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Abstract

A new Lagrangian relaxation (LR) approach is developed for job shop scheduling problems. In the approach,

operation precedence constraints rather than machine capacity constraints are relaxed. The relaxed problem is de-

composed into single or parallel machine scheduling subproblems. These subproblems, which are NP-complete in

general, are approximately solved by using fast heuristic algorithms. The dual problem is solved by using a recently

developed ‘‘surrogate subgradient method’’ that allows approximate optimization of the subproblems. Since the al-

gorithms for subproblems do not depend on the time horizon of the scheduling problems and are very fast, our new LR

approach is efficient, particularly for large problems with long time horizons. For these problems, the machine de-

composition-based LR approach requires much less memory and computation time as compared to a part decom-

position-based approach as demonstrated by numerical testing.
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1. Introduction

Scheduling is to allocate finite resources over

time to accomplish a given set of tasks. High
quality schedules can improve delivery perfor-

mance, reduce inventory costs, and are very im-

portant to manufacturers in today�s time-based

competition. To obtain a high quality schedule

within an acceptable computation time, however,

is extremely difficult because of the NP-hard na-

ture of the problem and the large sizes of practical

applications [12].
Scheduling methods in the literature can be

classified into optimization methods, approximate

and heuristics methods, and dispatching rules.

Optimization methods include branch and bound

and dynamic programming (DP) (e.g., [3] and

[17]). Although they can obtain optimal schedules,

they are computationally intensive in general.

By contrast, approximate and heuristics methods
make a tradeoff between solution quality and

computation time. These methods include simu-

lated annealing [11], genetic algorithms [7,8,13],
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tabu search [6,14], constraint programming [15],
shifting bottleneck procedure [1], and Lagrangian

relaxation [4,10,19]. Dispatching rules are too

simple to be effective in most cases [2,16].

Lagrangian relaxation (LR) has recently emer-

ged as a practical approach for complex schedul-

ing problems [4,10,19]. It is a decomposition and

coordination approach which can obtain near

optimal schedules with quantifiable quality in a
reasonable computation time for practical sched-

uling problems. In this approach, machine capac-

ity constraints are first relaxed by using Lagrange

multipliers. The relaxed problem can be decom-

posed into a set of part subproblems that are

solved by using DP. The multipliers are then iter-

atively adjusted at the ‘‘high level’’ based on the

degree of constraint violation. At the termination
of such iterations, a simple heuristic is applied to

adjust subproblem solutions to obtain a feasible

schedule satisfying all constraints.

This approach is quite efficient in general.

However, as the computation complexity of the

DP algorithm and the number of multipliers are

proportional to the time horizon, the approach

becomes time and memory consuming for prob-
lems with long time horizons.

This paper presents a new LR approach for job

shop scheduling problems to minimize a weighted

earliness and tardiness criterion. Our goal is to find

good schedules for problems of large size in a short

computation time. First, a separable formulation

of the problems is presented in Section 2. The new

approach is then introduced in Section 3. In the
approach, operation precedence constraints rather

than machine capacity constraints are relaxed. The

relaxed problem is decomposed into single or

parallel machine scheduling subproblems. These

subproblems are NP-complete in general, and are

approximately solved by using fast heuristic algo-

rithms as presented in Section 4. The dual problem

is iteratively solved by using a recently developed
‘‘surrogate subgradient (SSG) method’’ that

allows approximate optimization of the subprob-

lems [20]. Feasible schedules are then constructed

by using heuristics based on subproblem solutions

or multipliers. The solution of the dual problem

and the construction of feasible schedules will be

presented in Section 5.

Because the subproblem algorithms do not de-
pend on the time horizon and are very fast, our new

LR approach is efficient, particularly for problems

with long time horizons. For these problems, the

new approach requires much less memory and

computation time as compared to the LR approach

based on part decomposition. This is demonstrated

by numerical testing presented in Section 6. Test-

ing also shows that our new approach significantly
outperforms dispatching rules and can solve

problems with thousands of parts and tens of ma-

chine types in less than 15 minutes on a personal

computer, making it practical for shop-floor use.

2. Problem formulation

The job shop scheduling problem considered in

this paper is to schedule N parts on H types of

machines to minimize a weighted earliness and

tardiness criterion following [19]. Each machine

type h ð16 h6HÞ has Mh identical machines, and

the completion of each part i ð16 i6NÞ requires a

series of Ni operations, denoted by ði; 1Þ; ði; 2Þ; . . . ;
ði;NiÞ. Each operation ði; jÞ is non-preemptive and
can be performed on a machine belonging to a set

of alternative machine types Hij � f1; 2; . . . ;Hg.

