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Improving Market Clearing Price Prediction by Using
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Abstract—Predicting market clearing prices is an important
but difficult task, and neural networks have been widely used.
A single neural network, however, may misrepresent part of the
input-output data mapping that could have been correctly repre-
sented by different networks. The use of a “committee machine”
composed of multiple networks can in principle alleviate such a
difficulty. A major challenge for using a committee machine is to
properly combine predictions from multiple networks, since the
performance of individual networks is input dependent due to
mapping misrepresentation. This paper presents a new method in
which weighting coefficients for combining network predictions
are the probabilities that individual networks capture the true
input-output relationship at that prediction instant. Testing of the
New England market cleaning prices demonstrates that the new
method performs better than individual networks, and better than
committee machines using current ensemble-averaging methods.

Index Terms—Committee machines, energy price forecasting,
multiple model approach, neural networks.

I. INTRODUCTION

NEURAL NETWORKS have been widely used in many
forecasting problems, including load and market clearing

price (MCP) predictions for power systems [1]–[3]. The main
reason for their success is that they are capable of inferring
hidden relationship (mapping) in data. Such a regression capa-
bility comes from the proved property that radial basis function
(RBF) and multi-layer perceptron (MLP) networks in theory are
universal approximators, and can approximate any continuous
function to any degree of accuracy given a sufficient number
of hidden neurons [4], [5]. However, in view of reasons such as
insufficient input-output data points or too many tunable param-
eters, in reality a single network often misrepresents part of the
nonlinear input-output relationship which could have been more
appropriately represented by different neural networks. For ex-
ample, RBF networks are effective in exploiting local data char-
acteristics, while MLP networks are good at capturing global
data trends [6]. Therefore, a committee machine composed of
multiple neural networks can in principle alleviate the misrep-
resentation of input-output data relationship suffered by a single
network.

There are two major approaches to obtain predictions for a
committee machine. The first approach selects one prediction
out of multiple network predictions. For example, the input
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Fig. 1. Schematic of an ensemble-averaging committee machine with network
predictions ŷ and weighting coefficients a .

space of mixtures of experts is divided into several regions
(subspaces) to which different neural networks are assigned. A
gating network decides which network prediction will be se-
lected based on input data [6]. In contrast, the second approach
combines predictions of multiple networks. A well-known
method is the ensemble-averaging method as depicted in Fig. 1
where predictions of neural networks are linearly combined
based on a straight average or the statistics of historical predic-
tion errors [7]–[9].

The neural networks in Fig. 1 may be of different kinds, or of
the same kind but with different configurations (e.g., different
numbers of neurons), or identical but trained with different ini-
tial conditions. These networks are trained, perform predictions,
and then are updated in a way as if they were stand-alone. A
“weight calculator” generates weighting coefficients by which
individual predictions are linearly combined in a “combiner.” In
view that a neural network may misrepresent certain portions of
the nonlinear input-output relationship, its prediction accuracy
may not be constant. This is evident from MCP prediction re-
sults by using RBF and MLP networks in [1] that one network
does not always outperform the other. Consequently, combining
network predictions is not straightforward. The weighting coef-
ficients of the ensemble-averaging method can reflect the overall
historical prediction performance, but do not exploit the infor-
mation contained in the current input data. The use of the cur-
rent input data, however, is important because it could be uti-
lized to infer which networks would provide good predictions.
It is therefore clear that the ensemble-averaging method does
not make the best use of all the available information, and small
weights could be assigned to good predictions and large ones to
poor predictions, resulting in the poor prediction performance
for a committee machine. The purpose of this paper is to present
a new method that exploits the current input data and the histor-
ical data to calculate weighting coefficients in a weight calcu-
lator for a better prediction combination.

Our key idea to exploit the current input data is to estimate
the quality of a prediction, that is, the prediction variance that
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is conditioned on the current input and the historical data. Al-
though for a standard Kalman filter with linear dynamics and
Gaussian noises, predication variances are independent of input
and can be pre-computed offline, neural networks are nonlinear,
and prediction variances depend on the current input [9], [10].
Incorporating prediction variances can obtain better weighting
coefficients than not using it.

For the completeness of presentation, prediction covariance
matrices that will be used for the rest of the paper are briefly
derived in Section II for the cases with multiple outputs based
on [10]. A forecasting problem using a committee machine as
the one shown in Fig. 1 is formulated in Section III where the
inadequacy of individual networks due to the misrepresentation
of input-output data relationship is first illustrated. Under the
Multiple Model (MM) framework [11], it is assumed that the
true relationship of any input-output data point follows one of
the mappings of multiple networks.

