occupied with three parts of the same group.

Since parts in each group are of the same size, optimal batch formation can be obtained by putting the

parts into batches in the ascending order of part due dates (Uzsoy, 1995). The feasible schedule in

Table 2 is therefore optimal.

Table 1.2. Feasible Schedule (A1) for Case 1

Parts in Batch Group ID Beginning - Completion

P14, P15, P38 2 0 - 3
P19, P40, P43 3 4 - 8
P39, P1, P2 2 9 - 12
P9, P10, P33 1 13 - 15
P34, P29, P41 1 16 - 18
P5, P17, P21 1 19 - 21
P25, P26, P27 2 22 - 25
P22, P45, P46 1 26 - 28
P20, P32, P47 3 29 - 33
P6, P16, P30 3 34 - 38
P7, P31, P42 3 39 - 43

For submission to the European Journal of Control

18

P37, P3, P13 2 44 - 47
P4, P18, P28 3 48 - 52
P12, P35, P36 4 53 - 58
P8, P11, P23 4 59 - 64
P24, P44, P48 4 65 - 70

Case 2.

In this case, there are two standard machine types (M1 and M2) each with two machines, and one

batch machine (M3). All machines are available across the time horizon. Ten parts with various due

dates are to be scheduled, and are available from time 0. The tardiness weights for all parts are one,

and there is no earliness penalty. Each part may consist of one or two standard operations and a batch

operation. The batch operations belong to two groups. The sizes of operations in the two groups are

three and two, respectively, and the batch volume is six. Data of the ten parts is shown in Table 2.1.

The scheduling time horizon is 50, and the total number of multipliers is 250.

The feasible schedule (S1) has a cost of 561 with a duality gap 1%, and is obtained within 17

seconds. When keep on running the algorithm to 60 seconds, the feasible cost remains unchanged,

and a dual cost of 560.98 is obtained. Since dual cost serves as a lower bound to the optimal feasible

cost, and feasible cost should be an integer value here, the schedule obtained is optimal. The resulting

operation beginning and completion times are shown in Table 2.2, where M11 and M12 are the two

identical machines in machine type M1, and M21 and M22 the two machines in M2. The Gannt chart

of the feasible schedule is shown in Figure 1, where four batches are formed and fully occupied by the

ten batch operations, and the batch machine is the bottleneck. Parts are processed in batches on batch

machine, and are processed individually on standard machines, as shown by the shadowed boxes in

the Gannt chart.

To illustrate the advantage of explicit modeling batch machines, the problem is re-solved by

treating the batch machine as a standard machine in the optimization model, but considering batch

formation in heuristics. The resulting schedule (S2) for this simplified model has a cost 585, which is

4% higher than that of schedule S1.

