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Abstract. Many challenging issues arise in the newly deregulated competitive electric power markets worldwide.
Instead of centralized decision-making in a monopoly environment as in the past, many parties with different goals
are now involved and competing in the market. The information available to a party may be limited, regulated.
and received with time delay, and decisions made by one party may influence the decision space and well-being
of others. These difficulties are compounded by the underlying uncertainties inherent in the system such as
the demand for electricity, fuel prices, outages of generators and transmission lines, tactics by certain market
participants, etc. Conseguently the market is full of uncertainty and risk. Key questions to be addressed include
how to predict load and market clearing prices, how to consider other parties’ decisions in deciding one’s own
bids, and how (o manage uncertainty and risk. Since finding an optimal solution to a traditional unit commitment
problem is NP-hard even without considering multiple partics and uncertainties, it may be more practical to know
which decision is good with confidence rather than looking for an optimal solution.

For an encrgy supplier, bidding decisions are coupled with generation resource scheduling or unit commitment
since generator characteristics and how they will be used to meet the accepted bids in the future have to be considered
before bids are submitted. For example, if stanting up a thermal unit is expected, the associated startup cost should
somehow be configured in the bid curves. The decisions, however, can be quite subtle since generally startup costs
are not part of a bid. Bidding decisions should therefore be carefully made by considering the anticipated MCP,
system demand, generation and startup costs, and competitor® decisions. What further complicates the issuc is
that some of the information is not available, or will be available but with significant delays.

In paper, two promising bidding strategics for power suppliers are discussed. The ordinal optimization method
seeks “good enough” bids with high probability, and is an cffective in handling market uncertainties with much
. reduced computational efforts. The basic idea of this method is to use a model to describe the influence of bidding
strategies on the MCP. A nominal bid curve is obtained by solving optimal power gencration for a given set of
the MCPs within the Lagrangian relaxation framework. Then N bids are generated by perturbing the nominal
bid curve. The ordinal optimization method is applied to form a good cnough bid set S, which contains some
good bids with high probability, by performing rough evaluation. The best bid is then searched and selected over
S by solving gencration scheduling or unit commitment problems within reasonable computational time. The
game theoretic method aims at bidding and self-scheduling of a utility company in New England. The problem
is investigated from the viewpoint of a particular utility bidder. The uncenainties caused by bids from other
bidders and the ISO (Independent System Operator) bid selection process are explicitly considered. The problem
is then solved within a reduced game theoretical framewark, where the ISO has a closed-form solution for a given
probabilistic description of the bids, and the utility’s problem is solved by using Lagrangian relaxation. Although
the two specific methods represent significant progress made thus far, the area is wide opea for creative research
to make the deregulated market a true success.
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1. Introduction

The electric power industry is in revolution world-wide. This unprecedented restructuring
of the industry started in South America and Europe, and is sweeping the United States
(Dunn et al., 1995; Gross and Finlay, 1995; Halseth, 1997, Jacobs and Singh, 1997; Hao
et al,, 1998). The first state in the US with a deregulated power industry is California,
with its new market operational in Spring 1998. The core of the deregulation includes
structural and functional changes of key clements of the industry: generation, transmission,
distribution, system operation, and power transactions. With the introduction of competition
among power suppliers, the roles of these elements have been significantly changed, so are
the rules governing their operations and interactions. The purposes of this paper are to
raise several challenging issues in the deregulated power market, shed light on promising
methods, and to present preliminary results. The discussion will be focused on energy
generation bidding and scheduling.

In a traditional electric power system, a utility company is responsible for generating
and delivering power to its industrial, commercial, and residential customers in its service
area. It owns generation facilities and transmission and distribution networks, and obtains
necessary information for the economical and reliable operation of its system. For instance,
an important problem faced daily by a traditional utility company is to determine which and
when generating units should be committed, and how they should be dispatched to meet
the system-wide demand and reserve requirements. This centralized resource scheduling
problem involves discrete states (e.g., on/off of units) and continuous variables (e.g., unit
generation levels), with the objective to minimize the total generation cost. The economical
impact of generation scheduling is significant. A one percent reduction of cost can result in
more than ten million dollar savings per year for a large utility company. Various methods
have been developed, and impressive results have been obtained (Rosenthal, 1981; Shaw and
Bertsekas, 1985; Cohen and Sherkat, 1987; Ferreira et al., 1989; Guan et al., 1992; Renaud,
1993; Wang et al., 1995; Guan et al,, 1997; Li et al., 1997). Under the new structure,
resource scheduling is intertwined with bidding in the market, and power suppliers and
system operators are facing a new spectrum of issues and challenges.