For simplicity, all parts are assumed to be avail-

able at time 0. For the case where some parts are

not available at time 0, the following formulation

and solution methodology are still applicable after

a slight modification. The following symbols will

be used in the problem formulation:

Bi beginning time of part i

cij completion time of operation ði; jÞ
Ci completion time of part i

Di due date of part i

Ei earliness of part i, defined as maxð0;Di �
CiÞ

mij machine type selected to process opera-
tion ði; jÞ, mij 2 Hij

Mhs number of available machines of type h at

time s, 16 h6H
Oh set of operations that can be performed on

machine type h

tijh processing time of operation ði; jÞ on ma-

chine type h 2 Hij
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Ti tardiness of part i, defined as maxð0;
Ci � DiÞ

wi tardiness weight for part i

bi earliness weight for part i

dijh operation index over time for machine

type h with dijhðsÞ ¼ 1 if operation ði; jÞ is

performed on a machine of type h at

time s, and dijhðsÞ ¼ 0 otherwise. That is,
dijhðsÞ ¼ 1 for ði; j; h; sÞ with mij ¼ h and

cij � tijh 6 s6 cij, and dijhðsÞ ¼ 0 for others

With the above symbols, an optimization model

for the scheduling problem is presented below

following [19]:

Objective. The goal of on-time delivery and low

work-in-process inventory is modeled as a weigh-
ted tardiness and earliness cost, i.e.,

min
fmijg;fcijg

J ; with J ¼
X
i

wiTi þ
X
i

biEi; ð1Þ

where wi and bi are tardiness and earliness weights,

Ti and Ei are tardiness and earliness for part i,
respectively.

Since on-time delivery is the foremost criterion

in (1), bi is usually an order of magnitude smaller

than wi.

Operation precedence constraints. An operation

cannot be started until its preceding operation is

finished, and it requires a specific amount of time

for processing on the selected machine type, i.e.,

ci;j�1 þ tijmij 6 ci;j; i ¼ 1; 2; . . . ;N ;

j ¼ 1; 2; . . . ;Ni; ð2Þ

where ci;j is the completion time of operation ði; jÞ,
tijmij is the processing time of operation ði; jÞ on

machine type mij.

Machine capacity constraints. The number of

operations being processed on a machine of type h

at any time instant s cannot exceed Mh, the number

of machines for the type, i.e.,X
ij

dijhðsÞ6Mhs; 06 s < 1; h ¼ 1; 2; . . . ;H ;

ð3Þ

where dijh is operation index over time for machine

type h, Mhs is the number of available machines

of type h at time s.

The above formulation differs from that of [19]
in its time concept, as continuous time rather than

discrete time is used. Consequently, the left side of

the inequality (2) does not contain a term )1.

The overall problem is to minimize the cost

function (1) subject to the above constraints by

selecting appropriate machine types and comple-

tion times for individual operations. Since the

problem is NP-hard and no algorithm can opti-
mally solve the problem of practical sizes in a

reasonable computation time, a near-optimal ap-

proach based on Lagrangian relaxation will be

developed in the following sections.

3. Solution framework

Our new LR approach is based on machine

decomposition, and is carried out by relaxing op-

eration precedence constraints. The reason for

relaxing the precedence constraints is that the

number of such constraints does not depend on

the time horizon so that relaxation can lead to a

time horizon-independent approach. However, if

only precedence constraints are relaxed, the re-
laxed subproblems, which are parallel machine

problems to minimize the weighted earliness and

tardiness criterion, are difficult to solve. For this

reason, an additional effort is made by reformu-

lating the original problem and relaxing also the

earliness and tardiness constraints. The resulting

subproblems are then parallel machine problems

to minimize the weighted completion time, where
efficient approximate algorithms exist.

3.1. Problem reformulation

The definition of the tardiness for part i implies

that

Ci � Di 6 Ti; and ð4aÞ

06 Ti; i ¼ 1; 2; . . . ;N : ð4bÞ

Similarly, the definition of the earliness for part i

implies that

Di � Ci 6Ei; ð5aÞ

06Ei; i ¼ 1; 2; . . . ;N : ð5bÞ
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With the above derivation, the problem presented

in the previous section can be reformulated as

follows:

P: min
fmijg;fcijg;fTig;fEig

J ; with J ¼
X
i

wiTi þ
X
i

biEi;

subject to (2), (3), (4a), (4b), (5a) and (5b), where

earliness Ei and tardiness Ti are also treated as

additional decision variables.

These two problems are equivalent because for

any optimal solution of P, Ti ¼ maxð0;Ci � DiÞ
and Ei ¼ maxð0;Di � CiÞ for all i. If this is not true,

there exists some i such that Ti > maxð0;Ci � DiÞ
or Ei > maxð0;Di � CiÞ. A better solution can then
be obtained by taking Ti ¼ maxð0;Ci � DiÞ and

Ei ¼ maxð0;Di � CiÞ.