Based on the above formulation, a Bayesian inference-based
method to calculate weighting coefficients considering the pre-
diction qualities of networks is presented in Section IV. In our
method, a weighting coefficient is shown to be evaluated by the
probability that the true input-output relationship at the next pre-
diction instant will follow a specific network mapping. The eval-
uation involves the combination of mode probabilities and the
prediction qualities (that is, prediction covariance matrices) of
individual networks where in our method a mode probability
is the probability that the true input-output relationship at the
current instant follows a specific mapping, and the prediction
qualities are used to assess the transition possibility that the true
input-output relationship switches from one mapping to another
between the current instant and the next prediction instant. In
Section V, numerical testing on a simple problem and the MCP
prediction using the data from New England power markets
demonstrates the advantage of combining multiple networks.
Furthermore, the result of the MCP prediction shows that the
new method has a better prediction performance than individual
networks, and committee machines using current ensemble-av-
eraging methods.

II. PREDICTION COVARIANCE MATRIX

As mentioned in the Introduction, the quality of a predic-
tion is measured by the associated prediction variance. For a
multi-output network, the prediction quality is contained in a
prediction covariance matrix. The formula for a prediction co-
variance matrix will be briefly derived in this section. Since the
derivation for a single network output is well described in [10],
the following derivation for multiple outputs is extended from
it. Consider a forecasting problem with a historical input-output
data set where is a set of
noisy inputs and is the corresponding set
of noisy target outputs. The dimensions of and

are and , respectively. A noisy input
is related to the associated noiseless input by

(1)

where is input noise. To make the analytical estimate pos-
sible, is assumed to be independent, identically distributed

(i.i.d.), zero-mean, normal, and with a covariance matrix .
Furthermore, is assumed to be a deterministic function of
with additive noise

(2)

Similarly, is assumed to be i.i.d., zero-mean, normal, and with
a covariance matrix .

Given a new noisy input and , the conditional
distribution of a new target output can be written as

(3)

where the new noiseless input is related to by
(1). The distribution can be written in terms of the
marginal distribution

(4)

Given that a neural network can model the true input-output data
relationship, in (2) is undertaken by a network output

where is a set of network weights. Therefore, the
first term on the right-hand side of (4) is

(5)

The term in (5) can be linearized around . Similar to
the derivation in [10] with the replacement of scalars and vec-
tors by vectors and matrices, respectively, and with the normal
prior assumption for neural weights that encourages a smooth
network mapping and is equivalent to a weight-decay regular-
izer, it can be shown by taking the linearized network output,
the Bayes’ rule, and the integral over that

(6)

where

(7)

(8)

(9)

(10)

The first exponential function in (6) results from the new input
and the second one from the historical data . The term

is the sum-of-squares error function with a regularization
term, and the most probable weight vector, , is obtained by
minimizing . Minimizing is the very step of network
training.

To make the integral over the weight vector analytically
tractable in (6), the first and second order Taylor expansions
are applied to and , respectively. The expansions
are performed around and lead to

(11)

(12)
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where

(13)

(14)

The first-order term in (12) vanishes because the gradient of
at is zero. Substituting (11) and (12) into (6) and

evaluating the integral gives the conditional probability distri-
bution function of as

(15)

where the mean and covariance matrix of this distribution func-
tion are and , respectively, and is

(16)

The above covariance matrix has three components. The first
component comes from output noise, the second one is related
to weight uncertainties, and the third one is due to input uncer-
tainties. Furthermore, (15) is the estimate of by using
a neural network, and in (15) is actually the network
prediction, and is the prediction covariance matrix or the co-
variance matrix of estimated prediction errors. If a different net-
work is used, and in (15) will be changed accord-
ingly.

III. PROBLEM ILLUSTRATION AND FORMULATION

In this section, the inadequacy of individual networks due
to the misrepresentation of part of input-output data relation-
ship is first illustrated, and then the formulation of a forecasting
problem using a committee machine is presented. The following
example illustrates that RBF and MLP neural networks ([6] and
[9]) misrepresent part of the input-output data relationship.

A. Problem Illustration

A nonlinear function is composed of three Gaussian func-
tions, a constant term, and an output noise

where

An RBF network and an MLP network were trained with input
and output . There were 40 input-output data points with

sampled in [0, 16]. To make network learning for some segments
of the relationship more difficult, no data point was generated
in [16, 19], and five data points far from the centers of and

were generated with uniformly distributed in [19, 21] to
contain the relationship of . These 45 data points formed the
training set.

