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A Practical Approach to
Job-Shop Scheduling Problems

Debra J. Hoitomt, Member, IEEE, Peter B. Luh, Senior Member, IEEE, and Krishna R. Pattipati, Senior Member, IEEE

Abstract— Scheduling is one of the most important issues in
the planning and operation of manufacturing systems, but the
generation of consistently good schedules has proven to be ex-
tremely difficult. The problem is that optimal scheduling solutions
involve costly and impractical enumeration procedures, while the
performance of most heuristic techniques is difficult to estimate
and varies considerably from one problem to the next. Recently,
scheduling methodologies based on Lagrangian relaxation have
proven to be computationally efficient and have provided near-
optimal solutions to identical, parallel machine scheduling prob-
lems. In this paper, we explore the use of Lagrangian relaxation to
schedule job shops, which include multiple machine types, generic
precedence constraints, and simple routing considerations. Using
an augmented Lagrangian formulation, the scheduling problem
is decomposed into operation-level subproblems for the selection
of operation beginning times and machine types, with given
multipliers and penalty coefficients. The multipliers and penalty
coefficients are then updated at the high level. The solution
forms the basis of a list-scheduling algorithm that generates a
feasible schedule. A procedure is also developed to evaluate the
quality of this feasible schedule by generating a lower bound
on the optimal cost. Numerical examples are taken from a
representative industrial job shop. High-quality schedules are
efficiently generated every other day over a three-week period,
with costs generally within 4% of their respective lower bounds.
The methodology compares favorably with a knowledge-based
scheduling method used in the shop at the time of the numerical
tests.

I. INTRODUCTION

RANSFER lines have long been established as the
most efficient method of producing goods in a
high-volume/low-variety manufacturing environment. Low-
volume/high-variety and mid-volume/mid-variety manufactur-
ing, however, have always been plagued with difficulties. Lead
times and work-in-process inventories are often excessive, and
machine utilization is generally low. Many of these production
problems are attributable to problems in the scheduling
function: not having the right items when they are needed, not
having equipment available when it is needed, using excess
inventory to “hide” problems, and inflexibility and lack of
responsiveness. In addition, the economic significance of these
problems can be broadly defined. According to Dr. Eugene
Merchant of Metcut Research Associates, Inc., approximately
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A sample process plan.

50-75% of manufactured parts falls into the low volume/high
variety and mid-volume/mid-variety categories and, with the
trend toward variety in products, this percentage is likely to
increase.!

This paper presents a solution methodology for the sched-
uling of job shops, a typical environment for the manufacture
of low-volume/high-variety products. In a job shop, there are
jobs with various levels of importance and due dates to be
processed by many types of machines (grinding, drilling, etc.).
Each job requires a sequence of operations for completion,
and each operation requires a specific type(s) of machine for
a specified duration of time. An operation may begin only
when all its preceding operations have been completed. See
Fig. 1 for a sample job with operations shown according to
its process plan. The process plans are usually different for
different jobs. The capacity of each type of machine is finite
and may be time varying.

Because of the intrinsic difficulties of job-shop scheduling,
optimal scheduling methodologies require expensive and time-

! Metcut Research Associates, Inc., is a Cincinnati based consulting com-

pany. Cook [10] cites Dr. Merchant’s original estimate in 1975, and an update
was provided by Dr. Merchant in April 1989 via personal communication.
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consuming enumeration [24]. Since a job shop may involve
hundreds of machines and thousands of jobs to be scheduled
over a period varying from several months to a few years,
the size of the scheduling problem makes such methodologies
impractical. Thus, there is a pressing need for a practical
scheduling methodology [2]. Our goal, therefore, is not to
obtain the optimal schedule. Rather, we want to obtain a near-
optimal schedule with quantifiable performance and within
reasonable computation time.

This paper addresses the job-shop scheduling problem by
using an augmented Lagrangian relaxation approach. This
method is unique (to the best of our knowledge) for job-
shop scheduling problems, and it displays many advantages
over other approaches. The scheduling problem is decomposed
into operation-level subproblems for the selection of operation
beginning times and machine types, with given multipliers and
penalty coefficients. The multipliers and penalty coefficients
are then updated at the high level. The solution forms the
basis of a list-scheduling algorithm that generates a feasible
schedule. A procedure is also developed to evaluate the quality
of this feasible schedule by generating a lower bound on
the optimal cost. Our method is designed for the practical
generation of schedules in industrial job shops. The use of the
method is dernonstrated by scheduling a bank of numerical
control (NC) machines in an actual job shop over a three-week
period.

The job-shop scheduling problem has been the subject of
intensive investigation for at least 30 years. As such, Section
II is devoted to a description of the various approaches.
An integer programming problem formulation of the job-
shop scheduling problem is then presented in Section III.
Section IV describes the Lagrangian relaxation framework,
the decomposed solution methodology, and the derivation of
a feasible schedule. To evaluate the quality of the schedule,
the second problem formulation is described in Section V.
Finally, numerical results presented in Section VI demonstrate
the potential of the approach to schedule job shops of realistic
sizes.

II. LITERATURE REVIEW

In the scheduling of job shops, the most common method-
ology is materials requirement planning (MRP). However,
MREP is mostly a planning tool and is not really designed for
detailed-level scheduling [36]. In many companies, scheduling
is performed by experienced shop-floor personnel with pencil,
paper, a few graphical aids (such as a Gantt chart) and perhaps
a modern industrial database [17], [29], [36]. Simple dis-
patching rules are often used for solving immediate problems,
such as sequencing at the work-center level [29], [36]. The
result can be scheduling chaos, where completion dates cannot
be predicted and work-in-process (WIP) inventory builds.
Sometimes, even high-level management must chase down
high-priority jobs on the shop floor [2].

Many dispatching rules have been presented and imple-
mented based on due dates, criticality of operations, processing
times, and resource utilization [6]. The “critical ratio,” defined
by one definition as a ratio of remaining processing time

over remaining time to due date, has been very popular
in job shops [17]. More complicated heuristics take into
account some combination of the above factors. For example,
Viviers’ [35] algorithm incorporates three priority classes in
the shortest processing time (SPT) rule. Each job is assigned
an index equal to its processing time plus a value graded to its
priority class. High-priority jobs have low index values and are
processed first according to the SPT rule. Heuristics have been
comparatively evaluated (e.g., [3]). Many artificial intelligence
(AID) approaches [16], [23], [31] also use dispatching rules
or heuristics for scheduling. It is generally very difficult to
evaluate the performance of schedules generated by these
methods. The results may also depend upon the initial ordering
of jobs. This implies that minor changes in jobs and/or resource
availability from one day to the next may result in quite
different schedules.

