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Abstract—In the deregulated power industry, a generation
company (GenCo) sells energy and ancillary services primarily
through auctions in a daily market. Developing effective strategies
to optimize hourly offer curves for a hydrothermal power system
to maximize profits has been one of the most challenging and
important tasks for a GenCo. This paper presents an integrated
bidding and scheduling algorithm with risk management under
a deregulated market. A stochastic mixed-integer optimization
formulation having a separable structure with respect to indi-
vidual units is first established. A method combining Lagrangian
relaxation and stochastic dynamic programming is then presented
to select hourly offer curves for both energy and reserve markets.
In view that pumped-storage units provide significant energy and
reserve at generating and pumping, the offering strategies are
specially highlighted in this paper. Numerical testing based on an
11-unit system with a major pumped-storage unit in the New Eng-
land market shows that the algorithm is computationally efficient,
and effective energy and reserve offer curves are obtained in 4-5
min on a 600-MHz Pentium III PC. The risk management method
significantly reduces profit variances and, thus, bidding risks.

Index Terms—Deregulation, offering/bidding strategies,
pumped-storage unit, reserve market, risk management.

1. INTRODUCTION

HE electric power industry is experiencing deregulation

to introduce competitions among generation companies
(GenCos) and to improve the services for customers ([3], [7]).
In this competitive environment, energy and ancillary services
are primarily traded through auctions in a daily market. GenCos
submit hourly generation offers for individual or a portfolio of
generators for the next day, while energy service companies
(ESCos) submit hourly demand bids. Based on generation of-
fers and demand bids, an independent systems operator (ISO)
determines hourly market clearing prices (MCPs) and the power
quantities awarded to each GenCo by solving a security-based
unit commitment problem. After the auction closes, each GenCo
aggregates the power awards as its system demand, and per-
forms unit commitment to fulfill the market obligations at the
minimum operation cost. In this process, how well a GenCo gar-
ners profits depends on how good its offering strategies are. In
view of the MCP volatilities, developing effective and computa-
tionally efficient offering strategies with good risk management
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therefore becomes vital for a GenCo to maximize profits and to
obtain competitive advantages.

There are many challenging issues in developing offering
strategies. First, participants compete in a market, and the
information available to each one is limited, regulated, and
received with time delay. These are compounded by under-
lying uncertainties inherent in markets such as the demand
for electricity, outages of generators and transmissions, and
tactics used by participants. Consequently, the market is full
of uncertainties and risks. Recent experiences showed that the
MCP is volatile, and could be U.S.$ 30 or U.S.$ 1000 per
megawatt hour. The volatility is especially serious for high-load
situations such as very hot/humid summer or very cold/windy
winter days, or with unexpected generation or transmission
outages. These extreme or unexpected situations are critical
to a GenCo, as a bad strategy may result in a loss of millions
of dollars in a few days or even hours. How to handle the
price volatilities and reduce bidding risks has been a major
issue. Second, since energy and ancillary markets affect each
other, and ancillary service prices are occasionally high (e.g.,
U.S.$1000 per megawatt hour for 10-min spinning reserve)
as observed in many markets, a GenCo must consider how to
allocate its limited generation capacities among these markets
to maximize profits. This interaction among different markets
adds difficulties in making offering strategies. Third, a GenCo
may have its “own load” from its customers, bilateral contracts,
and long-term obligations. As required by market rules, the
GenCo needs to buy power from the market at MCPs to serve
its own load. As a company strategy for risk management
and because of gas/fuel supply contracts that may require a
minimum consumption of gas and oil, a GenCo may want to
cover by itself at least a certain percentage of its own load
and the associated ancillary services. This “self-scheduling
requirement” couples the offering strategies of different gen-
erators, making the problem more difficult. Finally, bidding
decisions are coupled with generation scheduling, and the
generator characteristics and how they will be used to satisfy
the awarded bids in the future have to be considered before bids
are submitted. If there are pumped-storage units in the system,
both offering and bidding strategies need to be considered over
the same bidding period. The optimization is difficult in view of
operational constraints such as the pond level dynamics, pond
level limits, and discrete operating regions. All of these issues
have made the integrated generation offering and scheduling a
very challenging task in a competitive market.
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Efforts have been made to address bidding problems ([1],
[4]-[8], [11], [13]-[15], [19], [21]). Under the assumption that
the probabilistic distributions of competitors’ offering prices are
known, an optimal offering strategy for a single power block
at a particular hour is derived by ignoring intertemporal unit
constraints in [11]. A bidding process considering offer uncer-
tainties of other GenCos (e.g., bidding high or low) by simu-
lating the ISO’s offer-selection process is presented in [7]. Since
bid information is revealed with a significant delay (e.g., five
months in New England), assuming that the probabilistic distri-
butions of offering prices for hundreds of generators are known
may not be practical. An iterative auction structure is recom-
mended in [14], [19], where GenCos are allowed to revise their
offers iteratively, and the MCPs are updated and made public
during the process until the market closes. Under this structure, a
method based on genetic programming and finite state automata
is presented in [19] for iteratively revising the offers, each con-
sisting of one power block with a price. A Lagrangian relax-
ation-based method is presented for iteratively revising offers
considering revenue adequacy in [14]. Unfortunately, there cur-
rently exist no power markets with the iterative auction struc-
ture. The recently developed ordinal optimization approach is
applied to select “good enough with high probability” offers in
[7], [8]. Game theory has also been applied to model market
competitions (e.g., [4], [5]) for simplified systems. In view of
the problem complexity, it may have difficulties to derive payoff
matrices. To address the challenges mentioned in the previous
paragraph, effective and computationally efficient methods are
critically needed.