3.2. Relaxation and decomposition

By introducing multipliers flig, fmig, and fkijg
to relax constraints (4a), (5a), and (2), respectively,

the relaxed problem of P is obtained as:

RP: min
fmijg;fcijg;fTig;fEig

Lðfflig; fmig; fkijgg; ffmijg; fcijg;

fTig; fEiggÞ; ð6Þ

subject to (4b), (5b), (3), with

L � J þ
X
i

liðCi � Di � TiÞ þ
X
i

miðDi � Ci � EiÞ

þ
X
ij

kijðci;j�1 þ tijmij � ci;jÞ:

Let ffm�
ijg; fc�ijg; fT �

i g; fE�
i gg be an optimal solu-

tion of RP for a given set of multipliers. The dual

problem of RP is to maximize the dual function q:

DP: max
fli ;mi;kijgP 0

q ð7Þ

with q � Lðfflig; fmig; fkijgg; ffm�
ijg; fc�ijg; fT �

i g;
fE�

i ggÞ.
Function L can be rewritten as:

L ¼
X
i

ðwi � liÞTi þ
X
i

ðbi � miÞEi þ
X
i

liCi

�
X
i

miCi þ
X
ij

ðki;jþ1 � kijÞci;j �
X
i

liDi

þ
X
i

miDi þ
X
ij

kijtijmij :

Since constraints (4b), (5b) and (3) are indepen-

dent of each other, RP can be decomposed into

tardiness subproblem PT, earliness subproblem

PE, and the subproblem to determine fmijg and

fcijg.

PT: min
Ti P 0

X
i

ðwi � liÞTi;

PE: min
Ei P 0

X
i

ðbi � miÞEi; and

PMC: min
fmijg;fcijg

L;

subject to (3), with

L �
X
i

ðli � miÞCi þ
X
ij

ðki;jþ1 � kijÞci;j

�
X
i

ðli � miÞDi þ
X
ij

kijtijmij :

Tardiness subproblem PT has an optimal solution:

Ti ¼ 0 if wi � li P 0, and Ti ¼ þ1 if wi � li < 0.

Earliness subproblem PE has an optimal solution:

Ei ¼ 0 if bi � mi P 0, and Ei ¼ þ1 if bi � mi < 0.

If each operation has only one eligible machine

type to process, mij will no longer be a decision

variable and tijmij will be a constant. In this case,

subproblem PMC can be further decomposed into a
set of subproblems, one for each machine type, by

regrouping the terms in L according to machine

types:

L ¼
X
h

X
ði;NiÞ2Oh

ðli

(
� miÞCi þ

X
ði;jÞ2Oh

ðki;jþ1 � kijÞcij

þ
X

ði;jÞ2Oh

kijtijmij

)
�
X
i

ðli � miÞDi

¼
X
h

X
ði;jÞ2Oh

~wwijcij

(
þ

X
ði;jÞ2Oh

kijtijmij

)

�
X
i

ðli � miÞDi

¼
X
h

Lh �
X
i

ðli � miÞDi; ð8Þ

where

Lh �
X

ði;jÞ2Oh

~wwijcij þ
X

ði;jÞ2Oh

kijtijmij ;
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~wwij �
li � mi � kij; j ¼ Ni;
ki;jþ1 � kij; 16 j < Ni:

�
ð9Þ

Since each Lh in (9) depends only on decision

variables related to machine type h, and
P

i ðli�
miÞDi is a constant for a given set of multipliers

fflig; fmig; fkijgg, problem PMC can be decom-

posed into a set of subproblems Ph, one for each

machine type h, as follows:

Ph : min Lh;

subject to
X
ij

dijhðsÞ6Mhs; 06 s < 1: ð10Þ

Generally, some operations may have more than

one eligible machine types to process. In this case,
to decompose subproblem PMC into a set of sub-

problems, machine types are grouped in a way

that any two machine types h1 and h2 with

Oh1
\ Oh2

6¼ ; are clustered into the same group,

where Ohi is the set of operations that can be per-

formed on machine type hi as defined in Section 2.

Subproblem PMC can then be decomposed into a

set of subproblems, each for a group of machine
types.

If a group of machine types contains only one

machine type having only one machine, its corre-

sponding subproblem, referred to as the ‘‘machine

subproblem’’, is a single machine scheduling prob-

lem to minimize the weighted completion time

of operations. If the group contains only one

machine type but having multiple machines, its
corresponding subproblem, referred to as the

‘‘machine type subproblem’’, is an identical par-

allel machine scheduling problem [12] to minimize
the same criterion. Otherwise, the group contains

more than one machine types. In this case, its

corresponding subproblem, referred to as the ‘‘ma-

chine group subproblem’’, is an unrelated parallel

machine scheduling problem [12] to minimize the

sum of the weighted completion time and the

weighted processing time of operations. The sub-

problem can be formulated as:

PG : min LG �
X

ði;jÞ2OG

~wwijcij þ
X

ði;jÞ2OG

kijtijmij ;

subject toX
ij

dijhðsÞ6Mhs; 06 s < 1; h 2 G; ð11Þ

where G is a set of machine types, OG ¼ [h2GOh is

the set of operations that can be performed on a

machine type belonging to G. The formulations of

machine and machine type subproblems can be

viewed as two specific cases of this formulation.

For classic job shop scheduling, all subprob-

lems of PMC are machine subproblems. Generally,
however, the subproblems may contain machine,

machine type, and machine group subproblems.

The solution of these subproblems will be pre-

sented in the next section.

3.3. Decomposition and coordination structure

As most existing LR approaches, our new ap-
proach adopts a two-level decomposition and co-

ordination structure as illustrated in Fig. 1. At the

Fig. 1. The two level decomposition and coordination structure.
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low level, all subproblems are solved for a given set
of multipliers, and the set of multipliers are itera-

tively adjusted at the high level based on the degree

of constraint violation. Simple heuristics are then

applied to adjust subproblem solutions to obtain

feasible schedules when such an iterative process

terminates.