There has been a great deal of effort concentrated on opti-
mization methodologies. The methods in this category include
dynamic programming [19] and the branch-and-bound method
[12]. These methods require at least partial enumeration of
possible sequences. Because the number of possible sequences
grows exponentially as the problem size increases [24], these
methods become very computation intensive for even small-
sized job shops. Carlier and Pinson [8], for example, solve
for the first time a ten-job, ten-machine job-shop problem
originally posed in a 1963 industrial engineering textbook.
Though this is not a large problem compared to industry
standards, the optimal solution required some 4 h (17982 s)
of CPU time on a PRIME 2655 computer. Additionally, the
schedule will no longer be optimal after the arrival of a new job
or the breakdown of a machine. Regeneration of the schedule
means another excessively long computer run to obtain a new
schedule.

Attempts to bridge the gap between heuristic approaches
and optimization approaches have also been undertaken (e.g.,
Fisher et al. [15], Adams eral. [1}, Luh et al. [27]). In Adams et
al., for example, a heuristic for a job-shop problem was devel-
oped based upon optimally solving single machine sequencing
problems. A criterion for measuring machine busyness was
developed, and the job sequence for the busiest machine (the
bottleneck) was first developed. The job sequence for the next
busiest machine was then determined, and the solution was
fed back into the previously solved machine problem by a
“local reoptimization.” However, schedule evaluation could
only be achieved through “selective enumeration.” Recently,
the Lagrangian relaxation technique has been used to solve
scheduling problems. The method can decompose a problem
into a number of smaller subproblems, which are easier to
solve. It can also provide a tight lower bound on the optimal
cost. Fisher [12] uses the Lagrangian relaxation lower bound
to obtain a more efficient enumeration method for a class
of job-shop scheduling problems. More recently, we have
used the technique to obtain near-optimal solutions (within
one scheduling of parallel, identical machines [20], [27]).
In this paper, we explore the use of Lagrangian relaxation
to schedule job shops that include multiple machine types,
generic precedence constraints, and simple routing consider-
ations.
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The method developed here is an extension of our previous
work on the scheduling of parallel, identical machines for
single-operation jobs [27] and for multioperation jobs with
simple fork/join-type precedence constraints [20]. Although it
is more than likely that these scheduling problems are all NP-
hard, the effort required to find schedules for the different
problem types may vary considerably. In general, prece-
dence constraints complicate the scheduling problem [25].
For example, in [20], a computationally intensive enumeration
procedure was used to handle precedence constraints, a step
not required by the parallel machines scheduling methodology
of [27]. However, the approach of [20] is impractical if a
job has more than three or four operations. In our current
work, a decomposition approach is used to handle prece-
dence constraints, making the approach amenable for jobs
with generic precedence structures. Nonidentical machines and
routing considerations further complicate the problem.

III. PROBLEM FORMULATION

The discrete-time, integer programming formulation devel-
oped here follows the model of [20] and [27]. It has also
been influenced by the work of Bruvold and Evans [7] in
some variable definitions; Norbis and Smith [30] in some
constraint statements; and generally by Everett [11], Fisher
[12], Fisher et al. [14], and Conterno and Ho [9]. First, the
following variables will be defined, where operation j of job
1 is referred to as operation (7, j).

8:jrr Integer variable equal to one if operation (i,7) is

active on machine type h at time k.
b;; Beginning time of operation (i, j).
c;; Completion time of operation (z, 7).
C; Completion time of job i.
D; Due date of job 3.
H Number of machine types.
i Set of machine types capable of performing operation

G, ).

I;; Set of operations of job i immediately following

operation (z, j).
J Objective function to be optimized.
K Time horizon under consideration.
Capacity of machine type h at time k.
i Machine type selected to process operation (i, 5);

mijEHi]‘
N Number of jobs.
N; Number of operations for job i.
Fixed period of time between operations (,7) and
(4,1)el;; when the job is not available for scheduling
(required timeout).
T; Tardiness of job %, defined as max[0, C; — D].
tijn Processing time of operation (z, §) on machine type
heH;;.

w; Weight (value or importance) of job i.
It is assumed that the precedence constraints of a job form
a directed acyclic graph and, without loss of generality, that
each job ends with a single operation so that C; = ¢; n,.
Job processing is assumed to be nonpreemptive so that a
contiguous block of time of length ¢;;; is needed to process

Operation Processing Time Machine Type
1 3 2
Timeout 2 -
2 2 1
Weight = 1
Due Date =9
Fig. 2. Work order for job .
fa—t;——o|a—S, |t —a|

b, =3 ¢, =5 b,=9 T €= 10
D.=9
Op. (i,1) uses Machine 2 !
from time 3 through time 5: Sim = 5“42 = SHSZ =
Op. (i,2) uses Machine 1
from time 9 through time 10: & o1 = 8:‘2.1 or 1
All other § are zero. Ti=c, D;=10-9=1

-
Fig. 3. A scheduled job.

operation (¢, ) on machine type heH;;. All jobs are considered
available for processing at time 1 (to be relaxed in Subsection
IV-C), and the time horizon K is assumed to be long enough
to complete all the jobs (i.e., C; < K foralli =1,2,...,N).

Among the above variables, the time horizon K, the number
of jobs N, the weights of the jobs {w;}¥,, precedence
structures of jobs {Iij}fvzlﬁj-\;‘;l, processing time requirements
{tijh}ilil,ﬁyix,hey,-,’ due dates {D;}Y,, the number of ma-
chine types H, machine capacity {Mkn}p, f_,, and the
operation to machine capability mapping {H; j}filyj.";l are
assumed to be given. The required timeouts S;;; are assumed
to be given, and are used to model time spent on machines or
tasks that are not considered in the problem formulation (e.g.,
travel time, office work, or inspection). The decision variables
are the beginning times of all operations {b;;} and the machine
types {m;;}. Once they are selected, {c;;}, {C;}, {T:}, and
{8:kn} can be easily derived. Although 6,1, appears to have
a high dimensionality, the fact that §;jx, = 0 for b # m;;
can be used to reduce memory requirements. See Fig. 2 for a
sample job and Fig. 3 for its schedule.

The cost function to be minimized is a weighted quadratic
tardiness function of the jobs.

J = Zw; T2 1)
This tardiness objective function accounts for the values of
jobs, the importance of meeting due dates, and the fact that
a job becomes more critical with each time unit after passing
its due date.’

Research into practical scheduling has shown that this
objective is likely to be more useful than, say, makespan

2Luh et al. [27] used the sum of weighted tardiness rather than weighted
quadratic tardiness. For the weighted tardiness function, the incremental
penalty of a job does not change as the tardiness increases. Thus, for example,
for two jobs with weight one, both jobs one day late (objective function J = 2)
is equivalent to one job two days late (J = 2). The weighted quadratic
tardiness function resolves this ambiguity. Here, two jobs one day late has
lower cost (.J = 2) than the situation of one job being two days late (J = 4).
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criteria in actual manufacturing systems [6]. In addition, the
additivity of the cost function facilitates the decomposition
approach.