In this paper, a formulation for optimizing energy and reserve
offer curves for a hydrothermal power system under a deregu-
lated daily market is first established in Section II. Based on the
estimation of MCP probability density functions obtained by
using a classification method developed in our previous work
([17]), the hourly energy and reserve prices are modeled as a
Markov chain. The bidding risks are managed using a mean-
variance like method by adding a risk penalty term related to
price variances to the objective function. The self-scheduling
requirements are modeled similarly to system demand in a unit
commitment problem. The formulation obtained is a stochastic
mixed-integer optimization problem with a separable structure
in terms of individual units. A Lagrangian relaxation-based al-
gorithm is then presented in Section III, and the problem is de-
composed into a number of individual unit subproblems. Each
subproblem is solved by using stochastic dynamic program-
ming, providing a set of offering strategies for an integrated
energy and reserve market: how much power and reserve each
unit should provide for each pair of energy and reserve prices
and at what probability. The energy and reserve offer curves
are then constructed by projecting these strategies onto indi-
vidual markets. As mentioned, the solution methodology for
pumped-storage units is highlighted in this paper. Numerical
testing based on an 11-unit system in the New England market
is presented in Section IV, demonstrating that the algorithm is
efficient, and effective offer curves for both energy and reserve
markets are obtained in 4-5 minutes on a 600 MHz Pentium III
PC. It is also demonstrated that our risk management can sig-

nificantly reduce profit variances and thus reduce bidding risks.
The concluding remarks are given in Section V.

II. PROBLEM FORMULATION

Consider a bidding and scheduling problem for a GenCo
with N generators of hydro, thermal, and pumped-storage units
under a deregulated daily market. It is to determine hourly en-
ergy and reserve offer curves for each unit for the next day, and
the objective is to maximize the profit while managing risks.
The formulation involves market assumptions, the objective
function to be minimized, and constraints to be satisfied.

Offer Curves: An hourly energy offer Ay(t,p,(t)) for
unit » at time ¢ is a power-price curve, providing the selling
price per MWHTr for any given amount of power within the
unit generation limits. Since offer curves are required to be
nondecreasing, a GenCo usually considers an offer curve in an
equivalent but more convenient way: how much power would
each unit generate as a function of energy price A4(¢). That
is, the offer curve is represented as p,, (A4(t)), a price-power
function. Requirements on offer curves may be different for
different markets. For example, a piece-wise linear offer curve
was required by the former California market ([7]), while a
step-wise offer curve consisting of up to 10 power blocks each
with an associated price is required in New England ([3]).
The New England market also requires the same power blocks
across hours over the bidding horizon for each unit. We will
assume that the power blocks can be different for different
hours, as the New England requirement can be satisfied with
an additional step to be explained in Section III. And more
importantly, in the up-coming “standard market design” which
is expected to be in effective March 2003, a unit can be modeled
by using hourly “virtual incremental offers,” where no fixed
power blocks are required.