The differences between most existing LR

approaches and the new approach are that in
our approach, the subproblems are approximately

solved by heuristic algorithms, and the recently

developed SSG method [20] is used to update

Lagrange multipliers at the high level. The reso-

lution of the subproblems and the dual problem

and the construction of feasible schedules will be

presented in the following sections.

4. Subproblem solution

4.1. Computational complexity of the subproblems

For a given scheduling problem, the subprob-

lems of PMC may contain machine subproblems,

machine type subproblems, and machine group
subproblems. These subproblems have different

computational complexities. For a machine sub-

problem, if the machine is available throughout

the scheduling horizon, it is a single machine

scheduling problem to minimize the weighted

completion time criterion and is polynomially

solvable [12]. Otherwise, it is NP-complete. Ma-

chine type and machine group subproblems,
however, are strongly NP-complete even if the

number of available machines of each machine

type is constant, because identical or unre-

lated parallel machine problems to minimize

the weighted completion time criterion are NP-

complete [12].

The NP-complete complexity of machine type

subproblems and machine group subproblems
implies that optimal algorithms may be not ap-

propriate for these subproblems, at least for these

with practical sizes [5]. Instead, heuristic algo-

rithms will be developed in the next subsection.

The heuristic resolution of the subproblems is

justified by a recently developed SSG method for

the optimization of Lagrangian dual function [20],
as SSG allows approximate optimization of sub-

problems under a convergence condition (see the

next section for details). The disadvantage of

solving subproblems approximately is that the

lower bound property of LR is lost, and this is at

an exchange of a great reduction in the computa-

tion time of our new LR approach.

4.2. Solving the subproblems

For simplicity, all machines are assumed to be

available throughout the scheduling horizon in the
following description of the heuristic algorithms.

For subproblems where some machines are not

available during certain time intervals, similar

approximate algorithms that take account of ma-

chine availability constraints exist after appro-

priate modifications [18]. Also for simplicity of

statement, two dimensional operation index (i, j) is

replaced by one dimensional index i after an ap-
propriate index transformation. With the new

operation index, the criterion of a subproblem can

be written as J �
P

i ~wwici þ
P

i kitimi , where ~wwi,

mi; ci and timi correspond to ~wwij, mij; cij and timij ,

respectively.

In the following, three algorithms will be pre-

sented for machine, machine type, and machine

group subproblems, respectively.

Algorithm 1 (Algorithm for machine subproblems).
Each machine subproblem is optimally solved by
using the Smith�s weighted shortest processing

time (WSPT) rule [12]. The rule sequences all op-

erations in a non-decreasing order of the ratio

ti=~wwi, where ti and ~wwi are the processing time and

the weight of an operation i, respectively. The

computational complexity of the rule-based algo-

rithm is Oðn logðnÞÞ, where n is the number of

operations.

Algorithm 2 (Algorithm for machine type subprob-
lems). Each machine type subproblem is approxi-

mately solved by using a parameter list scheduling

heuristic [12]. In the heuristic, all operations are

ordered according to a non-decreasing order of the
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ratio ti=~wwi as in the Smith�s WSPT rule for machine

subproblems. The heuristic assigns the next oper-

ation to the machine that first becomes available. In

most cases, the WSPT-based heuristic provides a

near-optimal schedule for the machine type sub-

problem. The computational complexity of the

heuristic is Oðmn logðnÞÞ, where m is the number of

identical machines and n is the number of opera-
tions.

Algorithm 3 (Algorithm for machine group sub-
problems). A machine group subproblem is ap-

proximately solved by using a similar parameter

list scheduling heuristic. For each machine type

h, all operations that can be processed by it are

arranged in a non-decreasing order of the ratio
tih=~wwi. This forms H operation lists, one for each

machine type. These lists are indexed by machine

type, where some operations may appear in more

than one list. With these lists, the heuristic cal-

culates the cost ~wwici þ kitih for each list h and its

first operation i and selects an operation and a

list (a machine type) with the minimum cost as

the operation to be dispatched next and the
machine type that the operation will be assigned

to. In the calculation, the completion time ci is

obtained assuming that operation i will be as-

signed to the earliest available machine of type h
next. The selected operation is then assigned to

the earliest available machine of the selected

machine type. After the operation is assigned, its

duplications in other lists are removed. This
process repeats until all operations are assigned.

The computational complexity of the heuristic is

Oðmn logðnÞÞ, where m is the total number of

machines and n is the total number of opera-

tions.

In few cases, the solution of the relaxed prob-

lem obtained by using the above algorithms does
not satisfy the convergence condition for SSG at

some iterations. In this case, Algorithm 3 is en-

hanced by a local search procedure to improve the

solution quality. The local search procedure real-

locates an operation to another machine type at

each step until the condition holds or further im-

provement of a solution is impossible.

5. Dual problem and the heuristics

In this section, the dual problem is solved by

using our recently developed SSG method [20],

and feasible schedules are constructed using heu-

ristics based on subproblem solutions or the mul-

tipliers. Before introducing the method, a property

of the dual problem is explored to restrict the
solution space of the problem.