Table 2.1. Data for Case 2 Part i Di Op.(i, j) h Pijh Group

For submission to the European Journal of Control

19

0 2 (0, 0) M1 2
(0, 1) M2 2
(0, 2) M3 4 1

1 2 (1, 0) M2 3
(1, 1) M1 1
(1, 2) M3 4 1

2 4 (2, 0) M2 1
(2, 1) M3 4 1
(2, 2) M1 1

3 4 (3, 0) M1 1
(3, 1) M3 4 1
(3, 2) M2 3

4 6 (4, 0) M1 2
(4, 1) M3 5 2

5 6 (5, 0) M1 1
(5, 1) M3 5 2
(5, 2) M2 2

6 6 (6, 0) M2 3
(6, 1) M3 5 2

7 8 (7, 0) M1 4
(7, 1) M3 5 2

8 8 (8, 0) M2 2
(8, 1) M3 5 2

9 8 (9, 0) M1 4
(9, 1) M3 5 2

Table 2.2. Schedule (S1) for Case 2

Part i Op.(i, j) Machine bij - cij

0 (0, 0) M11 0 - 1
(0, 1) M21 3 - 4
(0, 2) M3 5 - 8

1 (1, 0) M21 0 - 2
(1, 1) M11 3 - 3
(1, 2) M3 5 - 8

2 (2, 0) M22 0 - 0
(2, 1) M3 1 - 4
(2, 2) M11 5 - 5

3 (3, 0) M12 0 - 0
(3, 1) M3 1 - 4
(3, 2) M21 5 - 7

4 (4, 0) M12 1 - 2
(4, 1) M3 9 - 13

5 (5, 0) M11 2 - 2
(5, 1) M3 9 - 13
(5, 2) M21 14 - 15

6 (6, 0) M22 3 - 5
(6, 1) M3 9 - 13

7 (7, 0) M11 6 - 9
(7, 1) M3 14 - 18

8 (8, 0) M22 1 - 2
(8, 1) M3 14 - 18

9 (9, 0) M12 3 - 6
(9, 1) M3 14 - 18

M11

M3

M12

M21

M22

0 155 10

(0,0)

 (3,2) (0,1)

 (3,0)

 (2,2)

(2,0)

 (1,1)

 (1,0)

 (9,0)

 (8,0)

 (7,0)

 (6,0)

 (5,2)

 (5,0)

 (3,1)

 (2,1)

 (1,2)

 (0,2)

 (6,1)

 (5,1)

 (4,1)

 (9,1)

 (8,1)

 (7,1)

 (4,0)

 Time

 Machine

Figure 1: Gantt Chart of Feasible Schedule for Case 2

For submission to the European Journal of Control

2

To show the effect of batch processing time on the feasible schedule, Case 2 is modified by

doubling all batch operation processing times. By running the algorithm for 34 seconds, a feasible

schedule (S3) with a cost of 4,062 and a duality gap of 6.11% is obtained. In the schedule, batches

are formed exactly the same as in schedule S1, but have different processing sequence and beginning

times. Since the batch machine is the bottleneck, this data change leads to significant increase of the

feasible cost.

Case 3.

This case is created based on the data from a practical job shop. There are four standard machine

types with a total of seven machines, and four batch machine types with seven machines. Some

machines may not be available during certain periods on the time horizon. Eighty two parts with a

total of 752 operations are to be scheduled. Parts have various due dates with two level of tardiness

weights (1.0 and 0.5), and there is no earliness penalty. Operations on batch machine types belong to

16 groups with sizes of two or three, and the volume of a batch is six. Operation processing times

range from 1 to 24, and part due dates are scattered from 0 to 230. The scheduling time horizon is

2046.

The resulting feasible schedule has a cost of 39,944 with a duality gap 33%, and is obtained

within 600 CPU seconds. Results at some selected iterations are summarized in Table 3 to show the

improvement on both feasible schedule and lower bound as the number of iterations increases. The

results show that the method developed keeps on improving schedule quality by reducing the feasible

cost and improving the lower bound by maximizing the dual function. A good schedule is obtained

within 100 iterations or about 2.5 minutes.

Table 3. Testing Results for Case 3

Iteration Feasible Cost Dual Cost Duality Gap CPU seconds

0 61108 156 38947% 1
100 42033 26805 57% 157
200 40240 28720 40% 310
300 39944 29627 35% 453
400 39944 29941 33% 597

For submission to the European Journal of Control

3

A few practically used performance metrics are provided to measure the schedule quality. The

metrics are defined below.

Makespan: the duration of time for processing all the parts.

Maximum work-in-process inventory: the maximum number of parts in the cell.

Average work-in-process inventory: the average number of parts in the shop over the time

horizon.

Average lead time: the average elapse time between part beginning and completion times.

Total processing time/Total lead time: the sum of all operation processing times / the sum of

all part lead times

The performance metrics of the feasible schedules at some selected iterations are summarized in

Table 4. They also show that the method developed keeps on improving the schedule quality at the

number of iterations increases.