Many deregulated power markets are based on a pool-operation structure (Jacobs and
Singh, 1997). For example, the California market contains a Power Exchange (PX) with
“day-ahead” and “hour-ahead” energy markels, various encrgy and service suppliers, and a
real-time market for energy balancing operated by the Independent System Operator (1S0).
The PX and the ISO are independent and non-profit organizations with no commercial
interest in the market. Electricity is primarily traded through bidding in the PX market.
Independent from the PX, the ISO controls and operates the transmission grid, and facil-
itates transactions and transmission while avoiding influence on the generation schedules
created by the PX. Electric power suppliers can sell energy to the PX, and ancillary services
(including automatic generation control AGC, real-time load balance, spinning reserve, re-
active power, and generating capacity required for grid congestion management) to the 1ISO.
Energy is eventually distributed to end-customers through distribution networks belonging
to “utility energy service companies,” where ancillary services are used to support system
operation. The cnergy markets are classified according to their time frames: day-ahead and
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Figure I. A deregulated market structure. E - Energy; S — Ancillary services: C - Customers.

hour-ahead in the PX, and real-time in the 1SO to follow the load. The new market structure
is illustrated in Figure 1.

In the day-ahead market, an cnergy supplier (cither an independent power producer IPP
or a generation company GENCO derived from or as a part of an electric utility company)
submits to the PX a set of hourly power-price “supply bid curves” for each generator or for
a portfolio of generating units, for the next day. These supply bid curves are aggregated
by the PX to create a single “supply bid curve.” On the other hand, an energy service
company (either a utility energy service company UES or a non-utility energy service
company ESCO) submits to the PX an hourly power-pricc “demand bid curve” reflecting
its forecasted demand. These dernand bid curves are also aggregated by the PX to create 2
single “demand bid curve.” Based on the demand and supply bid curves, the PX determines
a “Market Clearing Price” (MCP) for each hour as shown in Figure 2. The power to be
awarded to each bidder is then determined, and all the power awards will be compensated at
the MCP. After such an auction closes, cach bidder can aggregate all its spower awards as its
system demand, and performs a traditional unit commitment or hydrothermal scheduling
to meet this obligations at the minimum cost over the bidding horizon. Although about
90% of the power supply is auctioned in the day-ahead market according to the 10-month
operational experience of the California PX, a power supplier or demander can also bid in
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Figure 2. Market clearing price as the cross point of demand and supply bid curves.

the hour-ahead market and the real-time power market. This will add another dimension of
difficulties for the bidders to trade-off bids submitted for different markets.

For an energy supplier, bidding decisions are coupled with resource scheduling since
generators’ characteristics and how they will be used to meet the accepted bids in the future
have to be considered before bids are submitted. For example, if starting up a thermal unit
is expected, the associated startup cost should somehow be configured in the bid curves.
The decisions, however, can be quite subtle since generally startup costs are not part of a
bid. Furthermore, it is clcar that the higher the MCP, the higher the profit for accepted bids.
A bidder might therefore want to raise bids to increase the profit. Doing this, however, is at
the risk of losing the bids. To illustrate the idea, consider an aggregated staircase supply bid
curve as shown in Figure 3, where Bid A determines the MCP and the adjacent bids belong
to other bidders. Clearly if Bid A is changed to Bid B, the bidder’s revenue will increase.
However, the bid will be lost if it is changed to Bid C because of the competition from
other bidders. Bidding decisions should therefore be carefully made by considering the
anticipated MCP, system demand, generation and startup costs, and competitor’s decisions.
What further complicates the issue is that some of the information is not available, or will
be available but with significant delays.

The ancillary services are sold at auctions in a different market managed by the ISO.
Bidding decisions for these services, however, are often coupled with those for energy.
For example, providing spinning reserve would means lcss energy generation for a thermal
unit. Decisions have to be made regarding what percentage of a unit’s capacity should
bid for energy and what for reserve based on profitability and other considerations. These
decisions involve uncertainties of both the energy and the ancillary service markets such as
their market clearing prices.

The power market in New England of the US is based on the New England Power
Pool, and is similar to that of California with the following differences. Organizational-
wise, the functions of PX and ISO are combined under the auspices of a single ISO, the
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Figure 3. Bids determining the market clearance prices.

Independent System Operator which was split from the New England Power Pool. A
utility company may have a gencration branch and a transmission/distribution branch,
though information exchange between the two branches is restricted. Operational-wise, the
ISO estimates system demand and determines bids to be accepted, with demand bidding
dropped altogether. In addition, an energy supplier is not required to submit all its generation
capacities to the ISO. Rather, it can submit part of its generation to the ISO for the market,
while “self scheduling” the remaining for a specified level of its own load or for bilateral
transactions with other market participants.

It can be seen from the above that many challenging issues arise under the new competitive
market structure. Instead of centralized decision-making in a monopoly environment as in
the past, many parties with different goals are now involved and competing in the market.
The information available to a party may be limited, regulated, and received with time
delay, and decisions made by one party may influence the decision space and well-being
of others. These difficulties are compounded by the underlying uncertainties inherent
in the system such as the demand for electricity, fuel prices, outages of generators and
transmission lines, tactics by certain market participants, etc. Consequently the market
is full of uncertainty and risk. The recent experience learned from the California market
has shown that MCPs are volatile and often out of bidders’ expectation. Key questions
to be addressed include how to predict load and market clearing prices, how to consider
other parties’ decisions in deciding one’s own bids, and how to manage uncertainty and
risk. Game theoretic framework may provide valuable insights, however, major progress
must be made for the result to have practical impact. Simulation may also tum out to
be valuable. Since finding an optimal solution to a traditional unit commitment problem
is NP-hard even without considering multiple parties and uncertainties, it may be more
practical to know which decision is good with confidence rather than looking for an optimal
solution.
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The remaining of the paper is organized as follows. The state of art and current research
efforts will be summarized in the next Section. A simplificd mathematical formulation will
be developed to model the integrated bidding and scheduling process in Section 111. Based
on this formulation, an ordinal optimization method for bid selection will be presented
in Section IV, and a game theoretic optimization method for integrated bidding and self-
scheduling will be presented in Section V. The issue of generation scheduling and energy
delivery capability will be briefly discussed in Section VI. Concluding remarks are then
given in Section VII.