5.1. Property of the dual problem

For an optimal dual solution, all coefficients in

the objective functions of PT; PE, and PMC

ð16 h6HÞ, i.e., wi � li; bi � mi, and ~wwij should

be non-negative for any i and j. Otherwise, by
taking Ti ¼ þ1;Ei ¼ þ1, or cij ¼ þ1, we have

L ¼ �1. Since the dual problem is a maximiza-

tion problem with a bounded optimal objective

value, such multipliers will not be an optimal so-

lution. Consequently we have:

li 6wi; mi 6 bi; ð12aÞ

ki;jþ1 P kij; if 16 j < Ni; i ¼ 1; 2; . . . ;N ; ð12bÞ

li P mi þ kiNi : ð12cÞ

Let X be the set of fflig; fmig; fkijgg�s satisfying

constraints (12a)–(12c). We thus have the follow-

ing property:

Property 1. The optimal solution of DP is attained
at a point in set X.

Intuitively, the multiplier kij can be interpreted

as the price (marginal cost) for one time unit later

completion of operation (i; j� 1) or the price for

one time unit earlier completion of operation ði; jÞ
for part i. The inequality ki;jþ1 P kij implies that

the late completion of operation ði; jþ 1Þ is more

costly (crucial) than the late completion of its

preceding operation ði; jÞ. This is because the time
slack for the completion of the part before its due

date becomes smaller and smaller as time ad-

vances. The constraint (12c) is a variant of the

constraint (12b) when the first and the last oper-

ations of a part are considered. The multiplier li
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can be interpreted as the price for one time unit
later completion of part i, while the weight wi is the

price for one time unit later delivery of the part.

The inequality li 6wi implies that the late com-

pletion of the part is less costly (less crucial) than

or as costly (crucial) as the late delivery of the part.

This is because one unit later completion of a part

does not imply one unit later delivery of the part if

the part is completed before its due date. A similar
explanation can be given to mi 6 bi.

5.2. Surrogate subgradient method

Lagrangian dual problems for separable integer

programming problems are commonly solved by

using the subgradient method, which requires op-
timally solving all subproblems at each iteration to
obtain a subgradient direction. This may be time

consuming for ones with many subproblems or

some hard subproblems. Recently, the surrogate

subgradient method has been developed to over-

come the difficulty [20]. In the method, a proper

direction can be obtained without optimally solv-

ing all the subproblems. In fact, only approxi-
mate optimization of one or several subproblems
is needed to get a proper ‘‘SSG direction.’’ The

convergence of the method is proved. Because this

method can obtain good directions with much less

effort, it is powerful for problems of large size. In

the following, a brief introduction of the method

is given.

Consider a separable integer programming

problem described as

ðIPÞ min
x

JIP ¼
XI

i¼1

JiðxiÞ; ð13Þ

subject to Ax6 b and xi 2 Zni ; i ¼ 1; . . . ; I ;

ð14Þ

where x ¼ ðx1; x2; . . . ; xnÞT
is an n� 1 decision

variable with n ¼
PI

i¼1 ni and Z is the set of inte-
gers.

The LR of IP is given by

LðkÞ � min
x2Zn

XI

i¼1

JiðxiÞ
"

þ kTðAx� bÞ
#
; ð15Þ

and the Lagrangian dual problem is

ðLDÞ : max
kP 0

LðkÞ; ð16Þ

where k is a vector of Lagrange multipliers.
As an extension of the Lagrangian dual, a sur-

rogate dual is introduced:

eLLðk; xÞ � XI

i¼1

JiðxiÞ
"

þ kTðAx� bÞ
#
; x 2 Zn;

ð17Þ

and its corresponding SSG is defined as

~ggðxÞ � Ax� b: ð18Þ

SSG method
Step 0 (Initialize). Initialize k0 and minimize all

subproblems to obtain x0 i.e.,

x0 ¼ arg min
x2Zn

XI

i¼1

JiðxiÞ
"

þ ðk0ÞTðAx� bÞ
#
: ð19Þ

Step 1 (Update multipliers). Given the current

point (kk; xk) at the kth iteration, the Lagrange

multipliers are updated according to

kkþ1 ¼ kk þ sk~ggk; ð20Þ

where ~ggk is the SSG given by

~ggk ¼ ~ggðxkÞ ¼ Axk � b; ð21Þ
with stepsize sk satisfying

0 < sk < L�
	

� eLLk



~ggk
��� ���2

�
: ð22Þ

Here L� ¼ Lðk�) is the optimal objective of dual

problem LD, eLLk ¼ eLLkðkk; xkÞ is the surrogate dual

at the kth iteration.

Step 2 (Perform approximate optimization).

Given kkþ1 perform ‘‘approximate optimization’’
to obtain xkþ1 such that xkþ1 satisfies

eLLðkkþ1; xkþ1Þ < eLLðkkþ1; xkÞ: ð23Þ

If such an xkþ1 cannot be obtained, set xkþ1 ¼ xk.
Step 3 (Checking stopping criteria). If the cri-

teria given by

kkkþ1 � kkk < e1 and ð24aÞ
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kxkþ1 � xkk < e2 ð24bÞ

are met, then stop. Otherwise go to Step 1. The
stopping criteria can also be based on CPU time or

the number of iterations.

