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An optimization-based method for unit commitment using
the Lagrangian relaxation technique is presented. The
salient features of this method includes nondiscretization
of generation levels, a systematic method to handle ramp
rate constraints, and a good initialization procedure. By
using Lagrange multipliers to relax system-wide demand
and reserve requirements and ramp rate constraints, the
problem is decomposed into the scheduling of individual
units. The optimal generation level of a unit at each hour
can be easily calculated since there are no system dynamics,
and the cost function is stage-wise additive and piecewise
linear with only a few corner points. A relaxed subproblem
can therefore be efficiently solved by using the dynamic
programming technigue without discretizing generation
levels. A subgradient algorithm with adaptive step sizing
is used to update Lagrange multipliers. An effective method
based on priority-list commitment and dispatch is adopted
to initialize these multipliers, and a heuristic approach is
developed to generate a good feasible schedule based on
the dual solution. Numerical results based on data sets
from Northeast Utilities show that this algorithm is
efficient, and near-optimal solutions are obtained.
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I. Introduction

Unit commitment of a thermal power system is used to
determine when to start up and/or shut down thermal
units, and how to dispatch the committed units to meet
system-wide demand and reserve requirements over a
period of up to one week. Each unit may have minimum
up and down times, ramp rate and other constraints.
This class of mixed integer programming problems has
been an active research subject for several decades
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because of potential cost savings. According to a recent
analysis, a 1% reduction in operating costs can result in
savings of 10 to 30 million US$ per year for an electrical
utility with 10000 MW of installed capacity'. However,
consistently generating optimal schedules has proved to
be very difficult, because the problem belongs to the class
of NP-hard combinatorial problems, and is considered
to be extremely difficult to solve for systems of practical
size (e.g. 100 units).

Recently, impressive results have been obtained by
using the Lagrangian relaxation approach for obtaining
near optimal solutions?>~. The basic idea is to relax
system-wide demand and reserve requirements by using
Lagrange multipliers. The problem can then be
decomposed into individual unit commitment sub-
problems, which are much easier to solve. The high-level
problem is to optimize Lagrange multipliers, and can be
solved efficiently by using continuous variable optimiza-

“tion techniques. The disadvantage of this method is that

the dual solution is generally infeasible, i.e. the once
relaxed system-wide constraints are not satisfied. Some
techniques, usually heuristics, are needed to modify the
dual solution to obtain a good feasible schedule.
Nevertheless, since the value of the dual function is a
lower bound on the optimal cost, the quality of the
feasible solution can be quantitatively measured.

A method for unit commitment based on the
Lagrangian relaxation technique is presented here. The
salient features of this method include nondiscretization
of generation levels, a systematic method to handle ramp
rate constraints, and a good initialization procedure. For
a relaxed subproblem without ramp rate constraint, the
optimal generation level of each hour can easily be
determined since there are no system dynamics, and the
cost function is stage-wise additive and piecewise linear
with only a few corner points. This subproblem is solved
by first constructing a state transition diagram where the
optimal generation levels of all up states are computed
without discretizing generation levels. Dynamic pro-
gramming technique is then applied with only a few well
structured states. This eliminates the difficult trade-off



between computational requirements and accuracy as
needed by most approaches that discretize generation
levels. ‘

The ramp rate constraint of a unit couples the
generation levels of two consecutive hours. If the
generation levels are discretized, this constraint can be
bandled by using the standard dynamic programming
technique?'®. The computational requirements, however,
would increase significantly (possibly by an order of
magnitude) as compared to the case without ramp rate
constraints?. If the generation levels are not discretized,
the constraint is very difficult to deal with. A
straightforward application of the dynamic programming
technique may lead to suboptimal results (see Sections
II1.2 and II1.7). This constraint is handled by using an
ad hoc approach in Reference 8, and is not considered in
Reference 9. In Reference 10, a subproblem is solved by
dynamic programming with an extended state space for
ramp-down logic, where limits of generation levels at
each hour are established. The optimality and feasibility
of the solution, however, are not guaranteed. Rather,
ramp constraints are satisfied in a sophisticated economic
dispatch process by using a ‘look-ahead’ heuristic
method.

In our paper, ramp rate constraints are relaxed by
introducing an additional set of multipliers for a unit
with the constraints. The subproblem is then solved as
if there were no ramp rate constraint. An intermediate
level is introduced to update this set of multipliers, and
a three-level framework is formed as shown in Figure 1.
Note that intermediate subproblems are only needed for
units with ramp rate constraints. An efficient subgradient
algorithm'! is modified to update Lagrange multipliers
associated with system demand, reserve and ramp rate
constraints. An effective method is developed to initialize
these multipliers based on the priority-list commit-
ment®!2 and dispatch. Since a dual solution is generally
infeasible, a heuristic method is also developed to
construct a feasible schedule based on the dual result.