Energy and Reserve Market Clearing Prices: Since there
are various time-dependent operating constraints such as min-
imum up/down times and ramp rate limits, offer curves and
thus the MCP’s are correlated across hours. In addition, the en-
ergy market is coupled with the reserve market in view that the
limited generation capacities contribute to both energy and re-
serve, resulting in correlated energy and reserve market clearing
prices. To model such dependency and correlation in a tractable
manner, A\4(t) and \,(¢) are jointly modeled as a Markov chain.
In our previous work [17], the probability density functions
(PDFs) of energy prices are estimated by using neural networks.
By extending the results, the joint PDFs for energy and reserve
prices can be estimated. Based on these PDFs, a set of possible
price pairs (A§(t),Ai(t)) (i = 1,2,...,1, 1 =1,2,...,J) are
selected for each hour. The corresponding energy price variance
af\d(t) and the reserve price variance O'/Q\T(t) are calculated to
reflect price uncertainties. A Markov chain is then formed where
a stage corresponds to one hour, and a state corresponds to a pos-
sible price pair. The transition probability between two states of
adjacent stages can be obtained as the product of the state prob-
abilities. In view of the complicated coupling between energy
and reserve bids, the optimization is first done for a joint energy
and reserve market, leading to a set of joint energy and reserve
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offer curves. The energy and reserve offers are then obtained by
projecting these joint offer curves onto individual markets.

Self-Scheduling Requirements: A GenCo may have its “own
load” p4(t) and the associated reserve requirement p,.(t) for
hour ¢ from its customers or other contract obligations' . Based
on market rules, the GenCo is required to buy power at MCPs to
serve its own load. Therefore, if the energy price is A4(%), then
the power the GenCo sells (positive) to or purchases (negative)
from the market is Zgzl Prn(Aa(t)) — pa(t). Similarly, if the re-
serve price is A\, 95), the reserve the GenCo sells to or buys from
the marketis ), (A (t)) — pr(t), where r,, (A, (1)) is the
reserve that unit n provides to the market.

Because of gas/fuel supply contracts that may require a min-
imum consumption of gas/fuel and possibly other obligatory
considerations, the GenCo may want to cover, on the average,
at least a certain percentage of its own load and reserve require-
ments by itself. These “self-scheduling requirements” are for-
mulated as follows:

E (an()‘d(t))) > aq(t)pa(t), Vi (D

and

E(DM@»)Zamm(t), Vi o

where a4(t) and - (t) € [0, 1] are self-scheduling coefficients.
It should be noted that the method covers the case without self-
scheduling requirements with much reduced computation.
Profit Function at Hour t: The major objective of the
problem is to maximize the profit. Let Cy(pq(t)) be the revenue
from own-load customers, C,,(p,(¢)) the production cost for
unit n, and S, (¢) the startup cost at hour ¢. Then the profit
at hour ¢ is the revenue from own load customers, and from
energy and reserve markets minus the operating cost, that is

N
fi(t) =Ca(pa(t)) + Aa(t) <Z Pn(Aa(t)) — Pd(ﬂ)
n=1

In view that the own load revenue Cy(pq(t)) is a constant for
a given p,(t), and is not available in our database, it is set to
zero, and f(t) defined above is actually the negative total cost
to serve the own load by taking the market as a flexible generator
or a dispatchable load.

Risk Management: Measuring and managing bidding risks
are major issues under a competitive and uncertain environment.
For a GenCo with high own load obligation, the risk consider-
ation is mostly for high market prices. Typically price spikes
appear in extreme situations such as very hot/humid summer

ISince load prediction error is usually within 2% per our experience, the pre-
diction uncertainty has less impact as compared to that of MCP, and is ignored
in this paper.
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Fig. 1. Prediction error distribution.

days or very cold/windy winter days, or with unexpected gen-
eration or transmission outages. These situations are critical as
a bad bidding strategy may result in a loss of millions of dol-
lars within a few days or even hours. Unfortunately, it is dif-
ficult for MCP forecaster to capture such extreme situations in
view of scarce training data and limited information ([2]). Fig. 1
shows the MCP prediction error (prediction—actual) distribu-
tion for the New England Market from July 1 to December 1,
2000, for a neural network that is currently in production use on
a daily basis by a utility company. Though the prediction error
is fairly well distributed, the distribution has a fat negative tail,
indicating the price spikes were not well captured. As demon-
strated in [2], however, large uncertainties (as implied by large
predicted variances) could be detected even with limited data
points. To reduce bidding risks, a GenCo may prefer to stay
“long” (sell power) when the market uncertainties are high to
capture potential price spikes, and to stay “short” (buy power)
when the market uncertainties are low to avoid risks.