According to the best training results obtained, the RBF
network with three clusters and the MLP network with seven

TABLE I
TRAINING RESULTS OF RBF AND MLP NETWORKS

Fig. 2. Plot of function y (the solid curve), the RBF network mapping (stars),
and the MLP network mapping (circles).

hidden neurons were used. As summarized in Table I, the RBF
network has 0.039 of mean absolute error (MAE) and 2.26%
of mean absolute percentage error (MAPE). In contrast, the
MAE and MAPE of the MLP network are 0.048% and 2.73%,
respectively.

To further examine network learning, the mappings of these
two trained networks are plotted in Fig. 2 with 16 points uni-
formly sampled in [0, 21]. Fig. 2 clearly shows that for the first
region in [0, 16] where there are 40 sampled data points, the
RBF mapping overshoots around the segment where
the MLP network learns better. For the second region with in
[16, 19] where no training data points reside, the mappings of
both networks are not good because there are no training data
points available for the MLP and RBF networks to learn this
portion of the relationship. In the third region, with in [19,
21], where there are five data points, the MLP network does not
capture the relationship around , where function is
centered at. The MLP mapping around has an upward
trend and, however, the actual function reverses the rise right
after . This is because the MLP network tends to capture
the relationship that the majority of data contain, and five out
of 45 training data points are not sufficient to learn the relation-
ship of . In contrast, the RBF mapping around has a
downward trend better matching the actual function since this
part of the relationship is captured by one of the clusters. Gen-
erally speaking, these two network mappings complement each
other around and .
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B. Problem Formulation

The inadequacy of a single network can be overcome by using
multiple networks. Such a concept has been established in the
MM approach [11]. For example, in tracking aircraft, a flight is
modeled by a finite number of models with parameters repre-
senting selected flying modes. The MM approach assumes that
the aircraft follows one of the models at any time instant, and
the model results are combined based on radar signals to effec-
tively track the aircraft. The analogy to a forecasting problem
using multiple networks is as follows. The true relationship of
any input-output data point is assumed to follow one of the map-
pings of multiple networks, and network predictions are linearly
combined to form the outputs of a committee machine. With
such an analogy, a forecasting problem using a committee ma-
chine that consists of neural networks can be formulated in the
following way. Consider a committee machine consisting of
neural networks that are trained, updated, and predict in a way
as if they were stand-alone. Given a new input and the his-
torical input-output data set , each of these networks gener-
ates an estimated distribution for a new target at time .
The estimated distribution is described by (15) where the mean
and covariance matrix of the distribution are the network predic-
tion and prediction covariance matrix, respectively. The output

of a committee machine at time is obtained
by a weighted combination of individual network predictions

, that is

(17)

where are weighting coefficients. The objective is
to determine weighting coefficients with the consideration of
the prediction qualities of individual networks, i.e., prediction
covariance matrices.

IV. SOLUTION METHODOLOGY

A. The Bayesian Framework

Since the main interest is to predict a new target output at the
next instant and that is a vector-valued random variable, it
is typical to estimate the probability distribution function (PDF)
of given a new input and . In Section II, the conditional
PDF of estimated by a neural network has been derived. Given
that the true relationship of any input-output data point follows
one of network mappings, the true conditional PDF of is fur-
ther assumed to be approximated by a linear combination of the
estimated conditional PDFs of generated by networks. The
latter assumption is similar to one suboptimal technique in the
MM approach, the generalized pseudo-Bayesian of first order
method that only considers possible modes at the latest instant
to avoid the exponentially increasing number of filters required
for an optimal estimate [11]. The mathematical derivation is de-
tailed next.

According to the above, the true distribution of given and
, can be suboptimally decomposed in terms of

estimated PDFs by using the total probability theorem as

(18)

where denotes the event that at time the mapping
of network is the true input-output relationship, and

is the probability that the true relationship
at time will follow the mapping of network given
and . The condition automatically holds.
The term is the estimate of
by network and has been derived as in (15) with
and replaced by the prediction and the prediction
covariance matrix , respectively. Based on (15) and
(18), the conditional mean of that meets the
minimum mean square error criterion is a linear combination of

network predictions, i.e.,

(19)

Comparing (17) and (19) shows that the output of a committee
machine would be the conditional mean if

is set equal to . To yield an estimate of
a random variable that meets the minimum mean-square error
criterion, needs to be , which results in

(20)

B. The Determination of Weighting Coefficients

To evaluate , the total probability theorem will be
used. It will be shown later that in our method de-
pends on two types of probabilities: a mode probability that
the true input-output relationship follows a specific mapping at
the current instant, and a mode transition probability describing
the transition possibility that the true input-output relationship
switches from one mapping to another between the current in-
stant and the next prediction instant given the prediction quality
of individual networks.