The purpose of the research is to generate hourly
schedules for Northeast Utilities Service Company (NU)
which has about 70 thermal units. The maximum time
horizon is 240 h (10 days). Numerical results based on
NU data show that this method is efficient, and
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Figure 1. Three-level framework of Lagrangian
relaxation

near-optimal solutions are obtained. The algorithm
developed has been embedded in the daily scheduling
package of NU and used by NU engineers, mathematical
problem formulation is given in Section II.

il. Problem formulation

Consider a thermal power system with I units. It is
required to determine the startup, shutdown, and
generation levels of all units over a specified time period
T. The objective is to minimize the total cost subject to
system demand and spinning reserve requirements, and
other individual unit constraints. The time unit is one
hour and the planning horizon may vary from one day
to ten days. To formulate the problem mathematically,
the following notation is introduced.

C:(p:(t)) fuel cost of unit i for generating power
p:(t) at time t, a piecewise linear
function of p;(t), in US$

i index of units,i=1,...,1

I number of units

Py(t) system demand at time ¢, in MW

pi(t) power generated by unit i at time ¢, in
MW

pi(t) maximum generation level of unit i at
time ¢, in MW

pi(t) minimum generation level of unit i at
time ¢, in MW

P.(t) system spinning reserve requirement at
time ¢, in MW

T maximum spinning reserve contribution

of unit i, in MW

spinning reserve contribution of unit
i at time ¢, r(-)=0 if unit is
down (x;(t)<0) and r,(:)=
min{p;(t) — p;(t), 7} if unit is up
(x;(t) >0),in MW

R, ramp rate of unit i, in MW/h
S;(x;(t), u;(t)) startup cost of unit i, in US$

8§ cold start-up cost of unit i, in US$

r(xi(t), pi(2))

st hot start-up cost of unit i, in US$

t timeindex, t=1,..., T

T time horizon of commitment, in hours
u;(t) discrete decision variable of unit i at

time ¢ for up (1) or down (—1) of the
unit at time ¢ + 1
x;(t) state of unit i at time ¢, denoting number
of hours that unit i has been on (positive
values) or off (negative values)
maximum allowable change in genera-
tion between two consecutive hours,
A;=1-R;, in MW
minimum up-time of unit i, in hours
minimum down-time of unit i, in hours
cold start-up time of unit i, in hours

The problem is then formulated as the following mixed
integer programming problem

(P)

T
minJ, withJ = z
ui(t) t=1i=1
plt)

Ka REA R AT

LCi(pi(1)) + Si(xi(2), ui(1))]
(1)

subject to system-wide constraints which include the



following

Sys&em demand

'Z:x pi(t) = Py(t) (2)
Spillming reserve
_; r(x:(t), p:()) = P.(t) (3)

Individual unit constraints include

State transition
xi(t+ 1) =x;(t) + ui(¢) ifx;(¢)-u,(t)>0 4)
xi(t + 1) = u;(t) if x;(t)-u;(t) <0 (5)
i.e. the number of hours being up or down accumulates

if no start-up or shut-down occurs, otherwise the number
of hours being up or down equals 1

Capacity
pi(t) < pi(t) < pi(t) ifx,(1) >0 (6)
pi(t)=0 ifx;(£) <0 (7

Some units may also have one or more of the
following constraints.

Ramp rate
[pi(t + 1) - AT <p(t) <[p:i(t + 1)+ A]
ifx;(t)>1and x;(¢+1)=21 (8)

Minimum up/down time
u(t)=1 ifl <x(t)<7; 9)
u(t)= -1 if—, <x(t)< -1 (10)
implying that unit i must be kept on if it is up for less

than the minimum-up time or be kept off if down for less
than the minimum down time.