As mentioned, the MCPs are correlated across time. Under
the Markovian price assumption, historical information is sum-
marized at the bidding preparation time. Based on the current
market structure, bids for different hours of the next day must
be submitted at the same time, and once they are submitted, they
cannot be revised. Therefore, it provides little help to correlate
the price of different hours of next day in our risk management.
In view that variances o3 (t) and o3 _(t) well reflect market un-
certainties at hour ¢, the idea in the previous paragraph suggests
managing risks by using a mean-variance-like approach often
applied within the context of control theory (i.e., having vari-
ance-related risk terms in the objective function). The risk terms
in our context are defined as the product of the price variances
and the level of energy and reserve purchases, that is

(1) (Pd(t) - (/\d(t))>

+o3, (1) (Pr(t) =D " (Ad(t))> :

f2(t) = Ui

Combining the above analyses and considering the price ran-
domness, the objective function to be minimized is an expected
weighted sum of the negative profit and the risk term over the
bidding time horizon, that is

T
C=E {Z [—fu(t) + w(t)fz(t)]} 3)

t=1
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where w(t) > 0 is the weight balancing the profit versus
risks.

Individual Unit Constraints: The bidding problem is also
subject to individual unit constraints. The constraints for
thermal and hydro units are the same as those before dereg-
ulation, and have been presented in [9], [10], and [16]. The
operation rules of pumped-storage units in the New England
market after deregulation are different from those presented in
[9]. Therefore, the constraints for a pumped-storage unit are
presented next.

There are usually multiple units associated with one pond in
a pumped-storage system. Fig. 2 shows the water-power con-
version for a system with four identical generators, where the
water discharge has been converted into megawatts. Unlike the
operation rules before deregulation where the operating region
is continuous as shown by the dashed line in Fig. 3, each unit
can pump at its pumping capacity, be idle, or generate within
a continuous operating region as shown by the solid line and
five additional dots in the figure. The spinning reserve is the
same as the pumping level or the online generation capacity
minus the generation level. The power-reserve relationship for
the pumped-storage unit is shown in Fig. 3.

A pumped-storage system has following pond constraints.

* Pond level dynamics

Un(t+ 1) = v, (t) —wn(t), Vi )

* Pond level limits.
These constraints require that the pond level should be within
its upper and lower bounds at any time. Since it is difficult to
deal with the pond level constraints mathematically for all the

possible market realizations, these constraints are modeled in an
expected sense, that is

V, < B(oa(t) <V, Vit ©)

* End pond levels.

The end pond level V. specifies the desired amount of water
available for next bidding cycle. Similar to the pond level limits,
it is formulated in an expected sense, that is

E(v,(T)) =V, . (6)

The above formulation is a stochastic mixed-integer opti-
mization problem. The key feature is the separable structure
with respect to units as only the self-scheduling requirements
(1) and (2) couple the decisions of different units. Therefore,
Lagrangian relaxation can be effectively applied by taking the
advantage of the separable structure. For the case without the
self-scheduling requirements, the problem can be solved in one
iteration where the multipliers are all zeros.

III. SOLUTION METHODOLOGY
A. Lagrangian Relaxation Framework

Since the constraints (1) and (2) couple the decisions among
individual units, they are relaxed by using two sets of multipliers
va(t) > 0 and v,.(t) > 0, respectively, and a two-level opti-
mization is formed. Given a set of multipliers v4(t) and v,.(t),
the relaxed problem is

min  L(vg, Vp, pn(+), mn(+)), with ™)
P ()srn(4)
L(V(i7 VT7pn(')-, Tn())
T

Frn(t) (A,,(t))D. ®)
Define

pa(t) =Xa(t) + w(t)oid (t) + va(t) and )
(10

Compared with traditional unit commitment problems, /14(t)
and p,-(t) play the role of the marginal energy and reserve costs
at t, respectively.

