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Abstract Scheduling is a key factor for manufacturing productivity. Effective scheduling can

improve on-time delivery, reduce inventory, cut lead times, and improve the utilization

of bottleneck resources. Because of the combinatorial nature of scheduling problems,

it is often difficult to find optimal schedules, especially within a limited amount of

computation time. Production schedules therefore are usually generated by using

heuristics in practice. However, it is very difficult to evaluate the quality of these

schedules, and the consistency of performance may also be an issue.

In this paper, near-optimal solution methodologies for job shop scheduling are ex-

amined. The problem is formulated as integer optimization with a “separable” struc-

ture. The requirement of on-time delivery and low work-in-process inventory is mod-

eled as a goal to minimize a weighted part tardiness and earliness penalty function.

Lagrangian relaxation is used to decompose the problem into individual part subprob-

lems with intuitive appeal. By iteratively solving these subproblems and updating the

Lagrangian multipliers at the high level, near-optimal schedules are obtained with a

lower bound provided as a byproduct. This paper reviews a few selected methods for

solving subproblems and for updating multipliers. Based on the insights obtained, a

new algorithm is presented that combines backward dynamic programming for solv-

ing low level subproblems and interleaved conjugate gradient method for solving the

high level problem. The new method significantly improves algorithm convergence and

solution quality. Numerical testing shows that the method is practical for job shop

scheduling in industries.
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1. Introduction

Scheduling is a key factor for manufacturing productivity. Effective scheduling
can improve on-time delivery, reduce inventory, cut lead times, and improve the
utilization of bottleneck resources. Because of the combinatorial nature of scheduling
problems, it is often difficult to obtain optimal schedules, especially within a limited
amount of computation time. Production schedules therefore are usually generated
by using heuristics in practice. However, it is very difficult to evaluate the quality of
these schedules, and the consistency of performance may also be an issue. A logical
strategy is thus to pursue methods that can consistently generate good schedules
with quantifiable quality in a computationally efficient manner.

This paper examines the practical scheduling of job shops, a typical environment
for the manufacture of low-volume and high-variety parts. In a job shop, parts with
various due dates and priorities are to be processed on various types of machines.
Job shop scheduling is to select the machines and beginning times for individual
operations to achieve certain objective(s) with given machine capacities. In this pa-
per, job shop scheduling is formulated as integer optimization with a “separable”
structure. The requirement of on-time delivery and low work-in-process inventory is
modeled as a goal to minimize a weighted part tardiness and earliness penalty func-
tion. Lagrangian relaxation (LR) is used to decompose the problem into individual
part subproblems with intuitive appeal. By iteratively solving those subproblems
and updating the Lagrangian multipliers at the high level, near-optimal schedules
are obtained with a lower bound provided as a byproduct on the optimal cost. This
paper reviews a few selected methods for solving subproblems and for updating
multipliers. Based on the insights obtained, a new algorithm is presented that com-
bines “backward” dynamic programming (BDP) for solving low level subproblems
and interleaved conjugate gradient (ICG) method for solving the high level problem.
The new method significantly improves algorithm convergence and solution qual-
ity. Numerical testing shows that the method is practical for job shop scheduling in
industries.

1.1 Literature Review

Given the economic and logistical importance of the scheduling problem, many
of the early efforts centered on obtaining optimal schedules. Two prominent opti-
mization methods are the branch and bound method (Fisher, 1973) and dynamic
programming (e.g., Pinedo, 1995). It was discovered that the generation of op-
timal schedules often requires excessive computation time regardless the method-
ology. Furthermore, job shop scheduling is among the hardest combinatorial op-
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timization problems and is NP-complete (Garey and Johnson, 1979). Production
schedules therefore are usually generated by experienced shop-floor personnel using
simple dispatching rules in practice. Many heuristic methods have been presented
and implemented based on due dates, criticality of operations, operation process-
ing times, and machine utilization (e.g., Blackstone et al., 1982). Many artificial
intelligence (AI) approaches also use heuristics for scheduling (e.g., Kuziak, 1990).
These heuristics-based approaches usually generate feasible schedules fast, but it is
very difficult to evaluate the quality of the schedules. Also, most heuristics do not
provide for iterative improvement of the schedules.