A static and deterministic scheduling problem can now be
formulated as follows:

Piming, y (m,}J.  with J = T, T7? 2

subject to precedence constraints:

cij +Siji+1< by
(i=1,2,....N:j=1.2.....N;

capacity constraints:
Ez-jéijkthkh (k=1,2..... K:h=1.2 ...,
and processing time requirements:

cij = bij + 1 =tijm,,

LN, 5)

As noted in Section II, this problem formulation is similar
to that of [20], except that capacity constraints (4) consider
different types of machines, precedence constraints (3) are no
longer restricted to the simple fork/join type, and constraint
(5) reflects the fact that operation (4, j) can be processed on a
few machine types with different processing time requirements
(i.e., simple routing for operations).

IV. SOLUTION METHODOLOGY

The complexity of the scheduling problem motivates a
decomposition approach. Lagrangian relaxation (LR) has been
used to relax the capacity constraints in [27] and in [20] to
achieve a decomposition of the scheduling problem by job.
In the latter paper, a cost function is computed for every
possible combination of the operation beginning times of a
job. The computational complexity in scheduling a job is thus
an exponential function of the number of operations of the job.
In this paper, a job may have a large number of operations,
so that the approach of [20] is impractical. It was determined
that both the precedence and capacity constraints would be
relaxed by using Lagrange multipliers. This leads to additional
complications, which will be explained in detail below as they
occur and summarized at the end of this section.

A. The Lagrangian Relaxation Approach

The capacity constraints (4) can be relaxed by using the
nonnegative Lagrange multipliers 74, and the precedence
constraints (3) can be relaxed by using the nonnegative La-
grange multipliers A;j;.

min

{bL]}‘{m,]}{Zi{win +Xjter, [Aiji(bij +tijm,, + Siji—bir)]

FEknTrn (06 jkn — ]th)}} (6)

subject to (5).

The Lagrangian dual to problem P is

max {—Ekhwkth,, + % min
T, A20 {bi;}.{m;

Zier,, Aiji(bis 4 tijm,, + Siji — ba) + Ei‘ib,] ka,J]}} (7

} { 7"1C1“;Z + X

where the fact that 6;;4, = 0 for all h # m,; has been used.
The minimization operation in (6) has been brought inside the
summation because the minimum of the sum is the sum of
the minima when the jobs are independent. This results in a
minimization subproblem for each job:

min

{wiT? + % [Sier,, Aijibi; + tijm., + Sijt)
(b11}~{mu}

=Srjer, Aijbiy + Ty Tem,, 1} (8)

For a particular operation and a particular machine type heH,;,
(8) can be further decomposed to the following operation level
subproblems:

: 2
{1<l;111<1K}{wiT,; AjN, + [Zter, Aijit = Bjer, Aitjlbij
<b;, <

50 ml} O)

where Aj~, = 1 if j is the last operation of the job and 0
otherwise, and ¢;;, and S;;; are constants that do not impact
the beginning time selection process.

The development (6)—(9) follows the methodology devel-
oped in [27], and includes the relaxation of precedence con-
straints. The operation level subproblem of (9) is enumera-
tively solved for every candidate machine type within H;;. The
beginning time and machine type associated with the smallest
cost is then selected and used to update the multipliers,
to be discussed in Subsection 1V-D. The selection of b,
however, depends heavily upon the sign of (Bier,; Aiji —
Yyjer, Aitz), which is a constant for this operation level
subproblem. The result is that b;; is very large when this term
is negative and very small when it is positive. For an operation
constrained by preceding and succeeding operations, neither
result is acceptable since a small beginning time overlaps
with preceding operations and a large beginning time overlaps
with succeeding operations. The solution oscillation between
small and large beginning times also leads to oscillations
in multiplier values, making convergence to any meaningful
multipliers difficult. For this reason, quadratic penalty terms
were utilized to add the fine tuning necessary to balance early
and late scheduling and fit all operations of a job together.

B. The Augmented Lagrangian Relaxation Approach

The augmented Lagrangian relaxation method (or the mul-
tiplier method) has generally been applied to continuous
variable problems with a great deal of success. Basically,
augmented LR is regular LR with constraint-related penalty
terms added to the cost function. The idea is to add a term
to the objective function that induces a high cost for violation
of the constraints. Associated with the method is a penalty
coefficient that determines the severity of the penalty. As
this coefficient is increased, the solution of the augmented
Lagrangian relaxation problem approaches the solution of the
original problem [26]. Bertsekas [4] reports faster convergence
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D: 7%1’1,\3.Zx0q(7r,/\)
with
,A = i L=<{-% M E,‘ i 4 2 E[ el | Aiitl 055 M. i3l — 03
q(m,A) {bij},{glil_-,n},{sij[} { hkTkh Min, + {b,v,-},{lyfll,.ljn},{sl,,}{wz + 5| Bier; [Miji(bij + tijm,; + sijo — bar)

+p;jl (bi; + tijm,; + Siji — bu)z] + Ez:jﬂ'k,m,-j] } } (12)

when the penalty terms are added to the LR cost function. To
the best of our knowledge, the method has not been applied
to job-shop scheduling problems previously.

In order to apply the method, the inequality precedence
constraint (3) is converted to the following equality constraint
by using a slack variable s;;;:
bij + tijm,; + Siji = ba

(i=1,2,...,N;5=1,2,...,N; — L;lel;;) (10)
where (5) has been utilized to substitute out c¢;;. The slack
variable s;;; is the time between operations and becomes
a decision variable with the requirement that s;;; > Sij.
A penalty term is then formed using the above equality

constraint, with penalty coefficient p;;. This leads to the
following relaxed problem:

: min L
{bis}.{mi;}o{si}
with
L E{Ez‘{wir-’? + Bjter; Pajt(bij + tijm,; + siji — bar)

+ p;jl (bij + tijm,, + si50 — b“)zl}

+Zi 52, Mem,; — Ekh'/rkthh}- (€8))
The multiplier method mandates that p;;; be positive and not
decrease during the course of the optimization. The Lagrangian
dual to problem P is given by (12) at the top of this page. In
deriving (12), the minimization operation in (11) has again
been brought inside the summation because the jobs are
independent. This results in a minimization subproblem for
each job:

- min
{bis}Ami; o {si5}
with

L; E{w,—Tf + X [Elel,j [/\ijl(bij + tijm,; + Sijt)

Pijl ‘ bi)2

+ —2—( i + tijme; + 8ijt — ba)?]
— Yjer, Aaibi; + E::"rk,m”] } (13)
At this point, further decomposition to operation-level sub-
problems requires some examination. In (9), the selection of

b;; was independent of any other operation beginning time
of job 7. In (13), however, a cross term involving both b;;

and b;; is derived from the quadratic penalty function. The
selection of b;; therefore depends upon the solutions of other
operations and vice versa, and any global minimum requires
an enumeration procedure like [20]. Since that is impractical,
the next subsection describes a forced decomposition approach
designed to obtain a good schedule for what could be a sizable
problem.

C. Scheduling Individual Operations

In the first step toward decomposing the problem of (13),
all terms involving b;; are gathered. These consist of the
following:

WiT?AGN, + Sier,, [Miji(bi; + tijn + siji — bar)
+p12ﬂ (Bis + tijn + 8551 — ba)’]

Piij
+X1jer,, T’(b,-; + titm,, + sitj — bij)?