II. Literature Review
IL1. Deregulated Power Markets

Many approaches have been presented in the litcrature to address the deregulated power
markets. The market structure model discussed the most is the “British Model,” which
is different from the “California Model” but the two share a similar framework (Gross
and Finlay, 1995). The California Model, including specifications, bidding protocols,
bid evaluation, and simulation results, was detailed in (London Economics Inc., 1997,
PX Business Rules and Protocols Task Group, 1997; Wilson, 1997). The analysis and
simulation were to test the rules and protocols for designing the market. A simplified
bidding scheme for the California market was presented in Cazalet and Ellis (1996). Under
this scheme, a participant in the PX bids a quantity of energy (generation or load) for each
hour at the posted PX market price. The PX then adjusts the posted prices in response
to supply surplus or un-met demand. In this way, the bid evaluation process is simple.
Developing appropriate bidding strategies to maximize a bidder’s profit, however, was not
addressed in the above reports.

For each participant, bidding strategies ideally should be determined to maximize its
profit. Game theory is a natural platform to model such an environment (Owen, 1995;
Gross and Finlay, 1995; Krishna and Ramesh, 1997; Ferrero et al., 1997). Optimal bidding
strategies to maximize a bidder's profit based on the pool model of England and Wales
were presented in Gross and Finlay (1995) under the assumption that any particular bid has
no cffect on the MCP. For a market where a bid consists of start-up price, variable price,
and generator capacity, it was demonstrated that profit will be maximized by bidding each
generator at its physical cost curve and maximum capacity. This is done by showing that
such a strategy is a “Nash equilibrium” for the market, i.c., there is no incentive for a bidder
to unilaterally deviate from this strategy if everyone clse bids this way. The conditions
assumed in Gross and Finlay (1995), however, are not practical since a bid may affect
MCP, and start-up prices are usually not included in a bid. A bidder, as mentioned carlier,
may want to increase or decrease bidding prices from a generator’s physical cost curve to
maximize its profit.

Matrix games have been uscd in several papers, e.g., Krishna and Ramesh (1997) and
Ferrero et al. (1997). Bidding strategies are discretized, such as “bidding high,” “bidding
low,” or “bidding medium.” With discrete bidding strategics, payoff matrices are constructed
by enumerating all possible combinations of strategies, and an “equilibrium” of the *“matrix
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bidding game” can be obtained. Because of inherent complexity, self-scheduling may not
be easily incorporated.

Modeling and solving the bid selection problem of the PX have also been discussed.
In Hao et al. (1998), bids are selected to minimize the total system cost, and the energy
clearing price is determined as the highest accepted price for each hour. In Alvey et al.
(1998), a bid clearing system in New Zealand is presented. Detailed models are used,
including network constraints, reserve constraints, and ramp-rate constraints, and linear
programming is used to solve the problem. Other approaches addressing various aspects of
generation and ancillary service bidding can be found in Dekrajangpetch et al. (1998), Sheble
(1998), and Singh and Papalexopoulos (1998), where Lagrangian relaxation, decision tree,
and expert systems were used to analyze and support the bidding process. For example,
a bidding strategy considering revenue adequacy was presented in Li et al. (1998) based
on Lagrangian relaxation and an iterative bid adjustment process, which might be too
complicated for the current PX market.

IL.2. Stochastic Optimization

One way to model the bidding process from an individual bidder’s point of view is to model
competitors’ behaviors as uncertainties. Therefore the bidding problem can be converted
to a stochastic optimization problem. One of the widely used approaches in stochastic op-
timization is stochastic dynamic programming (Contaxis, 1990; Li et al., 1990). The basic
idea is to extend thc backward dynamic programming procedure by having probabilistic
input and probabilistic state transitions in place of deterministic input and transitions, and
by using expected costs-to-go in place of deterministic costs-to-go. The direct consequence
is the significant increase of the input space and the number of possible transitions. For
example, when stochastic dynamic programming is used to solve a hydro scheduling prob-
lem with uncertain inflows, one more dimension is needed to consider probable inflows
in addition to reservoir levels, significantly worsen the “curse of dimensions.” Another
approach is scenario analysis (Carpentier et al., 1996; Takriti et al., 1996). Each scenario
(or a possible realization of random events) is associated with a weight representing the
probability of its occurrence. The objective is to minimize the expected cost over all possi-
ble scenarios. Since the number of possible scenarios and consequently the computational
requirements increase drastically as the number of uncertain factors and the number of
possibilities per factor increase, this approach can only handle problems with a limited
number of uncertainties. Recently, stochastic dynamic programming has been embedded
within the Lagrangian relaxation framework for manufacturing scheduling problems, where
stochastic dynamic programming is used to solve uncertain subproblems after system-wide
coupling constraints are relaxed. Since dynamic programming for each subproblem can
be effectively solved without encountering the curse of dimensionality, good schedules are
obtained without a major increase in computational requirements (Luh et al., 1998).
Simulation is another widely used approach for stochastic optimization. Since such
problems are generally associated with inherent computational difficulties especially when
discrete variables are involved, it is more appropriate to ask which solution is better as
opposed to looking for an optimal solution based on a limited number of simulation runs.
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Recently, an intelligent computational method—Ordinal Optimization (OO) has been de-
veloped to solve complicated optimization problems possibly with uncertaintics (Deng and
Ho, 1997; Ho, 1994; Ho and Larson, 1995; Ho, 1997a, 1997b, 1997¢c; Lau and Ho, 1997).
Ordinal optimization is bascd on the following two tenets: (1) Itis much easier to determine
“order” than “value.” To determine whether A is larger or smaller than B is a simpler task
than to determine the value of (A — B) especially when uncertainties exist. (2) In stead of
asking the “best for sure,” we seek the “good enough with high probability.” This softening
the goal of optimization should also make the problem easier.