Attempts to bridge the gap between heuristic and optimization approaches have
also been undertaken (Adam et al, 1988, Luh and Hoitomt, 1993, Ventura and Weng,
1995). In Adams et al. (1988), for example, a heuristic for job shop scheduling
was developed based upon optimally solving single machine sequencing problems.
A criterion for measuring machine busyness was developed, and the job sequence
for the busiest machine (the bottleneck) was first developed. The job sequence
for the next busiest machine was then determined, and the solution was fed back
into the previously solved machine problem by a “local reoptimization.” However,
schedule evaluation could only be achieved through “selective enumeration.” Also,
each operation has to be pre-assigned to a specific machine before scheduling, though
the operation may be processed on different machines or different types of machines.

In Luh and Hoitomt (1993), a Lagrangian relaxation framework was established for
manufacturing system scheduling problems, and a practical method was provided.
In the method, both machine capacity and operation precedence constraints are
relaxed by using Lagrange multipliers, and operation-level subproblems are formed
and solved by enumeration. The multipliers are then updated at the high level by
using a subgradient method. An improved version of the method considering bills of
materials and with a modified subgradient method at the high level was presented
in Czerwinski and Luh (1994).

Much progress has been made on the scope and performance of the LR-based
methodology. A combined LR and heuristic method was developed for job shop
scheduling with group-dependent setups and finite buffers in Luh et al. (1995). The
scheduling of batch machines with setup requirements was addressed in Luh et al.
(1997b). A “forward” dynamic programming (FDP) algorithm was embedded within
the LR framework for job shop scheduling in Chen et al. (1995). In the method, only
machine capacity constraints are relaxed, and part level subproblems are formed and
solved by using the FDP. By doing this, the solution oscillation difficulties as reported
in Czerwinski and Luh (1994) are alleviated. Also, by relaxing less constraints, the
dual cost should be a tighter lower bound. In Luh et al. (1997), a LR-based method
was developed for job shop scheduling with uncertain parts. A “backward” dynamic
programming (BDP) was developed to solve the part subproblems with random part
parameters.
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For high level algorithms, the slow convergence of subgradient methods was ana-
lyzed, and the facet ascending algorithm (FAA) was presented to improve the conver-
gence in Tomastik and Luh (1993). The reduced-complexity bundle method (RCBM)
was developed in Tomastik and Luh (1996) which significantly reduces the computa-
tion complexity, but maintains the convergence of the conventional bundle methods.
An interleaved subgradient method (ISG) was developed in Kaskavelis and Cara-
manis (1995) to improve the efficiency of the LR-based method. A review of those
methods will be presented in subsection 3.3.

1.2 Overview of the Paper

In Section 2, an integer optimization formulation with a “separable” structure
for job shop scheduling is presented. In Section 3, the problem is decomposed into
individual part subproblems by relaxing machine capacity constraints following the
approach in Chen et al. (1995). A few selected methods for solving subproblems
and for updating multipliers are reviewed. Based on the insights obtained, a new
algorithm is presented that combines BDP for solving low level subproblems and
a interleaved conjugate gradient (ICG) method for solving the high level problem.
In Section 4, numerical results show that the new method outperforms a previous
LR/SG method in convergence. Numerical testing for practical data sets shows that
the method can generate high quality schedules in a timely fashion.

2. Problem Formulation

In a job shop, machines may have different processing capabilities. Machines with
same processing capability are grouped as a “machine type,” and all the machine
types forms a set denoted as H. The total number of machine types is thus |H|.
There are I parts with various due dates Di to be scheduled over a discretized time
horizon K. Part i (i = 0, 1, ..., I − 1) consists of nonpreemptive Ji serial operations
with operation j (j = 0, 1, ..., Ji − 1) of part i denoted by (i, j). An operation may
start only after its preceding operation has been completed, and requires a machine
belonging to a given set of eligible machine types Hij for a specified duration of time.
Without loss of generality, it is assumed that operations of part i are performed in
the ascending order of operation index j.

The time horizon consists of K time units, indexed by k (k=0,1,...,K-1). Each
operation beginning time is defined as the beginning of the corresponding time unit,
and each completion time the end of the time unit. The variables used in the problem
formulation are listed below.
δijhk: 0-1 operation variable which is one if operation (i,j) is performed on machine
type h at time k, and zero other.

