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Selecting Input Factors for Clusters of Gaussian
Radial Basis Function Networks to Improve
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Abstract—In a deregulated power market, bidding decisions
rely on good market clearing price prediction. One of the common
forecasting methods is Gaussian radial basis function (GRBF)
networks that approximate input–output relationships by building
localized Gaussian functions (clusters). Currently, a cluster uses
all the input factors. Certain input factors, however, may not
be significant and should be deleted because they mislead local
learning and result in poor predictions. Existing pruning methods
for neural networks examine the significance of connections
between neurons, and are not applicable to deleting center and
standard deviation parameters in a GRBF network since those pa-
rameters bear no sense of significance of connection. In this paper,
the inverses of standard deviations are found to capture a sense
of connection, and based on this finding, a new training method
to identify and eliminate unimportant input factors is developed.
Numerical testing results from two classroom problems and from
New England Market Clearing Price prediction show that the
new training method leads to significantly improved prediction
performance with a smaller number of network parameters.

Index Terms—Market clearing price forecasting, neural net-
works, radial basis function networks.

I. INTRODUCTION

I N NEW England deregulated power markets, participants
such as generation companies submit hourly supply offers

(i.e., energy blocks and associated prices) to a nonprofit organi-
zation, Independent System Operator (ISO). ISO decides hourly
market clearing prices (MCPs) based on supply offers and ac-
tual loads. Good prediction of MCPs can help a participant to
make better effective bidding decisions in a competitive power
market.

Among all existing forecasting methods, radial basis function
(RBF) networks have been widely used [1]–[5], because they
are capable of deducing hidden input–output relationships in
data. For Gaussian RBF (GRBF) networks, the above capability
is inherited from the property that GRBF networks decompose
a function into localized Gaussian functions (clusters) through
which local data features are represented [6], [7]. Such a local
approximation approach has an advantage over the global ap-
proximation approach of multilayer perceptron (MLP) networks
in terms of preventing local data features from fading away.
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However, local clusters in current GRBF networks use the same
the input factors to approximate various data features. There are
unimportant factors existing in some clusters. Unimportant fac-
tors in a cluster will generate unnecessary adjustable parameters
which may result in the situation that a network misrepresents
the underlying trend in data, and hence, has a small training error
with a poor generalization capability. The above situation is the
so-called over-fitting. Presently, the problem is being dealt with
by controlling either the network complexity that is measured
by the number of adjustable network parameters, or a network’s
effective complexity that aims to influence the estimate of net-
work parameters [8]. Controlling approaches are then classified
into regularization-based methods and cluster-driven methods
as will be discussed.

Regularization-based methods were motivated by the ob-
servation that overfitting usually leads to an input–output
mapping function with high curvature over regions where
data are scattered [8]. Regularization-based methods thus
impose the smoothness requirement on a mapping function
by adding penalty terms related to function curvature to an
error function [8]–[11]. Various forms of penalty terms such
as curvature-driven smoothing or weight decay have been
used [8], [11]. Another regularization-based technique that is
different from using penalty terms is to add noise to input data
during the training process [8]. Intuitively speaking, such a
technique prevents a network from fitting an individual data
point precisely to avoid overfitting. The strict mathematical
proof can be shown by applying Taylor expansion to an error
function [8], [12]. Parallel to regularization-based methods,
cluster-driven methods control network complexity by se-
quentially adding or removing clusters. A sequential network
growth algorithm provides a systematic way to add clusters
responding to new data features [13]. The convergence rate of
algorithm is enhanced by applying the extended Kalman filter
(EKF) algorithm to adjust network parameters [14]. Further
generalization improvement is obtained as strategies of cluster
pruning are combined with network growth criteria [15].