By regrouping (8), the above subproblem is formulated as
minpﬂ ()rn () L, with

L= E<2T: Calpn0al0)

t=1

1S,(8) = pa(t)pn(Ma(t)) - m(tm(xru»D an

subject to individual unit constraints.
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The multipliers wv4(¢t) and v,(t) are updated at the
high level to maximize the dual function ¢(vg4,v.), (ie.,
mMaXxy,;>0,v,.>0 q(vd7 vr)), with

The two levels iterate until a stopping criterion is satisfied.
The offer curves are then constructed based on subproblem so-
lutions. These steps are described next.

B. Solving Subproblems

A unit subproblem (11) is similar to that for a unit commit-
ment problem as in [9], [10], [16]. The key differences are that
the marginal energy cost p4(t) and the reserve cost p..(t) are
now random variables depending on A4(t) and A.(t), and the
solution is a set of offering strategies: how much power should
each unit provide for each pair of \;d(t) and A;r(¢) at what
probability.

Solution methodologies for different types of units are dif-
ferent. In view of limited space, only the method for pumped-
storage subproblems will be presented. The method for thermal
units can be derived by extending the deterministic case ([9],
[10]) to a stochastic one.

Without fuel and startup costs, the subproblem for pumped-
storage unit n can be described as ming, () . ()1, With

T
L,=F (Z [_Nd(t)pn(/\d(t)) - Nr(t)rn(/\r(t))]> (13)

t=1

subject to operation constraints (4)—(6).

In view of the discontinuous operating regions as shown in
Figs. 3 and 4, the subproblem involves both integer and con-
tinuous decision variables. The idea to solve this subproblem
is to substitute out the pond dynamics (4), and to relax the two
sets of pond level limit constraints (5) and the end pond level re-
quirement (6) by using three additional sets of multipliers ~y; (¢),
v2(t) (t =1,2,...,T—1), and 73, respectively. A new sub-La-
grangian is then formed as

EE{Z [=pa()pn(Aa(t)) = pr ()7 (A (2))]

t=1

+ Z_: 71 (t) <Z wn (1) = V) + Kn>
+ Z_: Yo (t) <V3 V=Y wn(T)>
+ 73 (Vg -V + an(7)> }

T=1

An intermediate level is thus created, where the multipliers
~1(t), 72(t), and 3 are updated by using the subgradient or
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Fig. 4. MCP A ,(t) and reserve price A.(t) on July 12, 1999, New England
market.

the bundle method. At the low level with multipliers given, the
subproblem is described as

T
min,, (). (yLn, with L, = E (Z . (t,pn(-),Tn(-))> 7

t=1
(14)
where

) (VO-V,), t=12...T—1 (5
and
ha(T) = = pa(t)pn(wn (Aa(T), Ar(t)))
— My (t>'rn(’wn()‘d(T)7 Ar (T>))
+ 73wn()\d(T),)\r(T)), (16)

are the stage-wise cost functions.

The problem in (14) is to minimize an expected sum of the
stage-wise cost functions with random coefficients. In view of
the Markovian assumption on MCPs, a stochastic dynamic pro-
gramming approach is developed where a stage corresponds to
an hour and a state at hour ¢ to a pair of (A\5(¢), M.(¢)) (i =
1,2,...,I; j =1,2,...,7). Since all intertemporal constraints
have been relaxed, the optimal generation p,, (\}(t), A (¢)) and
reserve 7, (\5(t), Mi(t)) for each state are obtained by opti-
mizing the stage-wise cost function, subject to operating region
constraints as depicted in Figs. 3 and 4. The optimal genera-
tion level for each state thus depends only on p4(t) and . (t).
It should be pointed out that in view of discontinuous operating
regions, the optimal generation level may change considerably
with a slight change of 4(t) and u,-(t), resulting in signifi-
cantly different offer curves. The probability Pr (X (%), \i(t))
for each state is then calculated based on the transition proba-
bilities of Markovian prices. The solution obtained here is a set
of high dimensional offering strategies for the joint energy and
reserve market: how much power and reserve should each unit
provide for a possible pair of (X;(t), A (t), and at what prob-
ability. These strategies p,, (A\}(t), M.(t)) are used to construct
offer curves.
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C. Solving the Dual Problem

After the subproblems are solved, the multipliers vy (¢), v2(t),
and y3 are updated at the intermediate level, and the multipliers
vq(t) and v,.(t) are updated at the high level by using a subgra-
dient or bundle method. In our testing, the trust region bundle
method in [12], [22] is used.