Minimum generation for the first and last hour (this is
required by the New England Power Pool for steam
units)

ri(x;(t), p:(t)) =0
ifx;(t —1)<0and x;(t) >0
or ifx;(t)>0andx,(t+1)<0 (11)

Must-run or must-not-run
x(t)>0 fort, <t<t, - (12)

pi(t) = pi(2),

if unit i is must-run for teft;, t;,1 = [1, T], and
x;(t) <0 fort, <t<ty, (13)

if unit i is must-not-run for te[t;,t,]<[1,T].
Muitiple must-run or must-not-run periods are also
possible.

lil. Solution methodology

1l.1 The Lagrangian relaxation framework

As mentioned before, the basic idea of the Lagrangian
relaxation technique is to relax system-wide constraints
on demand and spinning reserve (equations (2) and (3))
by using Lagrange multipliers and to formulate a

‘two-level structure. According to the cost function (1)

and constraints (2) and (3), the Lagrangian is formulated

as follows

T (1
L= Z,l { 2. [Cipi(2)) + Si(x,(t), u(2))]

i=1

I
+ A [P(t) - ¥ p(2)]

i=1

I
+u([P(t) - ¥ r.-(X.-(t),Pa(t))]} (14)

i=1

where A(t) and u(t) are Lagrange multipliers associated
with demand and spinning reserve requirements at time
t, respectively. For notational convenience, define

A=[A(1),AQ2),...,A(T)]T (15)
p=Lp1),p52), ..., (T (16)

By using the duality theorem*!3 and exploiting the

decomposable structure of equation (14), a two-level
maximum-minimum optimization problem can be
formed. Given multipliers 1 and g, the low level consists
of individual unit subproblems

(P),i=1,2,...,1
min L, withL = ) {[Ci(p:i(t)) + Si(x:(2), u;(¢))]
ui(t) =1
pi(t)
= A(©)pi(t) — p()r(xt), p:())} (17)

subject to equations (4)—(13).
Let L¥(A, 1) denote the optimal Lagrangian for (P-i)
with the given 4 and u. Then the high level dual problem is

(P-D) ;
max ®(4, ), with®(4, p)= Y L¥(4, p)

Apu i=1
T
+ X [A@)P.(r)
+u(t)F ()] (18)
subject to
u(®)=z0, t=1,2,...,T (19)

The above derivation presents a decomposition
framework for solving the unit commitment problem.
There are several steps to obtaining a near optimal
solution : solving subproblems, solving the dual problem,
and constructing a feasible solution, which are considered
below.

1.2 Solving individual unit subproblems

The solution methodology for a subproblem without
ramp rate constraints is presented first. For the cost
function in equation (17) with A and p given, define the
non-start-up cost as

Silpi(2), x;(£)) = [Ci(pi(2) — A(t)pi(t)
— p()r(x(¢), pi(t))] (20)
Clearly, if the unit is down (i.e. x;(t) < 0), then
Sulpi(t), x(2)) =0 (21)

If the unit is up, this non-start-up cost function does not
depend on the state x;(t) since the generation cost
C;(p:(t)) and spinning reserve r;(x;(t), p;(t)) generally
depend only on the generation level if unit i is up. This
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is true except for the first hour and last hour generation
when equation (11) is active. That is, for any two
arbitrary x;(t) and xi{(t) (1 <x;(t)<7; and
1<x(2)<7)

Jilpi(1), x:(2)) = fi(pi(2), xi(t)) (22)

Now the cost function of P-i in equation (17) can be
rewritten as

T
Li= Y Ufilp:(2), x:(8)) + 5,(xi(1), ui(2))]

Note that L, is stage-wise additive, there.are no dynamics
on the generation levels, and the start-up cost
S:(x;(t), u;(t)) is independent of generation p;(t). The
optimal generation level at time t for an up state
(x;(t) > 0) can therefore be obtained by minimizing
Ji(p:i(t), x;(t)) subject to the first hour and last hour
generation constraint, equation (11). That is,

pt (t) = arg min f;(p;(¢), x;()) (23)
pi()
if equation (11) is not active. Otherwise, p¥(t) = p;(t).
To solve equation (23), note that the generation cost
Ci(p;(t)) and spinning reserve

ri(xi(2), p:(¢)) = min {p;(¢) — p,(t), 7;}

are piecewise linear functions of p;(t), therefore,
Ji(pi(t), x;(t)) defined in equation (20) is also piecewise
linear with only a few corner points. The solution to
equation (23) can thus be easily obtained by checking
the corner points of f; as shown in Figure 2. The
corresponding optimal fuel cost can also be computed.