According to the total probability theorem, is de-
composed as

(21)

Since the event is independent of the new input at time
, the first term on the right-hand side of (21) is rewritten as

(22)
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which is the “mode probability,” i.e., the probability that the true
relationship currently follows the mapping of neural network ,
or network currently is the correct “mode.”

To determine the second term on the right-hand side of (21),
approximation is made that is summarized by network
weights through training, which is similar to the technique used
in the MM approach [11]. Given network weights and a new
input , predictions and prediction covariance matrices of
networks are obtained. In other words, is summarized
by where and

are the prediction and the prediction covariance
matrix of network , respectively. The formula for
has been derived as in (16). As a result

(23)

is the mode transition probability assessing the likelihood that
the true input-output relationship switches from one mapping to
another between two consecutive instants given the prediction
qualities of individual networks, i.e., prediction covariance ma-
trices. Substituting (22) and (23) into (21) gives

(24)

Equation (24) involves pairs of a mode probability and a
mode transition probability, or scenarios that portray the tran-
sitions from possible at the current
instant to at the next prediction instant. For each
scenario where one specific mapping at the current moment is
assumed to be true with a certain probability, prediction qual-
ities are used to evaluate the transition possibility from such a
specific mapping to the mapping of network . The weight cal-
culator combines the evaluation of these scenarios to deter-
mine a weighting coefficient. Since these scenarios are the pos-
tulations considered by the weight calculator for the purpose of
calculating a weighting coefficient, they do not change the way
neural networks operate. The following subsections detail the
evaluation of a mode probability and a mode transition prob-
ability. The formula of a mode probability can be derived by
using the Bayes’ rule while a mode transition probability is de-
termined through solving a quadratic optimization problem.

1) Mode Probability Evaluation: To evaluate a mode prob-
ability, in (22) is rewritten by using the Bayes’ rule as

(25)

where is the likelihood func-
tion of the mapping of network , and is a normalization con-
stant that equals to maintain

. According to (20) and (24),
can be expressed as

(26)

where is the output of network , and is the
associated covariance matrix. The second term in the pair of
braces in (26) is again a mode transition probability. Combining
(25) and (26) gives as

(27)

2) Mode Transition Probability Evaluation: Mode tran-
sition probabilities appear twice in the above derivation:
one in (24) and the other in (27). For a particular pair of

in (24) represents the mode transition probability from
at to at given prediction covariance matrices
of individual networks. As mentioned earlier, a network learns
the input-output relationship from data. Given conditioning on
the postulated scenario that is in the mapping
of network , the weights of network are updated by
while those of other networks are not. There are postulated
scenarios because index of goes from 1 to , meaning
that every network is conditioned on once. As a result, two
versions of optimal weight vectors for each network at any time
instant are required: for the scenario that at
time is in the mapping of network , and for the
scenarios that is in other mappings than the mapping of
network . These two versions of weight vectors lead to two sets
of predictions and prediction covariance matrices that are used
depending on scenarios. The next paragraph will explain how
to utilize the current network updating and prediction process
to obtain two versions of optimal weight vectors, predictions
and prediction covariance matrices.

Fig. 3 depicts one cycle of the network updating and predic-
tion process added with an additional step to yield
that generates another set of predictions and prediction co-
variance matrices. For neural network 1 (NN1), is
obtained after is updated by . In con-
trast, directly comes from without
updating, reflecting the scenario that the true input-output
relationship at time is not in the mapping of network 1.
Therefore, two sets of predictions and covariance matrices
are obtained for a network by changing versions of weight
vectors: by using and

by using . Thus,
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Fig. 3. One cycle of the revised network updating and prediction process.

due to
conditioning on can be re-written as

(28)

As learned from Section II, the prediction covariance
matrices in (28) also represent the covariance matrices of
estimated prediction errors of individual networks. Thus (28)
is to determine the probability that the mapping of network
will be the true input-output relationship given the covariance
matrices of estimated prediction errors of individual networks.
Evaluating (28) is conducted through solving the following
optimization problem. Given , and

, the linear combina-
tion of network predictions is

(29)

Subtracting both sides of (29) by the actual that is a
random variable leads to the combined prediction error as

(30)

where and
are network prediction errors. To minimize the variance of

, the statistics of individual network prediction errors
at time are required, which is unknown. The only available
information is the statistics of estimated network prediction er-
rors, and hence is used instead, implying that the estimated pre-
diction errors are linearly combined.