Consider, for example, a search on a bidding strategy space ©. Suppose that the “good
enough” subset, G C ©, is defined as the top 1% of the strategy space, and a selected
subset, § C ©, is the space to be scarched. The goal of OO is to construct a small search
space S while maintaining a high alignment probability that |G N S| # 0. If an efficient
method can be developed to construct a small but “good” S for detailed search, then major
speedup can be achieved. An iterative OO method was presented in Deng and Ho (1997) to
narrow the search to favor good subscts of the search space through limited sampling. The
method has been applied to the famous unsolved Whitsenhausen problem in the optimal
control of linear systems with quadratic objective functions and Gaussian noises (an LQG
problem). A solution that is 50% better than the best known solution has been obtained.
To apply this conceptual framework to integrated resource scheduling and bidding, major
efforts are needed to build power market simulation models and to construct a small but
good search space S.

It can be seen from above that tools to support the bidding process are far from satisfactory
in view of the inherent complexity (multiple participants with their own objectives in a
dynamic and uncertain environment) and the sizes of practical problems (tens or hundreds of
generators with various constraints). High quality and computationally efficient approaches
are critically needed to address the new challenges and to develop effective bidding and
self-scheduling strategies.

III. Problem Formulation
IIL.1. Individual Bidding Formulation

To simplify the presentation but without loss of generality, assume that there are / supply
bidders, each could own a single generating unit or a portfolio of units. The objective
of Bidder i is to select its supply bid curves {B;,(-)},r:,lo maximize its profit over a time
horizon 7, i.e.,

T M;
Max J;, with J; = Z[ZA(B,.(-) H=1,2....0)p%Bu) |1 =1,2,....1)

B4, =1 | m=t

—CI(P;'(' ')) - si(p?('s f))], (l)
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where

B;,(-) = Price-generation supply bid curve of Bidder i as shown in Figure | and Figure 3;
Ci(p{(-)) = Generation cost of Bidder i for delivering generation award p{ (-);

I = Number of bidders;

M; = Number of generating units of Bidder i;

P (©) = Generation award of unit m of Bidder i,

pf(-) = Aggregated generation award of Bidder i, i.e., p{(-,¢) = Z,,",":. Pia 0 )5
Si(pf(-)) = Costs associated with the up/down state transitions for delivering generation
award pj'(-);

T = Time horizon;

A(-) = Market clearing price (MCP) determined by the aggregated supply bid curve and
the aggregated demand bid curve.

According to the PX nule, if a bid is accepted with p;(t) as the amount of energy to be
generated, Bidder i will bec compensated by the dollar amount A(¢) - p; (¢) no matter how the
bid was originally submitted. Startup costs should be embedded in bid curves since there
is no direct startup compensation. The above (1) is thus a functional optimization problem
to determine the optimal supply bid curves [B;(r)},r=l to maximize the profit subject to
relcvant operating constraints such as the minimum down/up time, ramp-rate constraints,
etc. Note that MCPs are determined by the bids submitted by all the bidders, and when
submitting the bids, a bidder does not know the bid curves submitted by others. There
are thus two ways to look at the problem. The first is to treat the object function in (1) as
inherently uncertain, and solve the problem by using stochastic optimization. The second is
to explicitly consider other bidders within the problem formulation from a game theoretical
point of view. Both approaches will be highlighted later.

1.2, PX Economic Dispatch Formulation

Given supply bid curves submitted by energy suppliers and demand bid curves by UES or
ESCO, the PX is to minimize the overall costs while satisfying the hourly demand. For
simplicity, the aggregated demand bid curve for each hour is assumed to be represented by
a single deterministic system demand Py(¢). In this case, the PX’s problem is a traditional
economic dispatch problem since units are assumed to be committed and startup costs
embedded in the supply bid curves. The problem is described by:

! T
Min C, withC =YY" Bu(pi(t)), )

(.., i=t 1=1
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subject to

I M
Ym0y =Par), t=12,...,T. G)

i=l m=1

Since the objective function is separable in time, the dispatch can be performed for indi-
vidual hours separately, and solved by using traditional nonlinear programming methods.