It has been proved that in the SSG method, the

multipliers move closer step by step to optimal

solution k� of the dual problem, and if kkþ1 ¼ kk,

xkþ1 ¼ xk, (kk; xk) is the optimal solution of the dual

problem.

5.3. Solving the dual problem

Since subproblems Ph (or PG) in our new LR

approach are only approximately solved, we use
the SSG method to optimize the objective function

of dual problem DP. In our implementation of the

method, step size sk is taken as

sk ¼ b L�
	

� eLLk



~ggk
��� ���2

�
; ð25Þ

where b is a parameter with 0 < b < 1.

In the above formula, optimal dual L� is esti-

mated by LU ¼ ð1 þ x=hqÞ � eLL½k�, where x, h, and

q are three parameters, eLL½k� is the best surrogate
dual obtained prior to iteration k. Parameters x
and q are chosen within [0.1, 1.0] and [1.1, 1.5],

respectively, and parameter h is adaptively ad-

justed with h ¼ maxð1; h � 1Þ if eLLk > eLL½k�, and

h ¼ h þ 1 otherwise.

Since an optimal solution of the dual problem is

attained in set X, the search of the solution is re-

stricted to the set by projecting the SSG direction
onto X at each iteration. The iterative process is

terminated after a given number of iterations have

been executed or a given computation time has

been used up.

5.4. Construction of feasible schedules

Because of the discrete decision variables in-
volved, the solutions to subproblems are generally

associated with an infeasible schedule, i.e., some of

the precedence constraints might be violated. One

way to construct a feasible schedule is to use a list

scheduling method similar to that presented in

[10]. A list is created for each machine by ordering

the operations assigned to the machine in the non-
decreasing order of their completion times deter-

mined by the subproblem solutions. Operations

are then scheduled on the assigned machines ac-

cording to the lists as soon as all their preceding

operations have been scheduled. This heuristic

method, however, may result in deadlocks. For

instance, if the first operation of Part 1 precedes

the first operation of Part 2 on Machine 1 while
the second operation of Part 2 precedes the sec-

ond operation of Part 1 on Machine 2 in sub-

problem solutions, a deadlock will occur. Thus,

more comprehensive heuristics have to be devel-

oped for the construction of feasible schedules.

The first heuristic developed is based on the

orders of operations given by subproblem solu-

tions. The orders are used to construct a directed
graph, where each node represents an operation,

and a directed arc represents either an operation

precedence relation specified by an operation pre-

cedence constraint or by an order between two

operations given by subproblem solutions. The

graph may contain a loop (directed circuit). The

heuristic dispatches operations from source nodes

of the graph to sink nodes. An operation can be
dispatched if all its preceding operations have been

dispatched. If the graph has no loop, all operations

can be successively dispatched in this way, leading

to a feasible schedule. Otherwise, a loop will be

detected. In this case, a repair policy that changes

the order of two operations in the graph is invoked

to break the loop, and the dispatching process is

resumed after the repair.
The second heuristic is based on the multipliers

given by the dual solution. The heuristic dis-

patches operations according to a priority defined

by the cost ~wwijcij þ kijtijmij that depends on the

multipliers, where cij is calculated assuming that

operation ði; jÞ will be assigned to the earliest

available machine of type mij next. At each step,

the heuristic calculates the cost for all dispatchable
operations and their eligible machine types, and

selects a dispatchable operation and its eligible

machine type with the minimum cost as the oper-

ation to be dispatched next and the machine type

that the operation is assigned to, respectively. This

process continues until all operations are dis-

patched.
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6. Testing results

Our new approach has been implemented in

Cþþ on a PC with 450 MHz CPU. Numerical

testing has been performed to compare the ap-

proach with the LR approach based on part de-

composition [20] and dispatching rules. For the

new approach, both of the heuristics presented in
Section 5.3 for the construction of feasible solu-

tions were tested, while the best feasible cost ob-

tained by the heuristics is reported. Examples 1–3

are designed to compare our new approach with

the part decomposition approach with problem

sizes varying from small, medium to large. Ex-

ample 4 is designed to compare our new approach

with dispatching rules. For simplicity, the new ap-
proach relaxing precedence constraints is referred

to as LRprec and the part decomposition-based

approach relaxing machine capacity constraints as

LRmach.

Example 1. This example was designed to com-

pare the performance of LRprec for three different

types of job shops and to evaluate the impact of
the tightness of the due dates on the performance.

The three types are classical job shops, job shops

with identical machines, and flexible job shops

where some operations may be processed by more

than one machine type.

Nine problems were constructed for this ex-

ample from the benchmark ten job-ten machine

problem provided in Fisher and Thompson [9].
Problems C1–C3 are classical job shops, which are

the same as the benchmark problem except that

weighted tardiness rather than makespan is to be
minimized. The due date of part i ði ¼ 1; 2; . . . ; 10Þ
is generated according to a

P10

i¼1 tij, where
P10

i¼1 tij
is the total processing time of the part, and a is the

due date tightness factor taken as 1.0, 1.5, 2.0

for C1, C2, and C3, respectively. The tardiness

weights of all parts are set to one.