From the above discussion, we know that for estimated pre-
diction errors and

, the objective is to find a weighting vector
such that the sum

(31)

is a vector-valued random variable with the minimum variance.
Thus, the optimization problem is

(32)

Using (31), the objective function can be re-written as

...

...

(33)

where is a covariance matrix for estimated prediction er-
rors of all the networks. The term is determined by

, and the correlation coefficients
between estimated prediction errors

of the networks that are given as the prior knowledge1. In the
denotation and are network indices, and and are
network output indices.

The solution to (32) can be obtained by using the
quadratic programming technique. The th component

of , which is the weighting coefficient assigned to
the estimated prediction error of network , is the value of (28),
that is

(34)

Similarly, the solution to the transition probability in (27) can
be denoted as , that is

(35)

3) Weighting Coefficients in a Committee Ma-
chine: Combining (24), (27), (34), and (35), a weighting
coefficient in a committee machine is

(36)

1Correlation coefficients can be obtained by using a finite-sample approxima-
tion [9].
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Fig. 4. Plot of actual values and predictions of the RBF network, the MLP network, and the new method.

Fig. 5. Prediction standard deviation plot of the RBF and MLP networks.

where

(37)

and

(38)

It can be seen from (36) that a weighting coefficient
is the sum effect of transitions from all the possible network
mappings at time to the mapping of network at time .
Furthermore, the prediction qualities of individual networks are
incorporated to determine mode transition probabilities. Equa-
tion (36), (37), and (38) recursively determine weighting co-
efficients. After are initialized to be , where is
the number of neural networks in a committee machine, the re-
cursive sequence starts as follows. First, the mode probabilities
at , are evaluated. Then the weighting coefficients at

are determined by combining with the
mode transition probabilities, .

V. NUMERICAL RESULT AND INSIGHTS

Two examples are presented in this section to show the advan-
tage of a committee machine over individual networks. The first

example is the follow-up to Example 1 to demonstrate the use-
fulness of the prediction variance information. The second ex-
ample is a practical application to predict average on-peak-hour
MCPs in New England power markets2 by using three com-
mittee machines that consist of RBF and MLP networks. The
first one uses the new method, the second one employs a straight
average, and the third one utilizes the statistics of historical pre-
diction errors.

A. Study Case 1

This example shows the utilization of the prediction variance
information for combining network predictions. The training set
in Example 1 serves as the prediction set fed to the trained RBF
and MLP networks of Example 1 in this example. The predic-
tions and prediction standard deviations for both networks in the
segment with are plotted in Figs. 4 and 5, respec-
tively, since the mappings of both networks complement each
other around and .

Fig. 4 shows that the predictions of the RBF and MLP net-
works are rather close except for the areas with in [10, 12]
and [19, 21] where the accuracy of individual predictions of

2New England power markets were restructured eight months ago to follow
the concept of Standard Market Design, and have been using locational mar-
ginal prices since then. However, MCPs are still used in Independent Electricity
Market Operator (IMO) in Ontario.
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TABLE II
WEIGHTING COEFFICIENTS ASSIGNED TO RBF AND MCP PREDICTIONS

both networks is varying. Along with Fig. 5, it is further shown
that the standard deviations of the RBF and MLP network give
helpful signals regarding the prediction qualities of both net-
works in these two areas, which is that better predictions have
smaller standard deviations and poorer predictions have larger
ones. The new method utilizes the prediction variance informa-
tion and the resultant weighting coefficients are listed in Table II.
The grey area in the table has the weighting coefficients for
data points with in [10, 12] and [19, 21], and shows that
proper weightings are assigned to network predictions. There-
fore, making use of the prediction variance information benefits
the prediction combination.