According to the billing rules of the New England
Power Tool, the time varying start-up cost is a linear
function of time since last shut down as shown in Figure
3. It is given by

Si(xi(2), u:()) = St + (Ix: ()] — 7)(SF — SH/(%5 — 1))
fori; < |x;(e)l <7 (24)

The start-up cost remains constant after the cold start-up
time. (This start-up cost function is different from the
exponential start-up cost function used by some utilities.
The effect of this difference is believed to be small,
especially when St — S* is small. The exact difference has
not been determined as no data is available. The
algorithm, however, is not limited by the specific form
of the start-up cost function. ) The number of down states

A 7(p (1), % (1)) Generation cost C;(p; ()

pi(t)

Total cost p;"(l)
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Figure 2. Stage size cost function of subproblem /
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needed to describe the different start-up costs at a
particular hour is therefore equal to the cold start-up
time. Sincé a unit can be kept on or shut down after it
is up for minimum up time, the required number of up
states is the minimum up time plus one, where the extra
one is needed to consider last hour generation. By
combining the above analysis for up and down states,
the state transition diagram can then be constructed as
in Figure 4. In the figure, each node represents a state
and each edge with an arrow indicates a possible state
transition. The non-start-up and start-up costs are
associated with nodes (states) and edges (state
transition ), respectively. It should be noted that all the
nodes corresponding to up states at hour ¢ have the same
generation level and therefore the same non-start-up cost
with the possible exceptions of the first and last hour
generations. The first and last hour generations for units
with constraint (11) must comply with the constraint.
The generation level and cost are zero for all the down
state nodes. Based on this state transition diagram, the
optimal commitment and generation of unit i can be
obtained by using dynamic programming with a few
states and well structured state transitions at each hour.
For a unit with ramp rate constraint (equation (8)),
the generation levels of two consecutive hours are
coupled. The optimal generation at hour t cannot be
obtained by just considering the stage-wise cost of that
hour as shown in Figure 2. It may not be obtained by a
straightforward application of dynamic programming
with p;(t) constrained to lie within
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[p:i(t +1)— A, pi(t + 1)+ A;] either as shown in
Figure 5. A numerical example associated with Figure 5
is provided in Section IIL.7. Obtaining the optimal
solution for the subproblem is very difficult. The
approach taken here is to use additional sets of multipliers
v;; and v;, to relax the ramp up and ramp down
constraints, respectively. The cost function in equation
(17) then becomes

T-1
Li(2, 4, vy, vi2) = Li(4, p) + Z {vis (2)
=1
x [pi(t +1)— A, — pi(t)]

+ v (O)[pi(t) — pi(t + 1) — A1}
(25)

By regrouping terms in equation (25) according to hours,
subproblem P-i can be rewritten as:

min L{(4, u, v;y, v;2)

ui(t)
pi(t)

T
with Li(4, u, viy, v;2) = Z [h:(pi(2), xi(t), Vi1, vi2)

=1
+ S;(x;(2), u;(¢))
= Ai(vir (1) + via(2))]  (26)

subject to equations (4)—(7) and (9)-(13). In equation
(26)

h:i(pi(t), xi(t), viy, vi2)

= fi(pi(t), x; (1))
+ [via (£) — vin (1)

+ vy (t — 1) — v (e — 1)1pi(2),
£=2.3,.. ., T—1 (27)

hi(p:i(1), x;(1), viy, vi2)
= fi(pi(1), x;(1)) + [vi2 (1) — vi; (1)1 p:i(1)

hi(pi(T), x;(T), viy, viz)
= fi(p(T), x(T))
+ [vi (T — 1) — v, (T — 1)1p(T) (29)

where v;; and v;, are stack vectors like 4 and u. The
optimal generation for each hour can be obtained

following equation (23)
p¥ (¢) = arg min h;(p;(t), x;(¢)) (30)

pi(t)
if equation (11) is not active. Otherwise, p¥(t) = p;(¢).
Dynamic programming can then be applied to solve P-i
based on the diagram depicted in Figure 4.

Let L{*(4, u, v;;, v;,) denote the optimal Lagrangian
for equation (26). The multipliers v;, (¢) and v;,(t) are
updated at the intermediate level as shown in Figure 1
by a subgradient algorithm to maximize the Lagrangian,
ie.

max Li*(4, g, viy, viz) (31)
vi
The subgradient algorithm to update the multipliers A,
i, v;; and v;, is presented below.

1.4 Solving the dual problem

The high level dual problem is to update the multipliers
Aand p associated with demand and reserve requirements
so as to maximize the dual function (equation (18)).
Since discrete decision variables are involved at the low
level, the objective function ® (4, i) in equation (18) may
not be differentiable at certain points. Therefore, a
subgradient algorithm is used to update 4 and u as

follows!1.14-16
A 1(t) = max[0, A'(t) + o’g,(t)] (32)
# 1 (1) = max[0, 4'(2) + o'g,1)] (33)
where lis the high level iteration index, a is the step size,
I
g.(t)=Puy(t) — ¥ pi(2) (34)
i=1

is the subgradient of ® (4, u) with respect to A(t), and
1
g,(t) = Py(t) = Y n(xi(¢), pi(2)) (35)
i=1
the subgradient of ®(4, u) with respect to u(t). From
equation (14), the multiplier A(¢) is the marginal cost
for demand at time t7, i.e. the cost to generate one more
MW power at time t. The multiplier 1(¢) is therefore
positive although it is associated with an equality
constraint.