βi: Part earliness weight.
bij: Beginning time of operation (i, j).
cij: Completion time of operation (i, j).
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Di: Due date of part i.
Ei: Earliness of part i, defined as Ei = max[0, Si − bi0].
h: Machine type variable, h ∈ H.
Hij: Set of machine types capable of performing operation (i, j).
J: Objective function to be minimized.
k: Time index (k=0,1,...,K-1).
Mhk: Capacity of machine type h at time k.
Pijh: Processing time of operation (i, j) on machine type h ∈ Hij . Si: Desired

raw material release time for part i.
Ti: Tardiness of part i, defined as Ti = max[0, ci,Ji−1 − Di].
Wi: Part tardiness weight.
Assuming that the set of machine types, the number of parts, part due dates and

weights, operation processing time and time horizon are given. The constraints and
objective function are explained below.
Machine Capacity Constraints

In the literature (e.g., Baker, 1974, Adams, 1988), the limited machine capacity is
often modeled by “disjunctive constraints.” Given a pair of operations (denoted as
A and B) to be performed on a particular machine, the disjunctive constraints state
that either B starts after the completion of A or A starts after the completion of
B. As a result, the number of disjunctive constraints increase drastically with the
number of operations. Also, it is required that each operation must be pre-assigned
to specific machines, though an operation may be processed on different machines
or different types of machines.

By defining a set of 0-1 operation variables δijhk to represent the processing sta-
tus of each operation, the following machine capacity constraints are formed. The
constraints state that the total number of operations being performed (active) on
machine type h must be less than or equal to the capacity (Mhk) of machine type h

at any time unit k, i.e.,

I−1∑
i=0

Ji−1∑
j=0

δijhk ≤ Mhk, h ∈ H; k = 0, ...,K − 1, (1.1)

where the 0-1 operation variables δijhk is defined by

δijhk =

{
1 if bij ≤ k ≤ cij ,

0 otherwise,
(1.2)

The number of machine capacity constraints equals the number of machine types
times the time horizon K. Although the number of 0-1 operation variables is huge,
these variables are determined once the machine types and beginning times of the
operations are specified. They thus are not independent decision variables, and do
not cause any complexity difficulty.
Operation Precedence Constraints
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The operation precedence constraints are represented by the following “conjunc-
tive constraints.” These constraints state that an operation cannot be started until
its preceding operation is finished, i.e.,

ci,j−1 + 1 ≤ bij , i = 0, 1, ..., I − 1; j = 1, 2, ..., Ji − 1. (1.3)

Since operation (i, j−1) is completed at the end of time unit ci,j−1, and operation
(i, j) starts at the beginning of time unit bij , the term “1” is required in (3). For the
same reason, the term “1” also appears in the following processing time requirements.
Processing Time Requirements

The processing time requirements state that each operation must be assigned the
required amount of time for processing on the selected machine type h, i.e.,

cij = bij + Pijh − 1, i = 0, 1, ..., I − 1; j = 0, 1, ..., Ji − 1;h ∈ Hij. (1.4)

With processing times specified, operation completion times cij can be eliminated
from theproblem formulation. For notational convenience, they still appear in later
derivation.
Objective Function

Various objective functions such as makespan have been used in the literature.
Research into practical scheduling, however, shows that the tardiness objective is
likely to be more useful than, say, makespan criteria (Blackstone etal., 1982). In ad-
dition, the additivity of the tardiness objective function facilitates the decomposition
approach.

Besides the on-time delivery, working-in-process (WIP) inventory is another major
concern in practice. To reduce WIP inventory, a desired raw material release time Si

for each part is derived based on part due date and total processing time of the part
(sum of operation processing times of the part). An earliness term for each part is
added to the tardiness objective function, representing the penalty for releasing raw
material too early. The requirement for on-time delivery and low WIP inventory
is thus modeled as a goal to minimize the weighted part tardiness and earliness
penalties, i.e.,

J ≡
I−1∑
i=0

(WiT
2
i + βiE

2
i ). (1.5)

The square on tardiness reflect the fact that a part becomes more critical with each
time unit after passing its due date. Similarly, square is applied to each earliness
penalty term. The objective function accounts for the priorities of the parts, the
importance of meeting due dates and desired release times.