Table 4. Performance Metrics of Feasible Schedule

Iteration 0 100 200 400
Makespan 1065 1052 1062 1047
Maximum Work-in-process Inventory 47 35 34 34
Average work-in-process inventory 27.04 19 17.78 18.02
Average lead time 392 273 258 257
Total processing time/Total lead time (%) 25 35 37 37

By reducing the number of batch machines to one machine per type, the schedule obtained has a

cost of 41,511 with a duality gap of 39% at 600 seconds. It shows that after reducing the number of

batch machines, the feasible cost significantly increased. There are more competitions on the batch

machines, and the method will take more computation time to find a good schedule.

5. CONCLUSIONS

In this paper, the scheduling of job shops with batch machines is considered in an integrated

fashion to decide both batch formation and sequencing. A novel "separable" integer programming

formulation is developed with manageable numbers of variables and constraints. A Lagrangian

relaxation based method is then applied to generate high quality solutions with quantifiable quality.

For submission to the European Journal of Control

4

Through the iterative problem resolution, the method keeps on improving the schedule quality as

indicated by the feasible costs and performance metrics. Numerical testing shows that the integrated

consideration of batch formation and sequencing results in high quality schedules, and the algorithm

is computationally efficient to solve practical problems.

Appendix A. A List of Symbols

δijhk: 0-1 operation-level variable which is one if operation (i, j) is performed on machine type h at
time k, and zero otherwise.

$δ ijhk : 0-1 operation level variable which is one if operation (i, j) starts on machine type h at time k,

and zeor otherwise.
ϕhgnk: 0-1 batch-level variable which is one if batch (h, g, n) is being processed at time k, and zero

otherwise.
$ϕhgnk :0-1 batch level variable which is one if batch (h, g, n) starts at time k, and zero otherwise.

bij: beginning time of operation (i, j)
bhgn: beginning time of batch (h, g, n)
cij: completion time of operation (i, j)
chgn: completion time of batch (h, g, n)
Di: due date of part i
g: group index variable
h: machine type variable, h∈H
H: set of all machine types
HB: set of all batch machine types
Η Β : set of all standard machine types

Hij: set of machine types capable of performing operation (i, j)

J: objective function to be minimized
Ji: number of operations for part i
k: discretized time index
K: time horizon
Mh: number of identical machines in machine type h
Mhk: capacity of machine type h at time k
Nhg: number of batches in group g of machine type h

Pijh: processing time of operation (i, j) on machine type h∈H
Phg: processing time of a batch within group g of machine type h
Ti: tardiness of part i, defined as Ti = max[0, ci,Ji-1-Di]
vij: size of part i when performing operation j
Vhg: capacity of a batch in group g on machine type h
Wi: part tardiness weight

For submission to the European Journal of Control

5

Acknowledgments. This work was supported in part by the National Science Foundation under
Grant DMI-9500037, and the Advanced Technology Center for Precision Manufacturing, the
University of Connecticut. The authors would like to thank Dr. Debra J. Hoitomt of United Airlines
for her earlier work on this problem.

REFERENCES

1. Ahmadi, J. H., Ahmadi, R. H., Dasu, S., Tang, C. S., 1992, "Batching and Scheduling Jobs on
Batch and Discrete Processors," Operations Research, Vol. 40, pp. 750-763.

2. Blackstone, J.H., D.T. Phillips and G.L. Hogg, 1982, "A State-of-the-art Survey of Dispatching
Rules for Manufacturing Job Shop Operations," International Journal of Productions Research,
Vol. 20, pp. 27-45.

3. Chen, H., Chu, C., Proth, J. M., 1995, "A More Efficient Lagrangian Relaxation Approach to Job
Shop Scheduling Problems," Proceeding of IEEE Conference on Robotics and Automation, pp.
496-501.

4. Dessouky, Y. M., Roberts C. A., Dessouky M. M. and Wilson G., 1996, "Scheduling
Multipurpose Batch Plants with Junction Constraints," International Journal of Productions
Research, Vol. 2, pp. 525-541.