The adaptive step sizing method of Reference 11 is
modified to obtain the step size « at iteration I. It is given
by

o L-L

"Tel. X 10T 011"
where L is an estimate of the optimal value of L with
L>L,g,and g, are stack vectors of g;(t) and g,(t) as
in equation (15), and y is a positive scaling constant.
Proof of convergence of the above formula is given in
Reference 14. The adaptive step sizing is for the selection
of L and y. The estimate L generally decreases as the
number of iterations increases. Since the dual cost L is
generally increasing with the number of iterations, step
size o decreases. When L — L comes within a certain
threshold d,, L is increased by a certain percentage
causing « to jump. This jump is often too large resulting in
a drop in L as shown in Figure 6. The estimate L then
decreases with the number of iterations and the process
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Figure 6. Adaptive step sizing method

repeats. The scaling constant y is reduced by half if the
dual cost L does not increase as L decreases, or if the
values of L just before the jumps (the peak values of L
as in Figure 6) do not increase. This decrease in y prevents
oscillation caused by too large step sizes. The high level
iteration terminates when the dual cost L cannot be
further improved, or a pre-set number of iterations has
been reached.

By using this step sizing method, the total number of
high level iterations required is not sensitive to the initial
values of y and L, nor to the increment or decrement of
L. Therefore, trial-and-error parameter tuning efforts can
be greatly reduced, and the algorithm is robust for
various data sets tested.

The multipliers v;; and v,, for relaxing the ramp rate
constraint are updated in the same way as in equations
(32)-(35) with 4 and u replaced by v;; and v;,. The
iteration index, however, is different. For each high level
iteration with A and u given, v;; and v, are updated at
the intermediate level (Figure 1) until the dual cost
function in equation (31) cannot be improved. The
subgradients of L{* with respect to v;; and v;, are

g (t) =pi(t + 1) — A, — pi(t) (36)
and
9v2(t) = p;i(t) — [p:(t + 1) + A] (37)

1.5 Initializing the multipliers

Good initialization of multipliers can significantly reduce
the number of high level iterations needed. In our
algorithm, the multipliers associated with system demand
are initialized to be the system marginal costs based on
the priority-list commitment and dispatch. For each
hour, a unit priority table based on unit full load average
rates is first constructed. The units are committed in the
ascending order of their full load average rates until the
committed capacity meets the sum of the demand and

‘reserve requirements. A block priority table of those

committed units is then constructed where a block of a
unit represents a segment of generation with equal
marginal cost. Blocks are dispatched in the ascending
order of block rate until the system demand is satisfied.
The multiplier A(¢) is then initialized to be the system
marginal cost, i.e. the rate of the last block dispatched
at time t. All other multipliers are initialized to zero since
the reserve and ramp rate constraints are too difficult to
be considered in initialization.

11L.6 Obtaining feasible solutions

The dual solution is generally infeasible, i.e. the demand
and reserve constraints generally are not satisfied®. A
heuristic method is developed to generate a good feasible
solution based on the dual results. The dual solution is
first checked to determine whether it can be made feasible
by adjusting generation levels of committed units only.
Since generation levels of some units cannot be adjusted
or are difficult to adjust, e.g. units at first or last hour
generation and units with ramp rate constraints, the
committed units at hour t are divided into three
nonoverlapping sets. Let E,, denote the set of units at
first or last hour generation at hour ¢t with equation (11)
active, E,, the set of units with ramp rate constraints but
not in E,,, and E,, the rest of committed units at hour
t. Then the following two inequalities form a set of
sufficient conditions for the feasible dispatch of the
committed units

2 ()2 P(t)+P(t)— ¥ pi()— X pe(t)(38)

ieE1e JeE2e keE3.
z r, = P(t) - Z n(x (), pe(t)) (39)
ieEy¢ keEs.