The above methods indirectly deal with the over-fitting
problem that is caused by irrelevant or insignificant input fac-
tors in clusters. The direct way to overcome the problem is to
identify and eliminate insignificant input factors in each cluster.
For existing neural network pruning algorithms such asoptimal
brain damage(OBD) andoptimal brain surgeon(OBS), they
examine the significance of connections (weights) between
neurons [8], [11]. For a connection, the OBS approximately
evaluates an error increase provided that such a connection is
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severed. A diagonal Hessian matrix is assumed in the error
evaluation. The connections with error increases less than a
subjectively selected threshold are then cut off. In contrast,
the OBD uses a nondiagonal Hessian matrix to estimate an
error increase. The adjustment to the remaining weights in
order to minimize the error increase is also provided. However,
the above approaches are not applicable to deleting center
and standard deviation parameters related to input factors in
clusters because those parameters have no sense of connection
strength. The criterion to check whether a parameter has a sense
of connection depends on whether the associated link can be
disconnected if the parameter is set to zero. Center and standard
deviation parameters do not meet the criterion. Up to date, few
papers have addressed the pruning techniques at the cluster
level. In this paper, the inverses of standard deviations are being
used instead to identify insignificant input factors through the
following rationale. The mean of a univariate Gaussian function
can be viewed as a parameter shifting a univariate variable in
the exponent, and the inverse of a standard deviation viewed as
a coefficient weighting the shifted variable. The value of this
coefficient being too small implies insignificance of the shifted
variable. Conversely, the value of the coefficient being too large
leads to the value of such a Gaussian function being close to
zero, and thus, the Gaussian function becomes insignificant.
Therefore, two kinds of insignificant input factors are identified
through using the inverses of standard deviations.

The rest of paper is organized as follows. The fundamental of
GRBF networks is briefly given in Section II. The detail of using
the inverses of standard deviations, and a new two-step training
method to preserve significant input factors in each cluster are
presented in Section III. Testing results in Section IV show that
the presented method leads to a GRBF network with a signifi-
cantly improved prediction performance and a smaller number
of network parameters.

II. GAUSSIAN RADIAL BASIS FUNCTION NETWORKS

A standard Gaussian radial basis function network consists
of three layers of neurons as depicted in Fig. 1. The network in
Fig. 1 has input factors, clusters, and output neurons.
The detailed description of the network structure can be found
in many references, e.g., [8] and [11]. Given an input vector,
the output of the th cluster is

(1)

where is a mean (center) vector, and is an
positive definite, symmetric covariance matrix determining the
receptive area of the cluster. The matrix is selected to be
a diagonal matrix in the paper because conventional data re-
duction techniques can be applied to provide a set of uncorre-
lated input factors to neural networks. As takes the form of

where as a standard
deviation (width) parameter is nonnegative, (1) becomes

(2)

Fig. 1. Architecture of a standard GRBF network.

Fig. 2. Level curves of clusters representing local data features.

where and are components of vectors and ,
respectively. Fig. 2 shows how clusters represent local data and
respond to a new input in a two-dimensional (2-D) input space.

For the th output neuron, its output is a linear combination
of all cluster outputs plus a bias term, that is

(3)

where is a bias term with its associated equal to 1,
is the weight linking the th cluster and the

th output neuron. In this paper, , , and are
three types of adjustable network parameters.

The above parameters need to be initialized prior to training.
Parameters and can be initialized by a clustering
algorithm such as the -mean algorithm [8], [11]. Training is
then to learn the underlying input–output relationship (map-
ping) from a given set of training data

consisting of pairs of an input and the cor-
responding target output . The sequential mode of network
training is conducted by adjusting , , and to
minimize one error function at a time and cycling through
data points, that is

(4)