+Aitj (bt + tim,, + saj — bij)] + zzi;buﬂ'kh (14)

where Ajn, = 1 if j is the last operation of the job and 0
otherwise. Note that two terms are derived from interaction
with preceding operations and two from interaction with suc-
ceeding operations. The Gauss—Seidel iterative approach [28]
is adopted to overcome this interdependency. A Gauss—Seidel
iteration for a job consists of solving all operation-level
subproblems from the first to the last operation of the job. The
initialization of the beginning times may be the earliest start
dates of all the operations, considering processing times and
required timeouts. In solving a particular subproblem relating
to operation (3, j), the latest available {b;} are used and are
treated as constant. Because the operations are solved in a
particular order, the beginning times of all preceding (I <
7) operations have been solved in the current Gauss—Seidel
iteration, while the beginning times of all succeeding (I > j)
operations are taken from the previous iteration (or initializa-
tion if it is the first iteration). At the end of a Gauss—Seidel
iteration, if the solutions to the current iteration are the
same as the previous iteration, the Gauss-Seidel is said to
have converged. Otherwise, the operation beginning times
obtained are used to start the next Gauss—Seidel iteration. If
convergence is not obtained after a fixed number of iterations,
the solution generating the smallest cost is used. However,




6 IEEE TRANSACTIONS ON ROBOTICS AND AUTOMATION, VOL. 9, NO. |, FEBRUARY 1993

whether the Gauss—Seidel converges or not, the cost generated
may not be a global minimum [5].}

Let b;; represent the beginning time of the succeeding
operation (4,(), computed in the previous iteration. Given all
m, A, and heH;, the operation cost function to be minimized is

R(ij/c) : . min

it {sin

} Lijn
with
Lijn =wiT?A N, + Sier, [Nji(bij + tijn + st —bi)
+ p—;l(sz +tijn + siji — ba)?
+ Zljera [%(bu + titm,, + sitj — bij)2
+ Xi (bt + titm,, + siy — sz)] + Z;';,,Um;z»
(15)

In determining the s;;; that gives the minimum value of (15),
we first note that Eijh in (15) is quadratic with respect to 5111
Given b;;, it can be seen that s;;; = max[S; i, s [J,] where s,
is the rounded integer value of [b;; — (bij+tijm,; + Xiji/pist))-
Likewise, s;;; = max[S;;. s I,J] The variables b,; are then
obtained by enumerating the beginning times from 1 through
the time horizon K for each possible machine type heH;;
and directly comparing the values of L;;;, derived from each
possibility. The machine type that generates the smallest
solution is defined as m;;, and its cost is L‘J”'z) or simply
L;;. The complexity of obtaining the beginning time and
machine type for each operation for one Gauss—Seidel iteration
is O(K « |Hj;|), where |H,;| is the cardinality of H;;. Note
that if a job is not available until an earliest start time, this
enumeration process begins at the earliest start time rather
than at time 1.

The costs generated by the solution of (15) are now added
together to obtain the job subproblem cost of (13). Note that.
because of the way (14) is formed, the terms due to precedence
constraints are doubly counted. Therefore, the sum of L;; must
be adjusted to form L;, as follows:

Z/z :EJ{[-/I_[ - le], [ ljl(bu +111m,7 + Sijit — ]711)
At _
+ _J(bij +tijm,, + Siji — bil)}
- Zl jelyy [p4 ' (141 + tim 0 + Silj — bi_/)z
A, b I
+ 2 ( l+f11771,1+"11_] U) . (16)

Also, since the Gauss—Seidel technique may not produce the
minimum operation costs, the value L; is an approximation
to the optimal job cost of (13). Nevertheless, L; is used to
maximize the Lagrangian dual cost g(r. \) following (12):

D max g(m. )
ng@QOf )

*If the function is convex and continuous, the GaussSeidel iterative
technique is guaranteed to converge to an optimal solution [5]. No convergence
result can be found for the class of problems considered here.

with

G(r A) = { =Zpempn Myn + 2 Li ). (17)

The maximization problem of (17) will be discussed in more
detail in the next subsection.

D. Solving the Dual Problem

To solve the dual problem related to (17), the sub-
gradient method of our previous work [20], [27] is
adopted in updating the multiplier 7, and the multiplier
method [4] in updating the multiplier A and penalty
coefficient p. The subgradient method was originally
presented by Shor [34], further explored by Polyak [33],
and is commonly used to solve this type of problem
(see, e.g., [32]). The Lagrange multiplier 7 is updated
by

n+1

™ =7x"+a"g(z") (18)

where o is the step size at the nth iteration, and g(7) is the
subgradient of g. The subgradient component of machine type
h at time k is equal to (£;;8;jxn — Mpk). The step size o
is given by

~n

n f qiq
g(m)Tg(mm)

where ¢* is an estimate of the optimal solution of (17),
and ¢" is the value of ¢ at the nth iteration. The param-
eters 3 and ¢' are changed adaptively as the algorithm
converges, with the rate of change determined by testing
experiences (see also [33]). This has generally been shown
to improve the convergence of the subgradient algorithm
(see [13]). In particular, if the value of ¢ remains ap-
proximately the same over several iterations, the parameter
values are decreased. The number of iterations before decrease
and the percentage decrease are the values to be selected
or “tuned.” Since the input data may change very little
from day to day in the manufacturing scheduling situation,
the “tuning” of these parameters is a fairly straightforward
task.

The other Lagrange multiplier A is adjusted according to the
multiplier method update formula [4]

(19)

/\n+1 = A" +pn'(}(/\n) (20)

where p" is the penalty coefficient at the nth iteration, and
g(A) is the subgradient of 7 with respect to A. The subgradient
component relating the jth operation to the I/th operation of
Job i is (bij + tijm,, + st — by). The penalty coefficient
piji is multiplied by a factor v periodically (every five or
ten iterations) if the subgradient component g(;;;) is nonzero
at that iteration. The parameter + is selected so that p;j; is
nondecreasing, but not so large that the problem becomes
ill-conditioned (Bertsekas suggests e [4,7] [4, p. 123]).

The quality of the updates in (18) and (20) depends on
the convergence of the Gauss—Seidel iteration of (15). As
mentioned, the Gauss—Seidel method is not guaranteed to
converge to the optimum. The quality of the updates is
enhanced by performing a limited Armijo-type line search for
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the best update values of 7 and A. The multipliers that generate
the largest function value § are chosen as the updates. The
algorithm is stopped when a fixed number of iterations has
been reached. The results provide the basis for the construction
of a feasible schedule, the topic of the next subsection.