Equation (38) requires the committed capacity to meet
the total demand and reserve requirements. Equation
(39) then guarantees that the committed units can
provide enough reserve. If equations (38) and (39) are
satisfied, a feasible economic dispatch solution can be
constructed by manipulating generation levels of the units
in E,, while fixing the generation levels and reserve
contributions of the units in E,, and E,,. The first step
is to preserve enough reserve from the units in E,, to
meet the reserve requirement left by the units in E;, (the
units in E,, do not provide reserve as can be seen from
equation (11)). This is done by preserving blocks in the
descending order of block rate until the reserve
requirement is satisfied, subject to maximum reserve
contributions of individual units. The unpreserved blocks
of the units in E,, are then dispatched in the ascending
order of block rates until the system demand is satisfied.

If equations (38) and (39) are not satisfied, more units
are to be committed at hour ¢. Two feasible solutions are
generated, and the better one is selected. The first solution
is obtained by committing turbine units without
minimum up and down time constraints. This is good
for isolated infeasible hours. The second solution is
generated by adjusting steam units based on unit full
load average rates subject to minimum up and down time
constraints. A feasible solution is generally obtained by
starting up some units earlier or shutting down some
units later than scheduled in the dual solution. A steam
unit may also be started up just to cover a number of
consecutive infeasible hours. The infeasibility caused by
too many committed units has not yet occurred in our
testing. If so, some units can be shut down in a similar
way based on full load average rates.

The ramp rate constraint in the dual solution is
generally satisfied or with only a few minor violations at
the convergence of an intermediate subproblem as
observed in our testing. A simple heuristic has been
developed to adjust the generation levels to meet the
ramp rate constraint before checking equations (38) and
(39). This is done by adjusting generation levels to be
within the ramp rate starting from the first hour
generation forward in time and also from the last hour



generation backward in time until the ramp rate is
satisfied for all hours.

A few additional high level iterations, each going
through the heuristics to obtain a feasible schedule, are
then carried out (the so-called ‘heuristic iterations’) to
select a good feasible solution. The final cost and the
maximum dual function value are used to calculate the
duality gap, a measure of the quality of the feasible
schedule.

L7 Summary of the 5Igorithm
The algorithm is summarized as follows

(1) [Initialize] Initialize system demand multiplier 4
according to priority-list commitment and dispatch.
Initialize all other multipliers y, v;, and v;, to zero.

(2) [Solve subproblems] For a unit without ramp
constraint, go to Step 2a. Otherwise go to Step 2b.
If all the subproblems have been solved, go to Step 3.
(a) Solve the subproblem without the ramp rate

constraint for the given 4 and u according to
Section I11.2. Go to Step 2.

(b) Solve the subproblem with the ramp rate
constraints for the given 4, u, v;; and v;,
according to Section II1.2.

(c) Update v;; and v;; by using the subgradient
method.

(d) If the stopping criteria for v;; and v;, are
satisfied, go to Step 2. Otherwise go to Step 2b.

(3) [Update multipliers] Update A and u according to
equations (32) and (33).

(4) [Check convergence] If the stopping criteria for the
high level problem (equation (18)) have not been
satisfied, go to Step 2.

(5) [Generate feasible solutions] If a feasible solution
can be obtained without changing commitment, go
to Step 5a. Otherwise go to Step 5b.

(a) Generate a feasible solution by economic
dispatch. Go to Step 6.

(b) Obtain two feasible solutions by using the
heuristic methods discussed in Section IIL.5.

(6) [Select the best feasible solution] Select the best
feasible solution obtained. If the desired number of
heuristic iterations is reached, stop.

(7) [Update multipliers] Follow Step 3 to update 4 and
4, and follow Step 2 to solve low level subproblems.
Go to Step 5.

I11.8 Discussion on methods for solving subproblems
with ramp rate constraints

The optimal solution of a subproblem with ramp
rate constraint may not be obtained by a straightforward
application of dynamic programming as used in
Reference 8. This can be illustrated by the following
simple example. For convenience of presentation,
suppose that the generation cost C;(p;(t)) is a quadratic
function of p,(t) (approximation to the piecewise linear
function shown in Figure 2). The stage-wise dual cost
can be written as

Li(pi(t), x(t)) = a;p? (t) + bipi(t) + ¢; — A(t)pi(t)
— u(e)n(pi(t), x;(¢)), forx;(t) =1

where a;, b; and ¢; are appropriate coefficients. If the
ramp rate constraint is ignored and u(t) = 0, the optimal
generation level at hour t can be obtained by
differentiating the above equation and considering the

minimum and maximum generation levels, i.e.
pi(t) = min{max{ — (b, — A(¢))/(2a), p:(t)}, Bs(1)}