Supplying reserve service is similar to supplying energy. Consequently, the bidding for
reserve services—the capability to provide additional power within a specified time period,
is not discussed for simplicity of presentation.

IV. Ordinal Optimization Methed for Bid Selection

As mentioned earlier, it is recognized that the pursuit of optimal bids and schedules under
the new market structure is impractical because of problem complexity and the uncertainties
involved. Instead, two near-optimal approaches are presented below. The first one treats
MCP as uncertain, and seeks “good enough” bids and schedules with high probability
based on ordinal optimization as prescnted next. The second addresses bidding and self-
scheduling of a utility company in New England, where the ISO bid selection process
and uncertainties about other bids are explicitly modeled. The problem is solved within
a simplified game theoretical framework to be presented in Section V, where the ISO has
closed form solution, and the utility’s problem is solved by using Lagrangian relaxation.

IV.1. Ordinal Optimization Based Method for Power Generation Bidding

For the rest of this section, the MCPs are treated as uncertain, and the bidding problem (1)
for Bidder i is considered as a stochastic functional optimization problem where a desired
bid is a generation-price curve, or price as a function of generation. This kind of function
optimization (as opposed to parameter optimization) is extremely difficult to handle, and a
sensible approach is to solve a series of parameter optimization problems and then perform
interpolation and extrapolation to generate a nominal bid curve. To do this, the bidding
problem for bidder i is first re-written as follows for a given series of estimated prices

Ny

T M,

(f;ﬂggl Ji, with J; = ZI Z [Aj(!)Pim(l) ~ Cim(pim(1)) — S.'m(Z.'m(t))] . C))
e =1 m=1

where A/ () is the estimated MCP attime 1, pim (1) the generation level of unit m at time r,

Ci(-) the generation cost of unit m, S (zim (1) the start-up cost of unit m, and z;,,(-) the

up/down state of unit m. The optimization is subject to relevant operating constraints. The

actual MCP can be viewed as A,(¢) plus an error or a noise. For the given series of esti-

mated MCPs {A (t)},7=l , (4) is a parameter optimization problem as opposcd to a functional

optimization problem. It is similar to a unit commitment subproblem within the hydrother-

mal scheduling context when solved by using the Lagrangian relaxation technique. The
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problem can thus be efficiently handled by dynamic programming as done in our previous
work (Guan et al.,, 1992; Guan et al., 1997). The results are optimal gencration levels
{ pim (1)) for all Bidder i’s units and for all the hours. From there, aggregated generation
levels {p] (¢)}7_, can be calculated, and a series of generation-price pairs {p}'(1), A0,
can be obtained. Nominal bid curves (b;(5;)}7_, can then be obtained by interpolation or
extrapolation with multiple series of {p} (r), A;(1)}\_, pairs. The bid curves for different
hours obtained by solving (4) may be intcr-temporally related. This is reasonable since there
may be inter-temporal constraints such as minimum up/down times, ramp-rate constraints
imposed on the system.

Based on the above nominal bid curves, N sets of bid curves can be generated by perturbing
the nominal bid curves as

B (pi) =b:@) + AL (i), n=1,2,...,N.t=12,..,T, (5)

where Ab?(p;i(1)) is a perturbation function. These N sets of bid curves are evaluated and
ranked by ordinal optimization. The estimated profit of each sct of bid curves is calculated as

T M;
=y [i"(b,-"(r»p;’w?(r)) = Y (Cinl Pl B} (1)) = sim(z.-m(r)»] : (6)

=1 m=1

where (A" (b} (1))} is the MCPs associated with bid curves {5} (-)}.

To evaluate the profit J", a forecast model is needed to estimate the MCPs {i" A
based on available information such as bid curves {5} (-)}, weather forecast, available hydro
energy, and possible strategies of competitors, etc. Since a bidder usually has a good record
on its own historical bid curves and weather information, a regression or neural network-
based forecasting model can be created. Game theoretic methods can also be developed to
take into account market factors on top of the forecast model.

The major task in applying ordinal optimization is to construct the selected subset § con-
taining “good enough” bidding strategies with high probability, including the determination
of its size 5. There are two ways to pick s sets of bidding strategies from a space of N sets
of perturbed bid curves: Blind Pick (BP) and Horse Race (HR). In Blink pick, s sets of
bidding strategies are randomly selected, whereas in Horse race N sets of bid curves are
preliminarily evaluated and the best s sets of strategies are selected. For the BP method, the
size s can be determined in closed form (Ho, 1997a). The HR method, however, is ofien
preferable since it can make use of results based on a simplified problem, and generally
ends up with a smaller s as compared to the BP method. To select s good ones from the N
perturbed bidding strategies generated by (5), the profits defined by (6) are evaluated, and
s is determined by a regressed nonlinear equation to satisfy certain confidence requirement
(Lau and Ho, 1997). Note that profit evaluation using (6) is a rough estimation since it is
assumed that the generation award to a unit will be delivered by that unit. This is not neces-
sary and may even be infeasible because individual operating constraints arc not considered
in the bidding process. A generation company can reallocate all its resource to meet its total
generation award while satisfying individual constraints. Evaluating N bidding strategies
by using (6) is computationally efficient and the ordinal optimization method can guarantee
that good enough strategics will be among the s selected strategics.
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More accurate evaluation is applied to the s selected bidding strategies. For each bidding
strategy with the associated forecasted MCPs, a traditional generation scheduling problem
is solved to estimate Bidder i’s profit as follows (Guan et al., 1992; Guan et al., 1997):