E. Construction of a Feasible Schedule

Because of the discrete decision variables involved and the
stopping criterion used, the solution to the dual problem is
generally associated with an infeasible schedule, i.e., some of
the precedence constraints (3) and/or capacity constraints (4)
might be violated. Note that the processing time requirements
(5) are always satisfied in view of the way subproblems
(15) are solved. To construct a feasible schedule, the dual
solution is first modified to ensure that precedence constraints
are satisfied. This is done by pushing all b;; that violate
precedence constraints forward in time, starting with the
second operation of each job. The list-scheduling approach
of [20] is then applied. In this list-scheduling procedure,
a list is created by arranging operations of all jobs in the
ascending order of the modified operation beginning times.
Operations are then scheduled on the required machine types
according to this list as machines become available. If the
capacity constraint for a particular machine type is violated
at time k, a greedy heuristic based on the incremental change
in J (the original cost function (1)) determines which new
operations should begin at that time slot and which ones are
to be delayed by one time unit. The subsequent operations
of those delayed ones are then delayed by one time unit if
precedence constraints are violated. The process then repeats.
The pseudocode for this heuristic is provided in Appendix
I

V. PERFORMANCE EVALUATION

A. A Related Problem Formulation

Since the Gauss-Seidel technique may not produce the
minimal operation level costs, the value of the dual function
G in (17) may not be a lower bound on the optimal cost. To
evaluate the schedule, a slightly different problem formulation
is employed. When standard Lagrangian relaxation is applied
to this problem formulation, an effective lower bound on the
optimal cost can be obtained. To further explain the technique,
the following additional variables are introduced:

w;jix integer variable equal to one for every time unit

k < cij + Siji, lel;;, and zero otherwise;
o;jr integer variable equal to one for every time unit
k > b;;, and zero otherwise.

With these new variables, the precedence constraints (3)

can be replaced by the following:

wijik +oar <1

(i=1,...,N;j=1,...,Nsk=1,...,K;lel;). (21)

Note that w; ;i is one for every time unit less than cij + Siji,
and oy, is one for every time unit greater than b;;. Therefore,
the constraint (21) is satisfied if and only if the subsequent

operation (i,l) does not begin until the completion of the
current operation (z, ) and the required timeout.

With constraint (21) in place of (3), the problem formulation
remains valid, and standard Lagrangian relaxation can be
applied. The disadvantage of this approach, however, is that
the set of Lagrange multipliers that relaxes (21) has extremely
high dimernsionality. It is therefore very difficult to solve the
scheduling problem based on this problem formulation alone.
Our idea is to use this problem formulation after solving
the dual problem of Section IV, and use the multipliers =
obtained there. It has been shown that, for convex program-
ming problems, the optimal Lagrange multipliers from the
augmented Lagrangian procedure have the same values as
in LR [4, p. 322]. Although no corresponding results have
been found for integer programming problems, the multipliers
m obtained from Section IV are nevertheless used here to
avoid computational difficulties. With 7 fixed, the multipliers
associated with (21) can be obtained in a jobwise manner,
and the dual cost provides a lower bound on the optimal
cost. The multipliers m can also be updated a few times to
improve the lower bound by using the subgradient method,
although the Lagrange multipliers associated with (21) might
have to be reinitialized each time if adequate memory is
not available. Details of the Lagrangian relaxation frame-
work and solution methodology are provided in Appendix
1L

B. Evaluation of the Feasible Solution via
the Approximate Duality Gap

Once a feasible schedule is obtained, the corresponding
value of the objective function J is an upper bound on the
optimal objective J*. The value of the dual function g (u, )
based on (21) is a lower bound on Jx [18]. The difference
between J* and gx is known as the duality gap. An upper
bound of the duality gap is provided by J — g*, which
is a measure of the suboptimality of the feasible schedule.
The approximate relative duality gaps (J — gx)/gx for the
examples in the next section are less than 10%. This is
somewhat larger than the parallel machine results reported
in [20] and [27], since the current problem is much more
complicated.

C. Overall Structure of Algorithm

The overall structure of the algorithm is presented in Fig. 4.
The basic building blocks are the subgradient and multiplier
methods for updating the multipliers and penalty coefficients,
the Gauss—Seidel iterative technique for solving operation-
level subproblems, the list-scheduling method to generate a
feasible schedule, and the evaluation methodology with job-
related dual problems discussed in Section V. The multipliers,
penalty coefficients, and beginning times of all operations
must be initialized. In the next section, the methodology is
illustrated through three examples, where initializations used
to solve each problem are given. The last example shows the
day-to-day usage of the algorithm for an actual job-shop over
a three-week period.
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Fig. 4. A schematic of the algorithm.
VI. TEST RESULTS
A. Example 1

In the first example, there are three different machines
and four equally weighted jobs (w; = 1). The planning
horizon is 25 days (i.e., K = 25, and the time unit is
days). All machines are available on day ! and throughout
the planning horizon. All jobs are available for processing on
day 1, but are due on day 0. Each job is composed of three
serial operations to be processed on three machines without
required timeouts between operations. Data are shown in Table
L

All the multipliers were initialized at zero, and all penalty
coefficients p were initialized at 0.5 and doubled every five
iterations if the associated precedence constraint was violated
at the fifth iteration. The lower bound is obtained at 469.7,
and the feasible schedule has a cost J = 475.0 with a relative
duality gap of 1.13 %; this cost is really optimal. The resulting
schedule is shown in the form of a Gantt chart in Table II. The
time to solve the problem is 12.7 CPU seconds on an IBM
3090 mainframe computer. Note that if several new jobs were
to arrive after this schedule has been generated, the current
multipliers and penalty coefficients can be used to initiate
the rescheduling process. This has generally been shown to
reduce the computation time compared to the case where all
multipliers are initialized at zero (see [20] and [27]).
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TABLE 1
Data FOR EXAMPLE 1

Jobi Op.j Mach.h t;; I;
1 1 1 4 _
2 2 3 1

3 3 2 2

2 1 2 1 —
2 1 4 1

3 3 4 2

3 1 3 3 —
2 2 2 1

3 1 3 2

4 1 2 3 —
2 3 3 1

3 1 1 2

TABLE II

GANTT CHART OF THE SCHEDULE FOR EXAMPLE |

Time 1 2 3 4 5 6 7
Machine I 1,17 1.1 1,1 1,1 22 22 22
Machine 2 4,1 4,1 4,1 2,1 1,2 1,2 1.2

Machine 3 3,1 3.1 3,1 42 42 42

Time 8 9 10 11 12 13

Machine I 22 43 33 33 33
Machine 2 32 32
Machine3 13 1,3 23 23 23 23

“The notation *“i. ;™ refers to operation j of the job 1.

B. Example 2

This example draws data from Pratt & Whitney’s Devel-
opment Operations shop. The data come from about 20 work
centers relating to numerical control (NC) machines. There are
a total of 32 different machines, and all of them are different
(32 machine types). There are 228 jobs, each consisting of
one to seven operations, for a total of 335 operations. An
operation may be performed on one of a set of machine types,
with the number of eligible machine types ranging from one to
six. Required timeouts of varying lengths also exist between
some operations. The jobs are characterized by different due
dates and may have one of five different weights. The planning
horizon is 414 working days, or about 1.5 years. Not all the
machines are immediately available as some of them are busy
processing jobs already started.