Problems I1–I3 are job shops with identical
machines constructed from the benchmark prob-
lem by replicating machines. Each machine is

replicated 1–3 times. For these machines, the

numbers of replication are 1, 2, 1, 3, 2, 2, 2, 3, 3, 3,

respectively. The due dates and the tardiness

weights for Ii are the same as those for Ci, i ¼
1; 2; 3.

Problems F1–F3 are flexible job shops con-

structed from the benchmark problem too. For
each operation, the number of alternative ma-

chines is randomly generated between 1 and 3.

Each alternative machine is randomly generated

between 1 and 10. The processing time of the op-

eration on an alternative machine is set to the

processing time of the operation in [9] multiplied

by a rate randomly generated according to a uni-

form distribution U ½0:5; 2:0�. The due dates and
the tardiness weights for Fi are the same as those

for Ci, i ¼ 1; 2; 3.

For a fair comparison between the two LR

approaches, the same number of iterations is used

as a stopping criterion. In this example, the num-

ber is taken as 100. Testing results are shown in

Table 1, where the CPU time is the computation

time of the approaches and the feasible cost is the
cost of the best feasible schedule obtained. Since

Table 1

Testing results for 10 � 10 problems

Problem no. CPU time (seconds) Multiplier number Feasible cost

LRprec LRmach LRprec LRmach LRprec LRmach

C1 1 7 110 11820 3291 3006

C2 1 9 110 13510 835 800

C3 1 11 110 14430 166 658

I1 1 7 110 9770 1511 1215

I2 1 8 110 10830 70 65

I3 1 11 110 14430 0 45

F1 1 12 110 11860 2045 1907

F2 1 11 110 11700 423 671

F3 1 16 110 14430 0 165
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the memory requirement of the approaches is
dominated by the number of multipliers especially

for problems with long time horizons, it is reflected

on multiplier number in the table.

From Table 1, we can see that the performance

of LRprec for the three different types of problems

are similar. Compared to LRmach, the new ap-

proach needs much less computation time and

memory for all cases. The performance of LRprec

versus LRmach in terms of feasible cost, however,

depends on how the due dates are set. When the

dates are tight, LRmach performs better than LRprec

The new approach, however, becomes better than

LRmach as the due dates increase. One possible

explanation for this is that LRmach is due date

driven, it performs quite good when the due dates

are tight, while the relaxation of the tardiness
constraints (4a) deteriorates the performance of

LRprec in this case. For this example, the first

heuristic outperforms the second heuristic.

It should be noted that both of the LR ap-

proaches cannot be compared with well designed

algorithms such as the shifting bottleneck proce-

dure for classical job shop scheduling problems if

we do not take account of the computation time.
However, our goal is to find good schedules for

problems of large size in a short computation time

rather than to find an optimal schedule in several

hours. In this case, our new LR approach has its

own advantages, particularly on its computational

efficiency and its flexibility to deal with a wider

range of job shop scheduling problems with rout-

ing flexibility.

Example 2. This example was designed to com-

pare the performance of the approaches for me-

dium-sized problems. Thirty flexible job shop

problems with 10 machine types and 100 parts

were randomly generated for the example. For

each problem, the number of machines per ma-

chine type is randomly generated from 1 to 3. Each

part has 10 operations, with the number of alter-

native machine types randomly generated between

1 and 3. These alternative machine types are ran-

domly generated between 1 and 10. The processing
time of each operation (i; j) on an alternative

machine type is set to a nominal processing time

multiplied by a rate. The nominal processing time

and the rate are randomly generated according to

uniform distributions U ½1; 10� and U ½0:5; 2:0�, re-

spectively. The due date Di is generated according

to Di ¼ a
P10

i¼1 tij, where a is the due date tightness

factor. Because more parts are processed by a
similar number of machines in the shops of this

example, the tightness factors taken are larger than

those in Example 1. Three sets of problems with

tightness factors 4, 6, 8, respectively, are gen-

erated, with 10 problems for each set. For all

problems, the tardiness weights of all parts are set

to 1 and the earliness weights set to 0.1.

As in Example 1, both of the LR approaches
are terminated after 100 iterations. Testing results

are shown in Table 2, where F1, F2, and F3 denote

the problem sets with a ¼ 4, 6, and 8, respectively.

In this table, the CPU time is the mean computa-

tion time of the approaches for each set of prob-

lems, and RDJ ¼ ðJprec � JmachÞ=Jmach is the mean

relative difference of the feasible costs for each set

at 100 iterations.
From Table 2, we can see that the performance

of the new approach for medium-sized problems is

similar to that for small problems in Example 1.

For this example, the second heuristic outperforms

the first heuristic.