The above network structure and training method are com-
monly used in current GRBF networks. As mentioned in the
introduction, using the same the input factors in all clusters will
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produce unimportant factors in some clusters. Unimportant fac-
tors generate unnecessary parameters, resulting in the overfit-
ting situation and poor generalization for new input data. There-
fore, a procedure capable of pruning unimportant input factors
in each cluster is needed. The intuitive answer to the need is
to use data reduction techniques such asindependent compo-
nent analysis(ICA) and principle component analysis(PCA).
For neural networks, data reduction techniques play a role of
data preprocessing to provide a set of uncorrelated input factors
by transforming an original set. However, the dimensionality of
this uncorrelated set less than that of the original set is not guar-
anteed. Furthermore, a GRBF network is a collection of local
mapping that relates input data with output data through clus-
ters. Clusters at different locations need not use the same input
factors for various local mapping. (Example 1 and 3 in Sec-
tion IV illustrate this feature.) Therefore, what is needed here
is the technique to prune insignificant factors cluster by cluster
based on local mapping after input factors are entered to net-
works. The ICA or PCA is to provide a set of input factors that
are entered to networks, and hence, it can be a complementary
tool but is not the answer to the need.

III. A NALYSIS OF A CLUSTER

A. Neuron Connections

The key idea of our new training method is to identify
and prune insignificant input factors within each cluster. As
explained in the Introduction, existing pruning methods for
neural networks cannot be applied to delete center or standard
deviation parameters. To have parameters resemble the signifi-
cance of connections, (2) is rewritten as

(5)

The center parameter in the exponent of (5) can be
viewed as a shifting parameter, and the inverse of the standard
deviation parameter viewed as a weighting coefficient
for the connection between the th input factor and the th
cluster. Within this context, it can be argued that if is too
small, such a connection is insignificant. Conversely, if
is too large, the Gaussian function is close to zero for most

, rendering nonfunctional. The above reasoning sug-
gests that we prune input factors within cluster with
small , and in the process, we want to keep from
being too large. The detail of the above idea will be presented
in Sections III-B and C.

B. Analysis on Significance of Neuron Connections

To identify insignificant input factors in a cluster by using
, the output of a cluster in (5) is expressed as the product

of univariate exponential functions, that is

(6)

Fig. 3. Plot ofy versus� (> 0).

These univariate exponential functions correspond to different
input factors but share the same form. Let us analyze one such

function . To visualize how
is affected by , the term in the exponent
of is first fixed. Fig. 3 shows the relationship between y and
nonnegative .

As it can be seen from Fig. 3, when the value of is very
small, is close to one; such a function can be taken out without
affecting in (6). When is very large, is close to zero,
implying that does not contribute to any network output and
is nonfunctional.

From a different perspective, when is very small, that
is, is very large, it implies a wide and flat receptive
field that contains no valuable information. When is
very large, that is, is very small, it suggests a sharp and
narrow receptive field that cannot capture information beyond
a very small neighborhood around the function’s center.

C. Two-Step Training Method

As analyzed in Section III-B, the value of is not desired
to be too small or too large. However, to draw the line between
normal values versus too small or large values is rather subjec-
tive. A new two-stage training method is developed to resolve
this difficulty. The procedure first restricts from being too
large by having a penalty term on . Hypothesis testing is
then performed to examine whether is too small to be sta-
tistically significant.

To implement the above idea, the error function in (4) is aug-
mented with weighted penalty terms on to regulate
them from being too large, that is

(7)
where the second term in (7) is the sum of squared from
all clusters, and is a weighting coefficient. As is zero, a
neural network is completely determined by the squared error
term. On the contrary, as goes infinite, the weighted penalty
terms dominantly determine a network. Bounded by this range,
the value of is empirically selected to reduce the training error
as much as possible. By minimizing (7), the value of
tends to be not too large.

Second, input factors with very small values of need
to be identified and pruned in clusters after minimization. A
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simple way is to set a threshold. If the value of is less than
the threshold, the associated input factor is eliminated. How-
ever, selecting such a threshold is rather subjective. Statistical
hypothesis testing is therefore adopted with the following two
hypotheses

: the mean of equals zero;
: the mean of does not equal zero.

The required statistics for the above hypothesis testing are the
sample mean and sample variance of that are obtained
from runs of Monte Carlo simulation by perturbing input or
output of the training data set D. If is not large and the sample
variance is used in the testing, then the sample mean of
has a student’s distribution [16].