The overall problem therefore is to minimize the part tardiness and earliness
penalty function, subject to the above machine capacity and operation precedence
constraints, i.e.,
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min
{bij ,hij}

J, withJ ≡
I−1∑
i=0

(WiT
2
i + βiE

2
i ), (1.6)

subject to

I−1∑
i=0

Ji−1∑
j=0

δijhk ≤ Mhk, h ∈ H; k = 0, ...,K − 1, (1.7)

ci,j−1 + 1 ≤ bij, i = 0, 1, ..., I − 1; j = 1, 2, ..., Ji − 1. (1.8)

The decision variables are the operation beginning times bij and the machine types
hij for individual operations. Once bij and hij are selected, {cij}, {Ti}, {Ei}, and
{δijhk} can be easily derived.

3. Solution Methodology

3.1 Lagrangian Relaxation

Lagrangian relaxation (LR) is a mathematical programming technique for per-
forming constrained optimization. Similar to pricing concept of a market economy,
the Lagrangian relaxation method replaces “hard” coupling constraints (e.g., ma-
chine capacity constraints) by the payment of certain “prices” (i.e., Lagrange mul-
tipliers) for the use of machines at individual time units. The original NP-hard
problem can thus be decomposed into many smaller and easier subproblems. The
solutions of individual subproblems, when put together, may not constitute a feasi-
ble schedule since coupling constraints have been relaxed by the multipliers. These
prices or multipliers are thus iteratively adjusted based on the degree of constraint
violations following again the market economy mechanism. Subproblems are then
re-solved based on the new set of multipliers. In mathematical terms, a “dual func-
tion” is maximized in this multiplier updating process, and values of the dual function
serve as lower bounds to the optimal feasible cost. At the termination of this mul-
tiplier updating process, a simple heuristics is used to adjust subproblem solutions
to provide a feasible schedule satisfying all constraints. Heuristics can also be run
after each optimization iteration to check convergence or to provide candidate fea-
sible schedules. Optimization and heuristics thus operate in a synergistic fashion to
generate effective schedules. The quality of the schedule can also be quantitatively
evaluated by comparing its cost to the largest lower bound provided by the dual
function.

By using Lagrange multipliers πhk to relax machine capacity constraints, the fol-
lowing relaxed problem is obtained.
Relaxed Problem
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min
{bij ,hij}

L,withL ≡
∑

i

(WiT
2
i + βiE

2
i ) +

∑
i,j

cij∑
k=bij

πhijk −
∑
h,k

Mhkπhk, (1.9)

subject to the operation precedence constraints (3). In deriving (9), the fact
∑

h∈H

∑K−1
k=0 πhkδijhk =∑cij

k=bij
πhijk is used, and the relaxed problem has bij and hij as its decision variables.

After regrouping terms related to individual parts, the relaxed problem can be de-
composed into the following part subproblems.
Part Subproblems

min
{bij ,hij}

Li, with Li ≡ WiT
2
i + βiE

2
i +

Ji−1∑
j=0

cij∑
k=bij

πhijk, (1.10)

subject to the corresponding operation precedence constraints for part i.
From (10), a part subproblem reflects the needs to balance tardiness penalty, ear-

liness penalty, and machine utilization costs. This part subproblem can be viewed
as a multi-stage optimization problem with each stage corresponding to an opera-
tion. Although solving the original problem by using dynamic programming (DP) is
impractical, the decomposed part subproblem is not NP-hard, and can be efficiently
solved by using DP as will be presented in subsection 3.2.

Let L∗
i denote the minimal subproblem cost of part i with given multipliers, the

high level Lagrangian dual problem is then obtained as
Dual Problem

max
{πhk}

D,withD ≡
∑

i

L∗
i −

∑
h,k

Mhkπhk. (1.11)

The Lagrangian dual function D is concave (Bertsekas, 1995), and piece-wise
linear, and consists of many “facets” (Tomastik and Luh, 1993). We shall next
present the resolution of part subproblems and followed by the updating of Lagrange
multipliers.

3.2 Dynamic Programming

The forward dynamic programming (FDP) algorithm presented in Chen et al.
(1995) can be used to solve a part subproblem in (10). It starts with the first
operation of the part, and precedes to the last operation. In this paper, a backward
dynamic programming (BDP) is developed with the goal to be further extended to
handle uncertainties (e.g., uncertain arrival times, processing times, due dates, etc.,
see Luh et al., 1997). The BDP algorithm starts with the last stage, and compute
the costs of the last operation (i, Ji − 1) for all possible bi,Ji−1 and hi,Ji−1:

Vi,Ji−1(bi,Ji−1, hi,Ji−1) = WiT
2
i +

ci,Ji−1∑
k=bi,Ji−1

πkhi,Ji−1
. (1.12)
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For other operations (i, j) , the cumulative costs are obtained by recursively solving
the following DP equation subject to operation precedence constraints (3):

Vij(bij , hij) = min
bi,j+1,hi,j+1

{∆ijβiE
2
i +

cij∑
k=bij

πhijk + Vi,j+1(bi,j+1, hi,j+1)}

= ∆ijβiE
2
i +

cij∑
k=bij

πhijk + min
bi,j+1,hi,j+1

Vi,j+1(bi,j+1, hi,j+1). (1.13)

In the above, ∆ij is 1 if (i, j) is the first operation (j = 0) and 0 otherwise. The
function Vij(bij , hij) is the cumulative cost for all operations succeeding and including
(i, j), and ∆ijβiE

2
i +

∑cij

k=bij
πhijk are the “stage-wise” costs. The algorithm starts

from the last stage and moves backwards till the first stage is reached. The optimal
subproblem cost L∗

i is then obtained as the minimal cumulative cost at the first
stage. Finally, the optimal beginning times bij and machine types selected hij for
operations can be obtained by tracing forwards the stages. Similar to FDP, the
computation complexity of the above BDP algorithm is O(K

∑Ji
j=1 |Hij|) (Luh et

al., 1997).

3.3 Solving Dual Problem

Subgradient Methods
As mentioned above, the Lagrangian dual function is concave and piece-wise linear.
Existing methods for optimizing the dual function fall roughly into three classes:
subgradient, cutting plane, and bundle methods. Of these, subgradient methods
are commonly used to update the Lagrange multipliers (i.e., to maximize the dual
function) because of their simplicity, the speed for computing a direction, and the
global convergence property. With the subproblem solutions for given multipliers
πhk, the subgradient g of the dual function D is calculated by

ghk =
I−1∑
i=0

Ji−1∑
j=0

δijhk − Mhk, h ∈ H; k = 0, ...,K − 1, (1.14)

where ghk is an element of the subgradient. In subgradient methods, multipliers are
updated along the direction of the subgradient with the step size determined by

αn = γ
D∗ − Dn

(gn)T gn
, 0 < γ ≤ 2 (1.15)

where D∗ is the optimal dual cost, and αn, Dn and gn are respectively the step
size, dual cost and subgradient at iteration n. As shown in Tomastik and Luh
(1993), subgradient methods often zigzag across a ridge (intersection of some facets)
of the dual function. The slow convergence rate (less than linear) of the subgradient
methods causes these methods to require many iterations to reach an optimum.
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Facet Ascending Algorithm By recognizing that the Lagrangian dual function
is polyhedral concave, and is made up of many facets, the facet ascending algorithm
(FAA) finds the intersection of adjacent facets (Tomastik and Luh, 1993). A subgra-
dient of one of the facets is then projected on the intersection to obtain an ascending
direction, and a line search technique is used to determine how far to move along
the direction. The FAA avoids the zigzagging behavior of subgradient methods, and
shows improved convergence. For large problems, an intersection is usually formed
by many facets. Finding such an intersection is often difficult and requires many
dual function evaluations which are “computationally expensive.” Furthermore, the
ridges are short, causing slow convergence.
Bundle Methods The bundle method (e.g., Hiriart-Urruty and Lemarechal, 1993)
has the fastest convergence rate among the three classes of methods. It accumulates
and utilizes the subgradients of points within a neighborhood of the current iterate
to find an ε-ascent direction (along which the function value can increase at least by
ε), or to detect within ε of the dual optimum (ε-optimal). Finding such a direction or
detecting ε-optimal, however, requires solving a number of quadratic programming
problems with considerable complexity. To reduce the complexity while maintain-
ing the convergence of the bundle method, the reduced-complexity bundle method
(RCBM) finds an ε-ascent direction by performing a projection of a subgradient onto
an appropriate subspace formed by the subgradients in the bundle (Tomastik and
Luh, 1996). Along the ε-ascent direction, a line search technique is then used to
determine the step size for updating multipliers. Similar to FAA, the large number
of dual function evaluations required to accumulate the subgradients and to perform
line search is very time consuming, and hinders the applicability of the RCBM to
very large problems.
Interleaved Subgradient Method