With parameters q; = 0.05, b; =24, ¢; = 50, p;(t) =
15 MW, p,(t) = 75 MW, and the multipliers 1(¢; — 1) =
26, A(t,)=30, A(t, —1)=29, p(t, —1)=p(,)=
u(t, + 1) =0 for a particular ¢,, the optimal generation
levels at t, — 1, ¢, and ¢, + 1 without the ramp rate
constraint are found to be

pi(t, — 1) = 20 MW
pi(t,) = 60 MW
pi(t, + 1) = SOMW

Now consider the ramp rate constraint with
A; = 15 MW. By straightforward application of dynamic
programming as shown in Figure 5 with p,(t, + 1) =
pi(ty + 1) =50 MW, the generation levels at ¢, and
t, — 1 are obtained as

pi(ty) = pi(t;) =60 MW, p,(t;, —1)=45MW

with total dual cost —143.75. Note that p;(t, — 1) is on
the boundary of the feasible region delineated by
p:i(ty) = 60 MW. However, taking

pilt, + 1) = 50 MW
pi(t,) =45 MW

one obtains a better result with total dual cost — 158.75.

The methods developed in Reference 10 for solving
subproblems with ramp rate constraints are efficient. The
schedules generated by using these methods are more
likely to meet the constraints than if these methods were
not used. However, these methods do not guarantee that
a schedule satisfying the ramp rate constraints will be
produced in solving subproblems (conclusion in
Reference 10), and optimality is not systematically
considered.

The computational requirements of our ramp rate
relaxation method are generally higher than the
requirements of methods in References 8 and 10 since a
number of intermediate iterations may be needed. The
computational time for economic dispatch, however,
would be lower in comparison with other methods
because our method for constructing a feasible solution,
as can be seen from Section IILS, is simpler.

As compared to the methods that discretize generation
levels, an advantage of our ramp rate relaxation method
is that the computational complexity is related to the
number of active ramp rate constraints. If no ramp
constraint is active, the complexity is about the same as
for the case without the constraint since v;; and v;, are
initialized to zero. The complexity increases as more
ramp rate constraints become active. This is in contrast
to the discretized dynamic programming approach,
where computational complexity is fixed whether the
constraint is active or not.

IV. Numerical results

Numerical testing of our algorithm was performed by
using five NU data sets: week 2 in August 1989 ; week
2 in December 1989 ; week 4 in February 1990; week 3
in April 1990 and weck 4 in March 1991. These data sets
cover weeks in various seasons and were randomly



selected from NU billing data files. Hydro and pumped
storage contributions, together with power provided by
cogenerators and nondispatchable contracts, were
deducted from system demand and reserve requirements.
The number of thermal units and dispatchable contracts
is about 70, and the commitment horizon is one week,
i.e. 168 h. The reserve requirement considered is the
10 min spinning reserve. Each dispatchable contract is
modelled as a one-block unit without minimum up and
down time constraints, and without contribution to
reserve. A summary of the major system parameters is
given in Table 1.

All the billing rules of New England Power Pool are
complied with and many practical considerations are
included. For example, unit characteristics and fuel prices
are allowed to change within the commitment horizon
in view of maintenance, unit entitlement change, etc., and
generation levels of some units may be fixed for several
time intervals for testing or maintenance purposes. Some
units have extremely long minimum down times (e.g.
55 h), and some units have very long cold start-up times
(e.g. 60 h and some even up to 110 h). These result in
large numbers of down states. All the above add to the
complexity of the testing.

The algorithm was implemented in FORTRAN on
SUN Sparc Station 2. Numerical results for the five data
sets- are summarized in Table 2. For each data set, the
case with the ramp rate dropped and the case with all
constraints considered were tested to see the effects of

Table 1. Summary of system characteristics

ramp rate on algorithm performance. There are only four
units with ramp rate constraints (excluding nuclear units
whose ramp rate constraints are seldom active). For the
data sets tested, ramp rate violations do occur if this
constraint is dropped.

It can be secen from Table 2 that the CPU times for
all five data sets (and for many others not shown here)
are only a few minutes on a Sparc Station 2. As expected,
it takes more time to solve problems with ramp rate
constraints than problems without them since a number
of intermediate iterations are needed to update the ramp
rate multipliers. To speed up computation, the
constraints are not imposed until a certain number of
high level iterations have been completed. The total
numbers of high level iterations for cases with or without
the constraints, however, are very close, and the increase
in CPU time is not as bad as reported?. As the number
of ramp rate constrained units increases, the increase in
computational time would mostly be attributed to the
increased effort spent on intermediate level iterations. It
has also been observed from testing that the number of
high level iterations is insensitive to system size and time
horizon, and the computational time increases about
linearly as the number of units or commitment horizon
increases.