For each simulation run, a zero-mean Gaussian noise is added
to the input or output of the training data set D. Through mini-
mizing in (7), the estimate of can be obtained. The

sample mean and sample variance of for

Monte Carlo runs are obtained by

(8)

and

(9)

With the above statistics, hypothesis is accepted with
probability if and only if the following holds:

(10)

where is the value that the probability ofnot greater than
is in a student’s distribution with degrees

of freedom [16]. The acceptance of implies that the input
factor associated with this is statistically insignificant;
otherwise, the input factor is statistically significant. Once an
input factor in a cluster is considered insignificant, it is elim-
inated from the cluster by setting the value of the associated

to zero.
As mentioned previously, few papers have addressed the

pruning techniques at the cluster level. In [17], input factors of
clusters are examined and pruned one by one with the criterion
that the mean square error is not increased. Two distinct
differences between the techniques in [17] and this paper are as
follows. First, the technique in [17] performs exhaustive search
for the input factors to be pruned. The technique in this paper
uses the result of hypotheses testing with statistical meanings.
Second, clusters with common variances are used in [17] such
that the remaining input factors in clusters are treated equally.
In contrast, clusters with covariance matrices are used in this
paper. Because of the reciprocals of standard deviations, the
remaining input factors are treated differently to reflect various
effects on a cluster output.

IV. RESULTS AND INSIGHTS

In this section, three examples tested on a computer with
an AMD-850-MHz Duron processor are presented to show the
key features of a GRBF network that uses the new training

TABLE I
RESULTS OFTWO GRBF NETWORKS

Symbolsc and� represent the center and standard deviation of a Gaussian
function, respectively.

method. The first example is a function-learning problem to
demonstrate the prediction improvement from the elimination
of insignificant input factors in clusters. The second example
shows GRBF networks’ capability of preserving local data fea-
tures. The third example is a practical application of predicting
average on-peak-hour MCPs for New England power markets.
In three examples, the number of Monte Carlo simulation runs is
10 with target output perturbed by a zero-mean Gaussian noise,
and the corresponding to 95% confidence from the table of a
student’s distribution is about 2.27. The data were all normal-
ized to be in .

Example 1: The improved and conventional GRBF networks
were applied to learn a nonlinear function comprised of a linear
combination of two Gaussian functions plus a constant term

where

and

Network input factors are , and . An irrelevant factor
that is not used at all in and serves as an insignificant

factor. There are 500 data points uniformly sampled in
for , for , and for . Out of these 500 data
points, 416 entries were uniformly picked to form a training set.
The remaining 84 entries constitute a prediction set. Since the
entries in training and prediction sets were uniformly sampled
and picked, network training and prediction errors are expected
to be similar if a network does not overfit the training data.

To underline the pruning effect, both networks use two clus-
ters. The results are summarized in Table I. The actual centers
and variances of Gaussian functionsand are in the column
A. The column B lists the corresponding values of the improved
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Fig. 4. (a) shows a 2-D contour plot of 2-chusteredy. (b) and (c) show 1-D
function plots ofy (the solid curve) and the improved GRBF network (stars)
alongx while x is at 4 and alongx while x is at 4, respectively.

GRBF network, and the column C contains the result of the con-
ventional GRBF network. From the table, it is clear that the im-
proved network eliminates from function , and as well
as from because the values of associated’s are infinite.
Furthermore, the mean absolute error (MAE) and mean abso-
lute percentage error (MAPE) of prediction for the improved
network are close to the training MAE and MAPE, respectively.
However, for the conventional network, its prediction MAE is
about twice as large as its training MAE, indicating the occur-
rence of overfitting training data. As for training times, the con-
ventional network requires 27 s while the improved one needs
113 s.