The iterative resolution of the dual problem requires the dual function to be eval-
uated many times, and each function evaluation involves solving all the subproblems
once (called one iteration). These dual function evaluations are extremely “expen-
sive” for large problems. For example, it takes about 68% of total CPU time for a
case with 82 parts and 14 machines. To efficiently utilize the expensive function eval-
uations, an interleaved subgradient (ISG) method has been developed (Kaskavelis
and Caramanis, 1995). Instead of solving all subproblems before updating multipli-
ers, the ISG method updates multipliers after solving each subproblem. At the high
level, the multipliers are updated along the direction of the subgradient. Numerical
results show that the ISG method converges much faster than a subgradient method,
though algorithm convergence has not yet been established.
Interleaved Conjugate Gradient Method

As mentioned earlier, the dual function is concave, piece-wise linear, and consists
of many facets. Each possible solution of the relaxed problem corresponds to a
facet. Because of the combinatorial nature of the original problem, the number of
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possible solutions of the relaxed problem and therefore the number of facets increases
drastically as the problem size increases. The dual function thus approachesa smooth
function. This “smoothness” of the dual function motivates the use of optimization
methods for smooth functions.

Among the methods for optimizing smooth functions, conjugate gradient methods
have attractive convergence properties and computation efficiency. The conjugate
directions are generated by

dn = gn + βndn−1withd0 = g0, βn =
(gn)T gn

(gn−1)T gn−1
, n = 1, 2, .... (1.16)

where dn and gn are the conjugate direction and gradient at iteration n. The step
size for updating multipliers is determined by performing a line search along the
conjugate direction.

By incorporating the “interleave” concept with the conjugate gradient method,
an interleaved conjugate gradient (ICG) method has been developed that utilizes
the “smooth” property of the dual function and efficiency of the interleaved method
for problems of large sizes (e.g., 1000 multipliers or more). In this paper, the ICG
method is used to update the multipliers. The ICG algorithm is summarized as
follows.

S0 Given the initial multipliers, solve all the part subproblems, and compute the
dual cost and subgradient. Update multipliers along the direction of the sub-
gradient. Set subproblem index s = 1.

S1 Solve subproblem s while keeping other subproblem solutions unchanged. Com-
pute the “surrogate” dual cost and subgradient according to (11) and (14) with
the latest available subproblem solutions.

S2 Compute conjugate direction by (16) with the surrogate subgradient, and up-
date multipliers along the direction. Since only one subproblem is solved for a
set of multipliers, line search cannot be used to determined the step size. The
step size is therefore still computed according to (15) with D∗ replaced by the
lowest feasible cost obtained up to the current iteration.

S3 Increase s by one. If s is larger than the total number of subproblems, reset s

to 1. Go to S1.

3.4 Constructing Feasible Schedule

The solutions to part subproblems, when put together, are generally associated
with an infeasible schedule, i.e., capacity constraints might be violated at some time
periods. A feasible schedule is constructed by using a list scheduling heuristic. In the
list scheduling procedure, a list of immediately performable operations is created,
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and maintained in the ascending order of their beginning times from part subproblem
solutions. Operations are then scheduled on the required machine types according
to this list as machines become available. If the capacity constraint for a particular
machine type is violated at time k, a greedy heuristic determines which operations
should begin at that time and which ones are to be delayed by one time unit. The
subsequent operations of those delayed ones are then delayed by one time unit if
precedence constraints are violated. The process repeats until the last operation in
the list.

The cost of the feasible schedule J is an upper bound on the optimal cost J∗. The
optimal dual value D∗, on the other hand, is a lower bound on J∗. Since it is usually
difficult to find J∗ and D∗, the (relative) duality gap(J − D)/D is often used as a
measure of the quality of the feasible schedule.

4. Numerical Results

The new method that combines BDP and ICG within the LR framework has been
implemented using the object-oriented programming language C++, and extensive
testing has been performed. Four test cases are presented below. The first two cases
are to demonstrate that the new LR/BDP/ICG method has better convergence than
the previous LR/SG method with both machine capacity and operation precedence
constraints relaxed and with a subgradient method at the high level. Case 2 also
shows that the LR/BDP/ICG method generates a better schedule than a heuristic
method that combines the “first come first serve (FCFS)” and “shortest processing
time (SPT)” rules (called FCFS/SPT). The next two cases demonstrate that the
LR/BDP/ICG method is applicable for solving scheduling problems of realistic sizes.
In presenting the results for both LR/SG and LR/BDP/ICG methods, an iteration
corresponds to solving all subproblems once.