T M
Min Ci,withCi=Y_ Y [Cim(Pin(0)) + Sim(zim (), D), Q)

POV =1 m=1

subject to system demand constraints

M
> pimt)=Pi0). t=12,...,T, ®)
m=I|

and other individual unit constraints. In the above, p;,(t) is generation level of unit m of
Bidder i at time ¢, and P](r) = p{ (-, 1) the aggregated energy awarded by the PX at hour ¢.
The estimated profit is then given by

T
J*=3" A Pin - Cy. 9
=1

The best strategy is then selected from by evaluating those strategies in the subset §
based on the estimates of the MCP. Consequently, much less computational efforts are
required to search through S as opposed to searching through © since the size of § is much
smaller than that of ®. Note that the strategies in § are selected by estimating roughly
profit of each generation unit in (6) rather than solving the scheduling problem (7,9), where
generation resources of the entire company are utilized to maximize the total profit. The
ordinal optimization, however, can guarantee that good strategies are in § with a high
probability. Numerical testing is being performed to demonstrate the effectiveness of this
ordinal optimization approach.

IV.2. Energy-Reserve Trade-off Decision

As mentioned earlier, the capacity of a generating unit can be used to provide energy or
reserve. The profit for providing a certain amount of reserve can be estimated based on
forecasted reserve prices from the ISO ancillary market. The profit for providing the same
amount of energy can also be estimated based on the MCP of the PX energy market and
the actual generation costs. Both calculations, however, involve significant forecast errors,
and can only be performed for a limited number of simulation runs. Ordinal optimization
can thus be applied to effectively compare the two options similar to what was presented
in the previous subsection. In this comparison, we only need to determine the preference
order of these two options as opposed to the value of the difference between the two profits.
However, the decision space is still very large since the amount of reserve to bid has to be
determined. Ordinal optimization method can help reduce the computational efforts as in
the case of cnergy bidding.
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V. A Game Theoretical Approach for Bidding and Self-Scheduling
V.1. Problem Description

This section highlights bidding and self-scheduling of a utility company in New England,
where the relationship between the ISO and bidders has been described in Section 1. The
problem will be investigated from the viewpoint of a particular utility bidder, say Bidder 1,
where it bids part of the energy to the I1SO, and self-schedules the rest. For simplicity of
presentation, it is assumed that Bidder 1 has only M; thermal units. Hydro and pumped-
storage units, however, can be easily incorporated. The uncertainties caused by bids from
other bidders and the ISO bid selection process arc explicitly considered. The problem is
then solved within a reduced game theoretical framework, where the ISO has a closed-form
solution for a given probabilistic description of the bids, and the utility’s problem is solved
by using Lagrangian relaxation (Zhang et al., 1998b).

To manage complexity, it is assumed that Bidder i’s bid curve for hour ¢ is represented
by a quadratic function:

Bi(pi(1)) = ai()pH(®) + bi(pi(1), ¢=1,2,...,T, (10)

where a; (1) and b; (1) are nonnegative coefficients, and p;(r) the aggregated generation level
for the market satisfying

0 < pi(t) < Pi(0)- (I

In the above, 7;(¢) is the maximum bid level at hour ¢. Bidder i’s load can be supplied
by either the market or through self-scheduling. The part to be supplied by the market is
denoted as p;a (1), a decision variable to be optimized. A bid for hour ¢ is thus represented
by {a; (1), bi(t), p; (1), pim(1)}.

Bidder 1 does not have exact information about the bids submitted by others, but does have
their probabilistic descriptions. It is assumed that for hour ¢ the market has J scenarios,
each described by

ﬁf'(:):”a{(x),b{(:),ﬁ{(:),p{M(x)J. i=23,...1), j=lL..J (2

The probability of event B/(r) is p/ (1), satisfying Z};, pi(t) = 1. For simplicity, the
scenarios for different hours are assumed to be independent.

The New England ISO model is similar to the California PX model as described by (2)
and (3), i.e., to minimize the total cost subject to system demand constraints. In terms of
the current notation, it is described by

! T
1 i -_ . l
Min C, with € PRI TCAG)E 13

i=1 t=1

subject to (11) and

! !
ZP:(')=ZP.'M(¢). t=12,...,T (14)
i=1
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Since Bidder 1 bids part of the energy to the ISO and self-schedules the rest, its model is
a variation of (1):

_ min Ji, with
a1 (1).by (1).7) (). Prae (1).{ Prra (D)}
T M
h=E [Z Y {Crm(pim®) + 23, () (P1u (1) — m(r))]] : (15)
1=} m=1

In the above, p(t) is the generation level of Bidder 1°s unit m at hour ¢, Cyy, () the cost
function of the unit, and A},(¢) the MCP at hour ¢. The expectation is taken with respect to
uncertain bidding parameters reflected through A3, (¢) and pya (¢). The above minimization
is subject to individual unit constraints [see, e.g., Guan et al. (1992)] and the following load
balance constraint:

M\
Y Pin(®) + E (puu(e) = pr(9)) = Pra(®). (16)

m=]

In the above, pyq(?) is the demand for Bidder 1 at time ¢, and is assumed to be known for
simplicity.