Table 2

Testing results for 100 � 10 problems

Problem set CPU time (seconds) Multiplier number RDJ

LRprec LRmach LRprec LRmach

F1 8 101 1100 7470 0.189

F2 7 104 1100 8438 )0.021

F3 6.5 108 1100 8926 )0.253

RDJ : mean relative difference of the feasible costs at 100 iterations.
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Example 3. This example was designed to com-

pare the performance of the approaches for large

problems and to evaluate the impact of the prob-

lem size on performance. As in Example 2, three

sets of flexible job shop problems with ten prob-

lems for each were randomly generated. The

generation of the problems is similar to that in

Example 2 except that the number of parts be-
comes 1000 and the due date tightness factors a for

the three sets are taken as 20, 30, and 40, respec-

tively.

As in Examples 1 and 2, the two LR approaches

were tested with the iteration number as their

stopping criterion. Testing results for 100 itera-

tions are shown in Table 3, where F1, F2, and

F3 denote problem sets with a ¼ 20, 30, and 40,
respectively.

Since computation time is critical for practical

scheduling, the two approaches were also tested

for the three sets of problems with a limited

computation time of 15 minutes. The mean rela-

tive difference RDJ of the approaches for problem

sets F1, F2, and F3 in this testing is )0.153,

)0.302, )0.589, respectively.
From the above results, we can see that for

large problems the new approach has a similar

performance as for medium-sized problems in

terms of feasible costs. As the time horizon in-

creases caused by the increase of part number in

this example, the reductions of the computation

time and memory of the new approach versus

LRmach become more significant. The reason for
this is that the computation time and memory of

the new approach do not depend on the time ho-

rizon. It is also seen that with 15 minutes of limited

computation time, LRprec outperforms LRmach for

all problem sets. For this example, the second

heuristic outperforms the first heuristic.

The above results on the performance of the

heuristics show that the second one becomes better

as the size of problems increases, while the first one

performs well for small problems. One possible

explanation for this is that in the first heuristic, the

completion time of an operation will be delayed if

the precedence constraint with its preceding oper-

ation is violated. This effect will accumulate as
more and more operations are dispatched and the

accumulation will make the order of any two late

dispatched operations given by the subproblem

solutions useless if the number of operations is

large. By contrast, the information of the multi-

pliers used in the second heuristic is less sensitive

to the number.

Example 4. This example was designed to further

evaluate the performance of our new approach by

comparing it with dispatching rules [2,16]. Six

dispatching rules obtained by combining two

routing rules with three sequencing rules are con-

sidered. The routing rules are SQ (select a machine

type with the shortest queue) and LW (select a

machine type with the least work in queue). The
sequencing rules are SPT (select an operation with

the shortest processing time), EDD (select an op-

eration of a part with the earliest due date), and

CR (select an operation of a part with the least

ratio of the part slack time to the remaining pro-

cessing time) rules [2]. Two sets of 30 randomly

generated problems as in Examples 2 and 3 were

tested.
Testing results are shown in Table 4, where

RDJ ¼ ðJdispatch � JLRprecÞ=JLRprec is the mean rela-

tive difference of the feasible costs of a dispatching

rule and the new LR approach for each problem

set. From the table, we can see that our new ap-

proach significantly outperforms all dispatching

Table 3

Testing results for 1000 � 10 problems

Problem set CPU time (minutes) Multiplier number RDJ

LRprec LRmach LRprec LRmach

F1 14.6 501 11000 658440 0.198

F2 13.3 506 11000 658670 )0.032

F3 13.0 525 11000 659000 )0.264

RDJ : mean relative difference of the feasible costs at 100 iterations.
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rules on the feasible cost for both problem sets.

For the computation time, it is not surprise that

dispatching rules are much faster than our new LR

approach. They need only 0.1 second for 100 part
problems and 1 second for 1000 part problems on

average. By contrast, our new approach needs 7.2

seconds for 100 part problems and 13.6 minutes

for 1000 part problems on average. However, it is

worthy to spend more but reasonable computation

time to obtain a significantly better schedule by

using the new approach.

In summary, our new LR approach is much
more effective than the LR approach based on part

decomposition in terms of the computation time

and memory. For large problems with long time

horizons, the new approach outperforms the part

decomposition approach on feasible cost with a

limited computation time. Numerical testing also

shows that our new approach significantly out-

performs dispatching rules. These features render
the new approach practical for shop-floor use,

particularly in shops where a large number of parts

and a long planning horizon are involved.

7. Conclusions

LR is frequently used for separable optimiza-
tion. The efficiency of the approach, however,

depends on how a problem is relaxed and de-

composed, and how the relaxed subproblems and

the dual problem are solved. In this paper, a new

LR approach is developed for job shop scheduling

based on machine decomposition through relaxing

operation precedence constraints. By synergisti-

cally combining a recently developed SSG method
for the dual problem with fast approximate algo-

rithms for the subproblems, our new approach is

efficient for large problems with long time hori-

zons. For these problems, the new approach re-

quires much less memory and computation time as

compared to the LR approach based on part de-

composition. Numerical testing shows that our

new approach significantly outperforms dispatch-
ing rules and can solve problems with tens of

machine types and thousands of parts in less than

15 minutes on a personal computer. All of these

results demonstrate that an appropriate choice of

the relaxation framework can lead to significant

reductions in computation time and memory re-

quirements for a LR approach, and that a good

relaxation is a tradeoff between the number of the
constraints relaxed and the complexity of sub-

problems.
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