B. Study Case 2

The prediction for daily average on-peak-hour MCPs for New
England power markets was tested in this example. A daily
average on-peak-hour MCP is defined by the price averaging
MCPs from hour 8 to hour 23. Forecasting average on-peak-
hour MCPs is critical because power is often transacted in the
form of 16-hour energy blocks. Available data in this testing in-
cludes MCPs, loads, surplus, temperatures, oil, and gas prices.
The training period is from May 1, 2001 to April 30, 2002 and
the prediction period from May 1, 2002 to October 31, 2002.
According to the best prediction results obtained, the RBF net-
work uses 23 input factors and six clusters, and the MLP net-
work uses 55 input factors and eight hidden neurons. The list
of input factors is shown in Table III, and the target output and
all the input factors except Summer and Winter indices are as-
sumed to have the noise of after the data is nor-
malized. The performance of the new method is compared not
only with that of individual networks, but also with that of the
other two other committee machines. One committee machine
was implemented with the straight-averaging method, and the
other was based on [8], where the correlation matrix to deter-

TABLE III
LIST OF INPUT FACTORS TO THE RBF AND MLP NETWORKS

mine weighting coefficients is re-calculated whenever new pre-
diction errors become available. The prediction results are tab-
ulated in Table IV.

From the table, it can be seen that the overall MAE and MAPE
of the RBF network are 5.46$/MWh and 12.53%, respectively,
in contrast with 6.11$/MWh and 13.40% of the MLP network.
Actually, the MLP network performs better than the RBF net-
work for the first two months, and the RBF network outperforms
the MLP network for the rest of months. For the committee ma-
chines using the new method and the straight average, they both
outperform individual networks. Comparing overall MAPEs,
the new method is better than the RBF and MLP networks by
1.66% and 2.53%, respectively. Comparing overall MAEs, the
new method is better than the RBF and MLP networks by 0.60
and 1.25 $/MWh, respectively. Furthermore, the overall per-
formance of the committee machine using the straight-average
method is better than that of the committee machine based on the
historical prediction performance, and the new method in terms
of the overall MAPE is even better than the straight-averaging
method and the committee machine based on the historical pre-
diction performance by 0.73% and 1.13%, respectively.

Though the new method is better than individual networks,
it as shown from the table did not outperform the MLP and
RBF network in June and September, respectively. From the
examination of the daily prediction performance in June and
September, it shows that improper weighting coefficients for
combining network predictions led to the inferior performance
of the new method. Improper weighting coefficients occurred in
two occasions. The first occasion is that a network with a poorer
prediction has a relatively smaller prediction variance than the
other network. The second occasion is that when the better-
performed model is changed form one network to another, the
new method did not adjust weighting coefficients fast enough
to keep up with the change. Furthermore, both networks con-
currently under-forecasted or over-forecasted prices when the
inferior performance of the new method occurred, which makes
the new method outperforming individual networks harder.

To explain why the new method has a better prediction perfor-
mance than individual networks, Fig. 6 shows the August pre-
dictions of the RBF network, the MLP network, and the new
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TABLE IV
MCP PREDICTION PERFORMANCE COMPARISON

Fig. 6. Prediction plot of the RBF and MLP networks, and the committee machine using the new method in August 2002.

Fig. 7. Standard deviation plot of the RBF and MLP networks in August 2002.

method. Fig. 7 is the plot of the associated standard deviations
of RBF and MLP predictions.

It can be seen from Fig. 6 that the actual prices in August
changed drastically. During that period of time, the predictions
of the RBF and MLP networks were rather distinct. Fig. 7 shows
the prediction standard deviations of both networks which are
interweaved. Utilizing the information of prediction variances,
the new method is able to assign appropriate weighting coeffi-
cients to network predictions for most of days. One more thing
is worth being noted. With the assumption that input and output

noises are i.i.d., zero-mean, and normal, the distribution of a
prediction error estimated by a neural network in Section II is
approximated to be normal. As shown in Fig. 8, the histograms
of the RBF and MLP prediction errors are normal, which means
that the assumption for input and output noises is acceptable.

VI. CONCLUSION

This paper applies a committee machine to a forecasting
problem, and develops a new method under the Multiple Model
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Fig. 8. Histograms of the RBF and MLP prediction errors.

framework to determine weighting coefficients. The weighting
coefficients assigned to networks is shown to be the proba-
bilities that individual networks capture the true input-output
relationship at that prediction instant. The prediction qualities
(that is, prediction covariance matrices) of individual networks
are incorporated into the evaluation of the weighting coeffi-
cients. The testing results show that the new method not only
performs better than the committee machines using current
ensemble-averaging methods but also outperforms individual
neural networks.
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