5. Hoitomt, D. J., Luh, P. B., Pattipati, K. R., 1993, "A Practical Approach to Job-Shop Scheduling
Problems," IEEE Transactions on Robotics and Automation, Vol. 9, pp. 1-13.

6. Hiriart-Urruty, J. B. and Lemarechal, C., 1993, Convex Analysis and Minimization Algorithms, I
and II (Springer-Verlag, Berlin).

7. Kaskavelis, C.A. and Caramanis M.C., 1995, "Efficient Lagrangian Relaxation Algorithms for
Real-life-size Job-shop Scheduling Problems," Working Paper, Boston University, Department of
Manufacturing Engineering.

8. Lee, C.Y., S.D. Liman and A. Wirakusumah, 1993, "Product Batching and Batch Sequencing for
NC Punch Presses," International Journal of Productions Research, Vol. 31, pp. 1143-1156.

9. Lemarechal, C., 1978, "Bundle Methods in Nonsmooth Optimization," Proceedings of a IIASA
Workshop, ed. C. Lemarechal and R. Mifflin Pergamon Press, Great Britain, 1978), pp. 77-82.

10. Liao, D. Y., Chang, S. C., Yen, S. R., Chien, C. C., 1993, "Daily Scheduling for R&D
Semiconductor Fabrication," Proceeding of IEEE Conference on Robotics and Automation, pp.
77-82.

11. Luh, P.B., D. Chen and L.S. Thakur, 1997, "Modeling Uncertainty in Job Shop Scheduling,"
Proceedings of the First International Conference on Operations and Quantitative Management,
Jaipur, India, pp. 490-497.

12. Luh, P.B., L. Gou, T. Odahara, M. Tsuji, K. Yoneda, T. Hasegawa and Y. Kyoya, 1995, "Job
Shop Scheduling with Group-dependent Setups, Finite Buffers, and Long Time Horizon,"
Proceedings of the 34th Conference on Decision and Control, New Orleans, LA, pp. 4184-4189.

13. Tomastik, R. N. and Luh, P. B., 1993, "The Facet Ascending Algorithm for Integer Programming
Problems," Proceedings of 32nd IEEE Conference on Decision and Control (San Antonio, Texas,
USA), pp. 2880-2285.

14. Tomastik, R. N. and Luh, P. B., 1996, "A Reduced-Complexity Bundle Method for Maximizing
Concave Nonsmooth Functions," Proceedings of the 35th IEEE Conference on Decision and
Control (Kobe, Japan).

15. Uzsoy, R., 1995, "Scheduling Batch Processing Machines with Incompatible Job Families,"
International Journal of Productions Research, Vol. 33, pp. 2685-2708.

For submission to the European Journal of Control

6

16. Wang, J., Luh, P.B., 1994, "Optimization Based Scheduling of a Batch Processing Facility,"
Proceedings of the Conference on Computer Integrated Manufacturing in the Process Industries,
(New Brunswick, NJ, USA), pp. 3-20.

17. Wang, J.H., Luh, P.B., X. Zhao and J.L. Wang, 1997, "An Optimization-based Algorithm for Job
Shop Scheduling," Special Issue of SADHANA on Competitive Manufacturing Systems, Indian
Academy of Sciences, Bangalore, India.

18. Webster S., and Baker K. R., 1995, "Scheduling Groups of Jobs on a Single Machine,"
Operations Research, Vol. 43, pp. 692-703.

19. Zijm, W. H. M., 1995, "The Integration of Process Planning and Shop Floor Scheduling in Small
Batch Part Manufacturing," Annals of the CIRP, Vol. 44, pp. 429-432.

20. Zhao, X., P.B. Luh and J. Wang, 1997, "The Surrogate Gradient Algorithm for Lagrangian

Relaxation Method," Submitted to The 36th IEEE Conf. on Deci & Cont., San Diego, CA, USA.