The four cases are tested on a Sun Sparc 10 workstation. In the testing, all mul-
tipliers are initialized at zero. The time horizons are automatically generated based
on machine availabilities and part processing requirements. The step size factor γ in
the LR/BDP/ICG method is initialized to a specific value, and adaptively adjusted
based on information obtained in the iterative process.

Case 1:
This test case is to demonstrate that the LR/BDP/ICG method generates a tighter

lower bound than the LR/SG method. There are two machines of different types and
two parts. Part one has two operations with processing times 3 and 2, respectively,
and part two also has two operations with processing times 1 and 4, respectively.
The first operations of both parts require machine type 0, and the second operations
require machine type 1. The due dates are zero. The tardiness penalty weights are
1, and there is no earliness penalty. The results are summarized in Table 1.
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Table 1. Testing Results for Case 1 (γ = 0.5)

Method Iteration Dual/J Duality Gap CPU Sec.

LR/SG 2000 44/52 18% 3.00

LR/BDP/ICG 17 52/52 0% 0.01

It can be seen that both methods generate optimal schedule with the cost J = 52
which equals to the lower bound obtained by LR/BDP/ICG. The dual cost by using
LR/BDP/ICG is thus optimal. The dual cost obtained by LR/SG (=44) is also op-
timal for the corresponding dual function, as verified by using a LR/RCBM method.
This test case therefore shows that by using the above LR/SG method, there ex-
ists an inherent gap (defined as the gap between the optimal dual cost and optimal
feasible cost). It also shows that a tighter bound is obtained when the operation
precedence constraints are not relaxed.

Case 2:
This test case is to demonstrate that the LR/BDP/ICG method outperforms the

LR/SG method and the FCFS/SPT method. In this case, there are three machine
types with one machine each, and four parts with a total of twelve operations. For
all the parts, the due date and weight are -1 and 5, respectively, and there is no part
earliness penalty. Operation processing times and required machine types are listed
in Table 2a, and the time horizon is 30. Testing results are summarized in Tables
2b and 2c.

Table 2a. Input Data for Case 2 (γ = 0.5)

Part Operation 0 Operation 1 Operation 2

(Processing time/Machine type)

part 0 4/0 3/1 2/2

part 1 1/1 4/0 4/2

part 2 3/2 2/1 3/0

part 3 3/1 3/2 1/0

Since all the weights are integer, the cost of a feasible schedule should also
be an integer. With the lower bound 2374.7 and feasible cost 2375 obtained by
LR/BDP/ICG, the schedule obtained must thus be optimal. It can also be seen
from Table 2b that the LR/BDP/ICG method significantly speeds up convergence.

Table 2b. Testing Results for Case 2

Method Iteration Dual Cost J Duality Gap CPU Sec.

LR/SG 2000 2179 2375 9.0% 4.0

LR/BDP/ICG 100 2374.7 2375 0.1% 0.1

This case is also tested by using the FCFS/SPT method. In the FCFS/SPT
method, operations are performed according to the FCFS rule. When several oper-
ations come to a machine at the same time, the SPT rule is used to determine the
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sequence of the these operations. The cost of the resulting schedule is 2852, which is
significantly higher than the optimal feasible cost (=2375). The schedule obtained
by FCFS/SPT as well as the optimal schedule is presented in Table 2c.

The following two cases draw data from industries, and are tested by using the
LR/BDP/ICG method. The purpose is to demonstrate that the method is applicable
for solving practical scheduling problems. A few performance metrics as well as the
feasible costs at some iterations are evaluated to measure the schedule quality. The
metrics are defined below.

Makespan : the duration of time for processing all the parts.

Maximum work-in-process inventory: the maximum number of parts in process-
ing at a time unit.

Average work-in-process inventory: the average number of parts in processing
over the makespan.