Fig. 4 shows function and the learning result of the im-
proved GRBF network. The contour ofis plotted in (a) to illus-
trate two clusters located at and . Fig-
ures (b) and (c) are 1-D function plots alongand . As it can
be seen from (b) and (c), the learning result of the improved net-
work is matched to except the region around .

Example 2: The training and prediction sets of Example 1
were used in this example. Ten data points that were uniformly
sampled in , for , [7], [8] for , and for
to represent a new data feature are around the center of a new
function

and those points are far from any entry in the above training and
prediction sets. To show the capability of the improved GRBF
network in preventing local data features from fading away, five
points out of ten new data points were added to the beginning
of the training set, and the remaining five points were added to
the end of the prediction set. Thus, a new nonlinear function to
be learned is

TABLE II
RESULTS OFIMPROVED GRBFAND MLP NETWORKS

Fig. 5. (a) shows a 2-D contour plot of 3-clusteredy . (b) and (c) show 1-D
function plots ofy (the solid curve) and the improved GRBF network (stars)
alongx while x is at 4 and alongx while x is at 4, respectively.

The improved GRBF network and an MLP network ([8] and
[11]) were applied to learn this three-clustered function.

The summary of results is tabulated in Table II. The column
B shows that the MAE and MAPE of the MLP network with
nine hidden neurons are 0.028 and 1.42%, respectively. In ad-
dition, the training time is 161 seconds. Actually, the MLP net-
work can reach 0.86% of the training MAPE without new data
points. From the testing cases where the number of hidden neu-
rons varies, one common thing found in those cases is that MLP
networks have a difficulty in learning the characteristic of scarce
new data and a slow convergence. This is mainly because MLP
networks are global approximators, and tend to capture the re-
lationship that the majority of data contain.

The prediction MAE and MAPE of the improved GRBF net-
work with three clusters are 0.02 and 0.97% in the column A.
Compared to the MAE and MAPE of the improved GRBF net-
work in Example 1, those of the improved GRBF network are
larger. The reason can be found in Fig. 5 that has a contour plot
of , and 1-D function plots of and the learning result of
the improved GRBF network. From (b) and (c), they clearly
show that learning in the regions around and

is not perfect and hence leads to larger prediction errors
for data points in those regions. The region is where
scarce new data points are located.
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Fig. 6. Plot of the last 30 predictions of MLP network (circles) and improved
GRBF network (stars) versus functiony (the solid curve).

Fig. 6 is a graph of predictions of both networks, and two
things are clearly shown. First, the improved GRBF has larger
errors on the last several predictions that are for new data points.
As explained earlier, the reason is that the improved network
did learn but not perfectly learn the relationship of new data
points. Second, the MLP network has a difficulty in predicting
for scarce new data points, which is shown from the fact that its
predictions are not matched to the curve of.

Checking training errors of individual data points indicates
that the MLP network did not learn at all for scarce new data
points during training. Compared to the MLP network, the im-
proved GRBF network obviously tries to preserve the feature of
scarce data points by one of clusters even after a long period of
updating and prediction.

Example 3: The MLP, conventional GRBF, and improved
GRBF networks were applied to predict average on-peak-hour
MCP’s (i.e., the average of MCP’s from hour eight to hour
23) for New England power markets. Forecasting average
on-peak-hour MCPs is critical because power energy for daily
on-peak hours often is transacted in the form of 16-h energy
blocks. The training period is from May 1, 1999 to June 30,
2000 and the prediction period from July 1, 2000 to June 30,
2001. According to the best prediction results obtained, the
conventional GRBF network uses 23 input factors and six
clusters, and the MLP network uses 45 input factors and eight
hidden neurons [18]. To demonstrate the effectiveness of the
new training method, the improved GRBF network also uses
six clusters and the same 23 input factors that the conventional
network uses. Therefore, tunable parameters are 23 pairs of
center and width parameters in each cluster, six weighting
coefficients connecting six clusters to an output neuron, and
one bias term. The network training is stopped as either of the
following criteria is met. One criterion is that the given number
of iterations is reached, and the other is that the decrease of
training MAPE is less than 0.01%.