These jobs are currently scheduled by using a knowledge-
based scheduler at Pratt & Whitney. The knowledge-based
scheduler operates interactively with humans. The human
scheduler for the NC machine group had years of experience as
a scheduler in the shop and a significant amount of experience
in using the interactive scheduler. Thus we can compare our
results with the current schedule.

All the multipliers and penalty coefficients were initialized
and adjusted as described in Example 1. The lower bound is
obtained at 4634 114.6, and the feasible schedule has a cost
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TABLE III
SCHEDULE GENERATION AND RECONFIGURATION FOR NC MACHINES

Due O™ g, o  Lewer JEOC cRUT
Schedule  Schedule (%)
417 32x126 3045890 2747355 2644880 39 26
419 32x143 3059900 2781085 2670938 4.1 28
422 34x141 3079340 2807460 2711004 36 29
ana™ 3x133 5645320 S3I8SL0 5312032 Ol 30
46 32x135 2966710 2688275 2666650 08 238
429 32x128 2988255 2685045 2661220 09 22
S/ 32x124 3034775 2705845 2674423 12 23
53 33x127 2825160 2478435 2431920 19 21

*Relative difference refers to relative difference between our schedule cost
and the lower bound.

**CPU time is in minutes, and was performed on an IBM 3090 mainframe
computer.

*** A few single-operation, high priority tardy jobs arrived on this day, which
temporarily drove up the schedule cost. Since these operations immediately
went into processing, the schedule cost returns to normal on 4/26.

J = 4981197.5 with a relative duality gap 7.49%. The time
to solve the problem is 7.44 CPU minutes on an IBM 3090
mainframe computer. The existing schedule generated by the
other scheduler was evaluated at 6 504 614.5, which is 40.36%
above the lower bound.

C. Example 3

As a third example, the NC machine group at the Devel-
opment Operations shop was scheduled over a three-week
period in Spring 1991, where the schedule is updated to reflect
the arrival and departure of jobs and the latest information
regarding process plans and processing times. With each
schedule reconfiguration, the multipliers from the previous
schedule are used to initialize the algorithm. The results are
shown in Table III.

The problem size is M x N, where M is the number of
machine types and N is the number of jobs. Here, M varies
slightly because only those machines required by jobs were
included in the problem. The time horizon K is 300 days
in each case. As in Example 2, each machine type has one
machine, each part may have up to seven operations, and each
operation may be performed on one of several (up to six)
different machine types. The data and schedule for May 3,
1991 are provided in Table IV.

Day-to-day scheduling is undertaken by initializing the
multipliers 7, A, and the penalty coefficients p based on values
from the previous schedule. The penalty coefficients p were de-
creased by half upon initialization and subsequently increased
according to the strategy discussed in Example 1. Beginning
times were initialized by using backward scheduling from the
due date or using forward scheduling from today if the due
date could not be met. The consistently near-optimal quality of
the schedules is demonstrated by the fact that all the schedules
are within S %, whereas the quality of the schedules generated
by the knowledge-based system is 15-20% above the lower
bound (third column of Table III). The computation time has

also been significantly improved over Example 2, since the
multipliers and penaity coefficients were initialized based on
results from the previous schedule.

VII. CONCLUSION

A new and effective job-shop scheduling methodology has
been presented that encompasses most of the classic features
of job shops: jobs with multiple operations, generic prece-
dence constraints, capacity constraints, and simple routing
decisions. The augmented Lagrangian relaxation approach and
the Gauss—Seidel iterative technique were used to facilitate a
decomposition into a set of operation-level subproblems, each
with the complexity of O(K * |H;;|). From the dual solution,
a list-scheduling method was employed to generate a feasible
schedule. Because of the Gauss—Seidel iterative technique
employed, the dual solution did not yield a lower bound on the
optimal cost. The Lagrangian relaxation solution of a second
problem formulation resulted in an effective lower bound on
the optimal cost, and facilitates the performance evaluation
of the schedule. Compared to our previous results on parallel
machines, the duality gaps and CPU times are larger but are
still within reasonable limits. This is to be expected because
of the additional complexity of the problem.

This approach has many advantages over existing job-shop
scheduling algorithms and is well-suited for implementation
in actual manufacturing environments. First, it generates a
schedule and a lower bound efficiently, and the resulting
schedule has generally been shown to be near optimal. In
day-to-day scheduling operations, the Lagrange multipliers
and penalty coefficients from the previous schedule can ini-
tialize the algorithm to generate a new schedule. Since the
status of a shop may not change much from day to day,
the computation time can be vastly reduced by using this
initialization procedure as demonstrated in Section VI. In
addition, the decomposed structure of the algorithm facilitates
distributed implementation using workstations [22]. A dis-
tributed implementation can mimic the actual decision-making
structure of the shop. These features have led to adoption of
the method by the Development Operations shop of Pratt &
Whitney as the backbone of its new scheduling system. In
this implementation, only bottleneck and potential bottleneck
machines are considered for scheduling. Nonbottleneck ma-
chine processing times and travel times are aggregated and
considered as required timeouts. In this way, large-scale job-
shop problems can be effectively handled, even in a rapidly
changing environment.

APPENDIX [
PSEUDOCODE OF THE HEURISTIC PROCEDURE

To obtain a feasible schedule, the dual solution is first
modified to ensure that the precedence constraints are satisfied,
as discussed in Subsection IV-E. A list U is then created by
arranging operations of all jobs in the ascending order of the
modified operation beginning times. Operations are scheduled
on the required machine types {m;;} according to this list
as machines become available. If the capacity constraint for
a particular machine type is violated at time k, a greedy
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TABLE IV
NC MACHINES DATA/SCHEDULE FOR MAY 3, 1991
(Time horizon: 300. Number of machine types: 33. Number of jobs: 124. All jobs denoted with an asterisk have weights of 0.5;
otherwise, the job has a weight of 1.0.)