Average lead time: the average elapse time between part beginning and com-
pletion times for all parts

Table 2c. Feasible Schedules for Case 2

LR/BDP/ICG FCFS/SPT

(i, j) h bij cij bij cij

(0, 0) 0 0 3 0 3

(0, 1) 1 4 6 6 8

(0, 2) 2 7 8 12 13

(1, 0) 1 3 3 0 0

(1, 1) 0 4 7 4 7

(1, 2) 2 9 12 8 11

(2, 0) 2 0 2 0 2

(2, 1) 1 7 8 4 5

(2, 2) 0 9 11 9 11

(3, 0) 1 0 2 1 3

(3, 1) 2 3 5 4 6

(3, 2) 0 8 8 8 8

Case 3:
This case is to show that the method selects machine types for individual opera-

tions as well as their beginning times. In this case, there are eleven machine types
with a total of 16 machines and 18 parts with various due dates and weights. A part
may have up to 17 operations, and the total number of operations is 159. An oper-
ation may be performed on one of up to four different machine types. With a time
horizon 1086, the testing results are summarized in Table 3a, and the performance
metrics in Table 3b .

Table 3a. Testing Results for Case 3 (γ = 0.1)
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Iteration Dual Cost J Duality Gap CPU Sec.

1 19339 86988 350% 0.7

200 37394 40715 8.9% 128

400 37456 40170 7.2% 261

Table 3b. Performance Metrics

Iteration 1 200 400

Makespan 782 544 546

Maximum work-in-process inventory 18 16 16

Average work-in-process inventory 8.16 8.20 8.09

Average lead time 354 247 245

It can be seen that both the lower bound and feasible schedule keep on improving
as the number of iterations increases. It is also shown in Table 3b that the sched-
ule obtained at iteration 400 has better performance than the schedule at iteration 1.

Case 4:
This case is to demonstrate the capability of the LR/BDP/ICG method for

scheduling problems with large sizes. In this case, there are eight machine types
with a total of 14 machines. Each machine type has one or two identical machines.
A total of 82 parts with various due dates and weights are scheduled over a time
horizon of 2068. A part may have up to 17 operations, and the total number of
operations for all parts is 752. An operation can be performed on a specific machine
type. Testing results are summarized in Table 4a, and the performance metrics in
Table 4b.

Table 4a. Testing Results for Case 4 (γ = 0.1)

Iteration Dual J Duality Gap CPU Sec.

1 84.5 46487 54914% 3

200 28837 38843 34.7% 542

400 29921 37161 24.0% 1086

The results in Tables 4a and 4b show the iterative improvement of the LR/BDP/ICG
method on dual costs, feasible costs and performance metrics.

Table 4b. Performance Metrics of Feasible Schedule

Iteration 1 200 400

Makespan 1049 1050 1047

Maximum work-in-process inventory 42 30 32

Average work-in-process inventory 22.3 15.4 16.8

Average lead time 322 219 240

From the results of cases 3 and 4, it can be seen that significant improvement on
the schedule quality and lower bound is obtained in the first 200 iterations. The
improvement slows down from iteration 200 to 400. It is thus not needed to run the
algorithm for a long time to get high quality schedules.
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As mentioned above, the computation complexity of the BDP algorithm for solving
part subproblems is O(K

∑Ji
j=1 |Hij|). It is observed from testing that the resolution

of subproblems takes most of the CPU time in LR/BDP/ICG. The complexity of
the LR/BDP/ICG algorithm is thus dominated by BDP. As shown in Table 5, the
computation time for 200 iterations increases almost linearly with K

∑Ji
j=1 |Hij|.

Table 5. Computation Time Analysis for Cases 3 and 4

Case
∑Ji

j=1
|Hij | K K

∑Ji

j=1
|Hij | (x103) CPU sec./200 iter.

3 269 1086 292 128

4 752 (269x2.8) 2068 (1086x1.9) 1555 (292x5.3) 542 (128x4.2)

Lagrange multipliers reflect the “price” information for using machines. In day-
to-day scheduling, the multipliers associated with the previous schedule can initialze
the algorithm to generate a new schedule. Since the production in a job shop may not
change much from day to day, the computation time for finding a good schedule will
decrease vastly (roughly by 2/3 according to testing experience) with initialization
procedure.

5. Conclusions

In this paper, near-optimal solution methodologies for job shop scheduling are
examined, and many insights are provided on a few selected methods for solving sub-
problems and for updating multipliers. A new algorithm is presented that combines
backward dynamic programming for solving low level subproblems and interleaved
conjugate gradient method for solving the high level problem. The new method
significantly improves algorithm convergence and solution quality. Numerical test-
ing for practical data sets shows that the LR/BDP/ICG method can generate high
quality schedules in a timely fashion, and it is practical for job shop scheduling in
industries.
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