The results are summarized in three tables. Table III has the
number of parameters used in each network, and the input fac-

TABLE III
COMPARISON OF THENUMBER OF PARAMETERS

TABLE IV
COMPARISON OFINPUT FACTORSBEFORE ANDAFTER PRUNING

tors used in improved GRBF clusters before and after pruning
are listed in Table IV. The prediction performance of networks
is in Table V.

Table III shows that the improved network uses only 243 pa-
rameters after training. In contrast, the conventional network
uses 283 parameters. The number of network parameters is re-
duced by more than 14%. For the MLP network, its number
of parameters is 55% more than that of the improved network.
Table IV records the input factors used in the improved GRBF
clusters before and after pruning. For instance, cluster 1 after
pruning has no following input factors: week day index, tem-
peratures, 2 and 7-day-lagged load (i.e., and ), and
current as well as 7-day-lagged oil prices (i.e.,and ). Ob-
viously, clusters use different combinations of input factors, and
none of them use the same set of input factors.

The benefit of elimination of unimportant input factors can be
seen from Table V. The prediction summary of the MLP network
is in the column A with 12.2% of the overall MAPE, and the re-
sults of the conventional and improved GRBF networks are in
the column B with 17.5% and in the column C with 11.9% of
the overall MAPE, respectively. The overall MAPE of the im-
proved network is better than that of the conventional network
by 32% in terms of percentages. Even compared to the MLP
network with a high number of parameters, the overall predic-
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TABLE V
PREDICTION PERFORMANCE OFNEURAL NETWORKS

tion performance of the improved network is still better than
that of the MLP network. The only expense for the improved
GRBF network is that it requires more training time than the
conventional one due to performing the Monte Carlo simula-
tion. Thanks to the advance of CPU speeds, the training time
of the improved network takes only about 5 min. Once network
training is finished, the improved network makes predictions as
quickly as the conventional one. Except the training time and
the use of hypotheses testing, there is not much difference be-
tween the conventional and improved GRBF networks in terms
of the algorithm complexity, since one uses the standard devia-
tions and the other uses the inverses of them.

One more thing is worth being noted. From Table V, there are
five months that the MLP network outperforms the improved
GRBF network. Out of these five months, the only ones that the
MAPE difference between the MLP and improved networks is
more than 2% are February 2001 with 5.45%, and June 2001
with 2.52%. The reason why the improved GRBF network has
higher errors in both months is that existing six clusters do not
properly capture the characteristic of data points in the first half
of February and part of data points in June. Consequently, the
network overshot predictions. Therefore, a new cluster needs
to be added to the improved network. The following is how a
new cluster was added to the improved GRBF network in this
example. Triggered by the event that larger prediction errors oc-
curred on consecutive days around the beginning of February, a
GRBF network with only one cluster was trained based on the
data points of those days. The setting of the number of consec-
utive days is case-dependent, and is six in this example. The
newly obtained cluster was then added to the existing improved
GRBF network, and the whole network was retrained based on
the data up to the beginning of February. This new network con-
tinues predictions for the remaining days in February and the re-
maining months. Because of the new cluster, the degree of over-
estimates is significantly reduced. As shown from the column

D of Table IV, the prediction MAPE is reduced from 16.3% to
11.4% in February and from 16% to 12.5% in June. Beside the
improvement in February and June, the overall MAPE is also
improved to be 11.4% decreased from 11.9%.

V. CONCLUSIONS

Input factors that are not important to a cluster in a GRBF
network should be deleted since they will mislead local learning
and result in poor generalization. In this paper, the inverses of
standard deviations are found to capture a sense of connection
in clusters, and a new training method based on the inverses of
standard deviations to identify and eliminate unimportant input
factors is developed. Numerical testing shows that the method
prunes unimportant input factors, and hence significantly im-
proves prediction performance.
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