V.2. The ISO Solution

From the ISO’s viewpoint, its problem is deterministic since the ISO solves the problem
after all the bids have been submitted. From the game theoretical framework, however,
Bidder 1 needs to “solve” the ISO problem in the absence of complete information. One
way to overcome this lack of information is to solve the ISO problem for each possible
scenario and then aggregates the results. Solution under a particular scenario B/, is
derived first, where the index j is omitted when appropriate.

For simplicity of presentation, bounds on the maximum bid levels (11) are assumed to be
inactive and therefore ignored in the following derivation [See Zhang et al. (1998b) for more
general derivation). The ISO bid selection process can then be solved by using Lagrangian
relaxation. Using multipliers {Ap (¢)} to relax (14), the ISO Lagrangian is formed as

T 1 [
Liso =Y 1) Cilpi(t) + Au () (Z pim(t) - p.-(r)) } : an

1=1 {i=l i=1

With {Ax(r)) given, (17) can be decomposed into individual subproblems, one for each
bidder. The Bidder i 's subproblem is

T
Ly = min 3 {ai(p} () + bi)piCt) = Am@)pi] . (18)
4 1=1
The solution for (18) is
pi‘(’) - M (19)

2a;()
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With the above closed form solution for each subproblem, it is not necessary to iteratively
update the multipliers (Ay(r)). Rather, closed form solution for {A},(¢)} can be obtained
by substituting (19) into (14). Afler several steps of derivation, one obtains

_ (co(t) +2piy(1))ar (1) + b1 (1)

) = a®a(t) +1 » and 20)

oy _ 00 /24 piy(t) — a1 ()b (1)/2

pi(0) = o ®a F1 . 0

where

: L bi(r)

o) = )_|2pm®+) —=|, and (22)
i=2 i= ai()
I

(@) = Z, ;,TI—)- 23)

Bidder I may be a buyer or a scller depending on the sign of (p1a(¢) — pi (1)) (positive for
buying).

V.3. The Bidding and Self-Scheduling Strategy

Given the above results on {A},(1)} and {p; ()} for a particular scenario as functions of
all the bids submitted, Bidder 1’s problem (15) is similar to a traditional unit commitment
problem. Itcan be solved by introducing another set of multipliers (A (¢)} to relax Bidder 1’s
its system demand constraints (16). Bidder 1's Lagrangian can be written as

T M
L, =E ZZ[Clm(mm(t)HA;,(:) (p.M(x)—p;(t))]]

t=1 m=1

T M,
+) M) [Pld(f) =Y Pim(®) — E (piu(0) — Pf('))] . (24)
=1 m=I\

In the above, {A},(#)} and (p}(¢)} are from (20) and (21), respectively, for a particular
scenario, and the expectation is taken across all possible scenarios. Since the RHS of (24)
is additive for a given set of multipliers {A,(r)}, a two-level algorithm can be developed.
At the low level, individual thermal subproblems are formed, one for each unit. These
thermal subproblems are similar to those in traditional hydro-thermal scheduling, and can
be solved by using dynamic programming as presented in Guan et al. (1992). On additional
subproblem, the “bidding subproblem,” is obtained as

min
a (). (). piu (1) 1=1

T
Lig, withLiz=E [Z IO HNOIRIORS p.(m] . (25)

At the high level, the multipliers (A;(r)} are iteratively updated based on the degrees of
demand constraint violation.
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Table 1. Bidding paramelers of Bidder 2.

b2 (1)(%) Pu2(1)(%)
Case L M H L M H

1 80 100 120 20 30 40
2 80 100 120 10 30 50
3 60 100 140 20 30 40
4
5

100 120 140 20 30 40
20 40 60 20 30 40

b2(1)(%): by(t) as a percentage of Bidder 1's
self-scheduling marginal cost without market.

p2as (1)(%):  paas(t) as a percentage of Bid-
der 1's load.

To solve the new bidding subproblem (25), we note that A},(¢) and pj}(r) are functions
of all the bids submitted (including the ones submitted by Bidder 1) for each possible
scenario under consideration. Bidder 1’s expected cost across all scenarios L, 5 is therefore
a function of Bidder 1’s parameters {a (1), by (t), 7, (1), pim(1)}). The optimal set of bidding
parameters can thus be obtained by numerical optimization using, for example, a gradient
method. The multipliers {A{(¢)} arc then iteratively updated at the high level based on
subproblem solutions by using, for example, the Bundle Trust Region Method (Schramm
and Zowe, 1992; Zhang et al., 1998a). It can be shown that the bidding subproblem has
inherent degeneracy with an infinite number of equivalent solutions. For details, please see
Zhang et al. (1998b).