The quality of a solution is measured by the duality
gap, defined as the relative difference between the final
cost and the maximum value of the dual function. From
Table 2, it can be seen that ramp rate constraints cause

Total number Total capacity or requirement (MW)
"Augw2 Decw2 Febwd4 Aprw3 Marwd Aug w2 Dec w2 Feb w4 Apr w3 Mar w4
System characteristics 89 89 90 90 91 89 89 90 90 91
Steam units 24 25 32 31 25 1684 1583 1804 1776 1547
Turbine units 27 26 23 24 26 257 288 293 238 204
Nuclear units 7 6 7 7 7 2471 2406 1245 2102 1792
Dispatchable contracts 8 19 8 6 6 350 720 689 292 245
All units 67 76 70 68 64 4762 4997 4031 4408 3788
Peak load 3380 3680 3132 3771 3374
Minimum load 2200 - 2800 2036 2559 2524
Maximum reserve 140 125 132 149 166
Table 2. Summary of testing results
Number
of high
level
itera- CPU time Max. dual Best feasible Duality gap
Data sets tions (sec) cost (§) cost ($) (%)
Without ramp rate Aug w2, 89 39 231.12 4,551,996.65 4,565,930.38 0.30
Dec w2, 89 55 235.34 10,494,111.07 10,526,993.52 0.39
Feb w4, 90 57 240.24 5,693,638.36 5,698,307.96 0.08
Apr w3, 90 29 183.11 5,856,300.91 5,863,637.03 0.13
Mar w4, 91 43 242.87 4,575,202.30 4,579,412.09 0.09
With ramp rate Aug w2, 89 37 282.24 4,550,967.85 4,565,506.38 0.32
Dec w2, 89 49 365.31 10,498,197.37 10,536,055.69 0.49
Feb w4, 90 66 42394 5,700,291.95 5,711,858.93 0.20
Apr w3, 90 34 343.51 5,857,696.82 5,868,396.14 0.18
Mar w4, 91 47 324.09 4,575,897.71 4,581,127.17 0.11




the duality gaps to increase, however, all the gaps are
below 0.5% with most of them below 0.3%. The duality
gaps of other data sets tested but not reported here are
in the same range. The results thus demonstrate
consistent convergence of the algorithm, and support our
claim that near optimal solutions are obtained by using
this algorithm. Note that duality gap is related to system
characteristics. It has been reported that the gap increases
as the minimum up and down times and start up costs
increase$. The extremely long minimum down times of
some NU units, the fixing of generation levels in some
intervals, and the presence of ramp rate constraints are
factors contributing to the duality gap.

The advantage of having a good initialization of
multipliers is clear. If one starts with 1 = u = 0, more
than ten high level iterations are often needed to let A
approach the value obtained from our initialization
scheme.

It is difficult to compare CPU times of different
algorithms reported in the literature since the results were
obtained based on systems with different sizes,
characteristics, constraints, and obtained by using
different types of computers with different configurations.
Precise comparison should be based on the same testing
environments. Through rough conversion, however, it
can be seen that the CPU times of our algorithm are in
the similar range of the CPU times of References 2, 6, 8
and 9. For example, the CPU time of the thermal unit
commitment problem without the ramp rate constraint
presented in Reference 9 is 58 min on a VAX-11/780,
while our algorithm takes about 4 min on a Sparc 2 for
our data sets without the ramp rate constraint.
Considering that Sparc 2 is roughly 10 times faster than
VAX-11/780 and the system size in Reference 9 is larger
than ours, our CPU times are in the similar range of the
CPU times of Reference 9. It is difficult to compare
methods for handling the ramp rate constraint since little
information is available on the number of units with ramp
rate constraints and the number of ramp rate constraints
that are actually active.

V. Conclusions

A new algorithm has been presented to solve thermal
unit commitment problems by using the Lagrangian
relaxation approach. For individual subproblems,
dynamic programming without discretizing generation
levels proved to be an efficient approach. The ramp rate
constraint is handled through relaxation. This method
provides the advantages of nondiscretization of genera-
tion leves and is proved to be efficient for systems with
a few ramp rate constrained units. Good initialization of
multipliers associated with system demand by using the
priority-list commitment and dispatch can significantly
cut down the computational time. The heuristic method
developed to obtain feasible solutions is effective, and

near optimal solutions are obtained. This algorithm has
been embedded in the daily scheduling package of NU,
and used by NU engineers.
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