Earliest Other Machines Eadiest Other Machines
W D ket S s ma Highe 5 D Be P Run sun men O Higew
. ] Date Perform Operation . ) Date Perform Operation
1 10 1 1 1 7 1 43 35 1 2 38 38 22 18 19 20 21 23
2 10 1 1 1 6 1 4 157 1 2 18 87 18 19 20 21 22 23
3 9 1 3 1 11 1 45 157 1 2 23 89 18 19 20 21 22 23
4 6 1 3 2 36 2 3 4 5 6 46 157 1 2 92 126 18 19 20 21 22 23
5 6l 1 3 2 33 2 3 4 5 6 47 157 1 2 92 124 18 19 20 21 22 23
6 3 1 3 2 33 2 3 4 5 6 48 35 1 2 45 45 23 18 19 20 21 22
7+ -85 1 2 1 1 9 49 35 1 2 49 49 23 18 19 20 21 22
2 4 5 5 10 50 7 1 2 9 9 23 18 19 20 21 22
3 2 11 11 10 51 -53 1 1 1 1 3 2 4 5 6
8 10 1 1 9 9 11 12 13 14 52 70 1 7 2 39 2 3 4 5 6
9 18 1 1 49 49 15 53 3 1 2 11 1 22 18 19 21 23
10 145 1 4 49 56 15 54 -4 1 2 12 12 18 19 20 21 22 23
2 2 53 60 10 55 12 1 1 8 8 20 18 19 21 22 23
3 1 101 135 15 56 29 1 4 2 4 9
11 145 1 4 49 52 15 2 3 24 26 22 18 19 20 21 23
2 2 53 56 10 57 132 1 13 2 61 32
3 1 101 134 15 58 -22 1 10 18 28 9
12 -169 1 28 78 78 15 59 13 1 13 1 1 12 11 13 14
2 3 156 156 16 60 10 1 3 1 1 7 8
13 .14 1 1 14 14 18 19 20 21 22 23 61 12 1 13 5 15 7 8
14 123 1 1 14 14 22 18 19 20 21 23 62 12 1 13 8 24 8 7
15 9 1 1 18 27 2 3 4 5 6 63 6 1 1 1 3 1
2 1 20 46 2 2 1 7 9 1
3 1 24 50 5 2 4 5 6 3 1 8 10 1
16 91 1 1 18 26 2 3 4 5 6 4 2 14 16 1
2 1 20 32 2 3 4 S 6 5 1 16 18 1
3 1 24 36 3 2 4 S 6 6 s 24 26 1
17 9 1 1 18 25 2 3 4 S 6 64*% 35 1 2 13 23 16
2 1 20 31 2 3 4 5 6 65  -81 1 1 16 16 23 18 19 20 21 22
3 1 24 35 3 2 4 s 6 66 37 1 1 9 27 18 19 20 21 22 23
18 91 1 1 18 20 2 3 4 5 6 67 37 1 1 9 26 18 19 20 21 22 23
2 1 20 30 2 3 4 s 6 68 71 1 5 3 36 11 12 13 14
3 1 24 34 3 2 4 S 6 2 1 8 56 18 19 20 21 22 23
19 9 1 1 18 19 2 3 4 5 6 69 88 1 s 3 10 11 12 13 14
2 1 20 29 2 3 4 s 6 2 1 8 15 23 18 19 20 21 23
3 1 24 33 3 2 4 s 6 70 18 1 1 51 51 15
20 91 1 1 18 18 2 3 4 b 6 71 8 1 3 26 26 30 31
2 1 20 28 2 3 4 5 6 2 1 29 31 1
3 1 24 32 3 2 4 5 6 72 31 1 1 12 22 28 29
21 65 1 1 1 1 4 2 3 s 6 2 1 14 28 29 28
2 1 3 6 2 3 4 5 73 35 1 1 12 24 28 29
3 2 6 6 5 2 3 4 6 2 1 14 32 29 28
22 511 1 1 1 2 3 4 s 6 74 36 1 1 12 26 28 29
2 1 3 3 2 3 4 s 6 75 39 1 1 12 28 28 29
3 2 6 6 2 3 4 S 6 2 1 14 35 29 28
23 41 1 1 1 1 5 2 3 4 6 76 40 1 1 12 30 28 29
24 35 1 1 2 2 24 2 1 14 37 29 28
25* 2 1 2 1 1 25 26 27 28 29 7 4 1 1 12 32 28 29
26 6 1 2 1 4 2 3 4 S 6 2 1 14 39 29 28
27 41 1 28 78 106 15 78 44 1 1 12 34 28 29
2 3 156 184 16 2 1 14 41 29 28
28 38 1 1 68 69 1 79 31 1 1 12 21 28 29
29 38 1 1 68 68 1 2 1 14 27 29 28
30 161 1 1 ki 119 1 80 35 1 1 10 23 28 29
31 45 1 1 1 1 15 2 1 12 31 29 28
32 53 1 10 18 18 9 81 36 1 1 11 25 28 29
3 37 1 2 41 41 19 18 20 21 22 23 2 1 13 33 29 28
2 2 67 69 30 82 39 1 1 12 27 28 29
34 37 1 2 41 41 18 19 20 21 22 23 2 1 14 34 29 28
2 2 67 67 30 83 40 1 1 12 29 28 29
35 159 1 2 41 85 18 19 20 21 22 23 2 1 14 36 29 28
2 2 67 134 30 84 42 1 1 11 31 28 29
36 8 1 14 2 2 21 18 19 20 22 23 2 1 13 38 29 28
37 12 1 7 2 4 18 19 20 21 22 23 85 44 1 1 12 33 28 29
38 20 1 7 2 12 19 18 20 21 22 23 2 1 14 40 29 28
39 40 1 7 2 19 18 19 20 21 22 23 86 71 1 1 8 51 18 19 20 21 22 23
40 62 1 7 2 43 18 19 20 21 22 23 87 Tl 1 1 8 50 18 19 20 21 22 23
41 84 1 7 2 57 18 19 20 21 22 23 88 88 1 1 8 54 18 19 20 21 22 23
42 35 1 2 38 38 18 19 20 21 22 23 89 88 1 1 8 52 18 19 20 21 22 23

(Continued on page 11)
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TABLE 1V (continued)
( Time horizon: 300. Number of machine types: 33. Number of jobs: 124.
All jobs denoted with an asterisk have weights of 0.5; otherwise, the
job has a weight of 1.0.)

Eadiest Other Machines
N Do Mo Prott USm  Sum  Mach. Eligible to
Date Perform Operation

90 ! 1 S 3 31 11 12 13 14

2 1 8 53 18 19 20 21 22 23
91 81 1 5 3 3 11 12 13 14

2 1 8 8 23 18 19 20 21 22
92 11 1 2 2 6 20 18 19 21 22 23
93 8 1 2 2 4 20 18 19 21 22 23
94 8 1 2 2 6 19 18 20 21 22 23
95 11 1 2 2 8 19 18 20 21 22 23
96 8 1 2 2 4 19 18 20 21 22 23
97 14 1 1 7 11 19 18 20 21 22 23
98 14 1 1 7 10 19 18 20 21 22 23
99 37 1 4 1 21 2 3 4 5 6
100* -1 1 2 1 2 5 2 3 4 6
101* 2 1 2 1 3 3 2 4 5 6
102¢ 4 1 1 1 2 4 2 3 5 6
103* 4 1 2 1 3 4 2 3 S 6
104* 7 1 2 1 5 3 2 4 5 6
105 53 1 1 9 11 18 19 20 21 22

2 4 22 38 9
106 95 1 1 16 16 18 19 20 21 22 23

2 4 29 42 9
107 132 1 1 16 17 18 19 20 21 22 23

2 4 29 46 9
108 174 1 1 16 18 18 19 20 21 22 23

2 4 29 50 9
109 218 1 1 16 28 18 19 20 2t 22 23

2 4 29 54 9
110 261 1 1 16 29 18 19 20 21 22 23

2 4 29 58 9
111 304 1 1 16 156 18 19 20 21 22 23

2 4 29 232 9
112 28 1 2 2 9 9

2 1 13 23 23 18 19 20 21 23
113 2 1 1 3 3 19 138 20 21 22 23
114 2 1 1 2 2 19 18 20 21 22 23
115 111 1 1 1 60 2 3 4 5 6
116 111 1 1 1 59 2 3 4 5 6
117 -6 1 1 2 2 16

2 1 4 4 16
118 17 1 1 5 15 18 19 20 21 22 23
119 -1 1 1 s 5 23 18 19 20 21 22
120 27 1 1 1 1 6 2 3 4 5
121 -6 1 1 1 2 2 3 4 5 6
122 -6 1 1 1 2 3 2 4 5 6
123 1 1 1 1 2 6 2 3 4 5
124* 56 1 1 3 29 16
125« 78 1 1 1 39 16
126* 98 1 1 3 50 16
127 19 1 1 3 11 33

heuristic based on the incremental change in J (the original
cost function (1)) determines which new operations should
begin at that time slot and which ones are to be delayed by
one time unit.