V4. Highlights of Numerical Results

The method presented above has been implemented in C++ based on our original hy-
drothermal scheduling code presented in Guan et al. (1992) and Zhang et al. (1998a). A
data set provided by Northeast Utilities (NU) is used to demonstrate the capabilities of the
method in handling various market situations. To simplify the testing, all other market
bidders are aggregated as Bidder 2 with three possible bidding stratcgies, bidding low (L),
bidding medium (M), and bidding high (H) with equal probability 1/3.

The value of Bidder 2’s parameters a»(t) is 0.09 for the High strategy, 0.05 the Medium
strategy, and 0.01 the Low strategy. With Case 1 as the base case, four additional cases
are created by varying Bidder 2's parameters by(f) and paa(f) to test various market sit-
uations. The value of b(r) as a percentage of Bidder 1's self-scheduling marginal cost
(self-scheduling all its units without participating in the market) and the value of pyy (¢)
as a percentage of Bidder 1’s load are provided in Table 1. The method is compared
with the “mean method” that considers Bidder 2°s bidding model as deterministic with each
parameter set to its mean value. Comparison of the results based on 100 simulation runs is
presented in Table 2.

Case 2 represents a volatile market with large variances on py(r), and the saving of
the stochastic method over the mean method is increased as compared to the base case.
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Table 2. Cost comparison of the mean method and the siochastic
method.

Case Mean Method ($)  Stochastic Method (3)  Savings (%)

1 106,169 105,759 0.39%
2 100,930 100,365 0.56%
3 102,420 101,431 097%
4 103,076 102,682 0.38%
5 105,334 104,800 051%

Case 3 also represents a volatile market with large variances on b2 (), and the saving is also
increased as compared to the base case. Cases 2 and 3 thus illustrate that the method works
better than the mean method in volatile markets. Case 4 represents a high-cost market with
the mean value of b, (¢) increased 20% above the base case, and Case 5 represents a low-cost
market with the mean value of by (¢) decreased 40% below the base case. The savings over
the mean method for these two cases are also significant, illustrating that the method works
well for both high-cost and low-cost market situations.

The average CPU time for the mean method is 70 seconds, and for the stochastic method
95 seconds. The CPU time requirements for the two methods are therefore close since
the only stochastic subproblem is the bidding subproblem which is solved by using a
gradient method. Thermal subproblems as well as high level multiplier updating are the
same for both methods. Numerical testing therefore shows that the method is computa-
tionally efficient, and good bidding and self-scheduling results for practical problems are
obtained.

The above results are presented within a “reduced” game theoretical framework since
although the uncertainties of other bidders and the 1ISO’s bid selection process are explicitly
considered, the exact “gaming™ phenomenon is not captured. How to effectively model
the gaming situations, what is the appropriate equilibrium concept under the mixture of
day-ahead and hour-ahead markets, and how to develop computationally efficient algo-
rithms to obtain good strategies to maximize the profit while reducing risk are challenging
issues. A different approach is to circumvent the gaming phenomenon by developing an
intelligent MCP forecasting model, and using the forecasted MCPs to solve a bidder’s prob-
lem (15). This MCP prediction model, however, will be much more complicated than a
traditional load forecasting modcl in view of the complexity and volatility of the power
markets.

VL. Generation Scheduling and Energy Delivery Capability

As mentioned carlier, a generation company can treat its aggregated energy awards as
demand and perform traditional generation scheduling to obtain hourly generation levels
for its units. Two difficulties may occur in view that large steam or nuclear units generally
have ramp rate constraints limiting the rate of change of generation levels. First, the
generation scheduling problem may not admit a feasible solution since unit ramp rates are
mostly ignored by the PX. Second and a more subtle issue is that even if the problem admits
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a solution, the encrgy delivery obligation as awarded by the PX may not be fulfillable.
This is because traditional generation scheduling obtains hourly generation levels which
are assumed to be constant for each hour. In the PX market, however, buy and sell are
processed in terms of time-varying energy to meet the constantly changing system demand.
A schedule satisfying the hourly ramp rate of a traditional scheduling problem may not be
able to meet individual units’ limits on actual energy delivery. Energy delivery capability
or the realizability of a generation schedule and its relation to traditional unit ramp rate
constraints have been investigated in Gaun et al. (1999). Based on the “Maximum Principle”
of optimal control theory, necessary and sufficient conditions have been established to check
if an energy delivery schedule can be realized.

VII. Conclusions

The deregulation and reconstruction of electric power industry world-wide have raised
many challenging issues for the economic and reliable operation of electric power systems.
Traditional unit commitment or hydrothermal scheduling problems are integrated with
resource bidding, and the development of optimization-based bidding strategies is at a
very preliminary stage. Ordinal optimization seeks “good enough” bidding strategies with
high probabilities, and will turn out to be effective in handling market uncertainties with
much reduced computational efforts. Game theoretic framework combining with advanced
optimization techniques shall allow us to directly model competition in the deregulated
market, and provide much needed insights for the synthesis of effective bidding and self-
scheduling strategies. Although the two specific methods presented in the paper represent
significant progress made thus far, the area is wide open for creative research to make the
deregulated market a true success.
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