The incremental cost function for job i is defined as

£(i,5) = wil(T; + 1) - T7] (A1)

if the tardiness T; would increase when b;; is delayed by one
time unit; otherwise, f(¢,j) = 0. For the sake of simplicity,
only operations belonging to I;; are checked for slackness to
determine f(z, 7). Operations in U are ordered in such a way
that if (4, 7) is before another operation (u,v), then

1) bij < by; and

2) if bij = buv’ then f(zv.j) > f(’ll,, 'U).
A few more indices and variables required by the pseudocode
will now be defined. Let H;; be an ordered set of machine
types, each of which is capable of performing operation
(4,7). Let 7 be an index of this set of machines, with h,
the rth element of the set. Additionally, define n as a time
index tracking machine availability, and let E be a set of
unscheduled operations that cannot be scheduled between time
n and their respective modified beginning times b;;. The
optimal routing m;; from the dual solution will be stored as a
temporary variable called “temp” in searching for alternative
routings. Given the sequence U and {M,}, the greedy
heuristic algorithm works as follows:

Step 0: (Initialization.) Set E = & and go to Step 1.

Step 1: (Get First Job on List U.) Determine the job and
operation indices ¢ and j of the first operation in
U. Set m = myj, b = b;j, temp = m, and r = 1;
go to Step 2.
(Determine Machine Earliest Available Time.) De-
termine the first time [ such that M, > 0, set
n = [, and go to Step 3.
(Check Machine Availability.) If M, # 0 for
I=n,n+1,n+1t;jm—1, go to Step 4; otherwise,
go to Step 5.
(Modify Machine Availability.) If the precedence
constraints related to preceding operations are not
violated, schedule operation (z, j) to begin at time
n, set My, = My, —1forl=n,n+1,...,n+
t;jm — 1 and go to Step 9; otherwise, go to Step 5.
(Advance Time n.) Set n =n+ 1. If n > b, go to
Step 6; otherwise, go to Step 3.
(Select Another Machine.) If h, = temp, then set
r=r+1.If r > [H;j|, set m;; = temp and go
to Step 7; otherwise, set m = h,, r = r + 1, and
go Step 2.
(Get Next Operation on List.) If operation 2 on
list U has beginning time b, then set sequence
U =U -~ {(i,7)}, re-index the sequence, and set
E =EU{(i,7)}, and go to Step 1; otherwise, go
to Step 8.
(Update Sequence U.) For any unscheduled oper-
ations (i, j)eE such that b;; < b, modify b;; =
b+ 1; check all subsequent operations of job ¢ and
reset those beginning times that violate precedence
constraints; set U = U U E and reform sequence
U, set E = < and go to Step 1.
(Stopping Criterion.) Set U = U — {(1,7)}; if
U = O, stop; otherwise, go to Step 1.

Step 2:

Step 3:

Step 4:

Step 5:

Step 6:

Step 7:

Step 8:

Step 9:

APPENDIX I
SOLUTION METHODOLOGY FOR OBTAINING A LOWER BOUND

In Section V, constraint (3) is replaced by a new con-
straint (21). When this new problem formulation is solved via
Lagrangian relaxation with the multipliers 7 fixed at values
obtained from Section IV, a set of decomposed dual problems
are obtained, each relating to a job. The details of this solution
methodology are given below.
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The constraints (21) and (4) are first relaxed by using La-
grange multipliers y;;ix and 7y, to form the relaxed problem:

R': min L
{bu}v{mu}

with
L'= {Ei{win + X5 kter, ijik(wijik + ok — 1)}
+ZijZZZb,]7ﬂcm,J - Ekhﬂkthh)}- (B1)

For convex programming problems, the Lagrange mul-
tipliers {m} resulting from the solution of an augmented
Lagrangian (corresponding to eq. (12) in our case) are equal
to those obtained from the unaugmented Lagrangian (eq. (B1)
in our case), as discussed in [4, p. 322]. This may not be
true here because the problem we considered is nonconvex
and also because the Gauss—Seidel technique is used. In view
of the complexity of the problem, however, the multipliers
{m} in (B1) are fixed at {wx}, the solution of the augmented
Lagrangian of (17), as a good guess. The Lagrangian dual of
(B1) then becomes

D .
max q(pe, T*)

with
q(p. ) =min L' = {"EkhW *kh Min — Zijktel,, Mijtk

+  min
{le }o{mi;}

+ El:jel,,zllc(:b”liiljk + Eg:jﬂ*k‘m,]} }} (B2)

o+,
Ei{wiTiz + 55 [Ser, B2 pijun

In deriving (B2), the fact that w;;;x = 0 for k > ¢;; + Sij
and o5, = 0 for k& < b;; has been used. With {7} fixed, the
first term becomes a constant and (B2) breaks down into N
separable dual problems, one for each job:

D max gi( i, %)
with
qi(pi, %) E{_Ejk‘lsljﬂi)lk

+ min
{bi, }.{mi;}

+ El:]efuzllc{:b” Hiljk + ZZ:; 7T;c(.m,]:l }} (B3)

2 ci;+Sij
{wz'T,- + 25 [Ster, BRI pajie

Comparing (B3) to (9), we see that b;; in (B3) is not a linear
function of the multipliers {11}, as was the case with {\;;}.
Therefore, the oscillation phenomenon as discussed before no
longer exists. Intuitively, both sets of multipliers are associated
with the overlap of precedence constrained operations. The
multiplier A;;; indicates whether or not overlap exists, whereas
the multipliers 1; ;% indicate where in time the overlap occurs.
Because no oscillation occurs, no quadratic penalty function
is required, and the minimization subproblems of (B3) are
completely separable by operation. Once the optimal solution
for job i is generated, the {u,,} are disposable, and the

memory required for them can be reused to solve the next
job. A lower bound on the optimal cost is thus given by

q* (p, %) = =Np kThie * Mpr + Sigs * (u,m%)  (B4)

(See [18].) The quality of this lower bound is dependent upon
the multipliers {r*} derived from (17).

The operation-level subproblems are solved by direct enu-
meration, the same as for solving (15). The dual problem is
then solved by using the subgradient method of Subsection
IV-D for each job. In this case, the subgradient of ¢;(j;, m*)
is given by wiji + oix — 1.
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