D. Constructing Offer Curves

The strategies obtained are a set of joint offer curves for a
combined energy and reserve market. Since the energy and re-
serve are traded separately in two markets, the strategies need
to be projected onto individual markets. To do this, a joint offer
curve is first projected to the energy market by taking expec-
tation of generation levels p,, (A (t), Ai(t)) over M.(t) (j =
1,2,...,J), that is

pr(Aa(t))
J
2 pu(Na(t), M) PR (A1), A(B))

Jj=1 .
= , Yi,n,t.

3 PO (0)

7)

Since the operating regions of a unit may be discontinuous, the
result p,, (/\fi(t)) obtained in (17) may be infeasible (i.e., may
fall in a forbidden range). The above result is therefore further
projected onto the nearest feasible operating region to obtain
a near-optimal generation level p,, (X;(t)). The energy offer
curves are then constructed based on these generation levels
pn (N5(1)) (i = 1,2,...,1) and their associated prices. The
reserve offer curves can be similarly constructed. It is easy to
verify that an offer curve obtained in this way is nondecreasing
and satisfies the market requirements.

In the New England market, the power blocks in offer curves
for a unit are fixed across the bidding horizon. In this case, the
power blocks are typically given, and the problem is to optimize
the offer price for each block. The method developed here can
be used in such cases by projecting py, (X;(t)) to the nearest
block. As will be demonstrated in the numerical testing section,
the performance degradation is not significant.

E. Performing Unit Commitment to Satisfy the Market
Obligations

After the market closes, the GenCo takes the energy and
reserve awards as the system demand and reserve requirements,
respectively, and performs unit commitment and economic
dispatch to minimize its total operation cost while satisfying
market obligations. If the generators are located in multiple
zones, multiarea unit commitment may be needed, and trans-
mission constraints may also need to be considered.

FE. Analyzing Self-Scheduling, Market Interaction, and Risk
Management

Since pq(t) plays the roles of marginal energy cost (9) and
() the marginal reserve cost in (10), their values determine
the generation and reserve levels and thus offer curves. To be
specific, we shall demonstrate how self-scheduling constraints,

risk management, and the interaction of the energy and reserve
markets affect offers though (9) and (10), (15), and (16). For
simplicity, the focus will be on energy offers, as reserve offers
can be similarly analyzed.

The self-scheduling constraints affect the offers by changing
1a(t) and p,.(t) through v, (t) and v,.(t) as in (9) and (10). If the
self-scheduling requirement on energy at hour ¢ is high, va(t)
will be large, making 14(t) large. Consequently, the generation
level py, (A5(t), AL(t)) will be large for a given offer price X (t).
Equivalently, the offer price will be low for a given generation
level so that a large amount of power can be sold to the market
to satisfy the self-scheduling requirements.

The tradeoff in allocating the limited generation capacity
between the energy and reserve markets is made based on A4(t)
and A, (t). At normal situations, A4(¢) is much higher than
Ar(t), making pq(#) much higher than p,.(t). Consequently,
energy offer curves are primarily based on p4(t). Occasionally,
the reserve price A.(t) is significant as observed in many
markets, making () high. As a result, the GenCo will
allocate more capacity into the reserve market by offering low
prices for reserve and high prices for energy.

Since a pumped-storage unit contributes significant energy
and reserve at pumping or generating, it plays important roles
in both markets. Its offering strategies, however, are coupled
across hours through intermediate level multiples ~y; (), v2(t),
and ~3 in view of the pond limits and dynamics as shown in
(15). A decision at one hour affects the pond level (4), thus
affects multiplies 1 (), v2(t), and 3 afterwards through the
iterative multiplier updating process. These multipliers affect
the decisions at previous hours when optimizing the stage-wise
cost (15) in stochastic dynamic programming. If the lower pond
level constraint cannot be satisfied at hour ¢ leading to a high
v2(t), then the unit has to either generate less or pump more
before that hour. The pumped-storage strategies also affect
thermal offers through high level multiples vq(t) and v,.(t)
as a pumped-storage unit significantly affects self-scheduling
obligations on thermal units by pumping or generating (1-2).
Therefore, pumped-storage units also play a key role in the
interaction between energy and reserve markets.

The risk management scheme (3) affects offering strategies
by changing of 114(t) and 1i,.(t) via o3 (t) and o3 (t).If o, (t)
is high, indicating high uncertainty on A4(¢), then p4(¢) is high.
Consequently, the optimal generation level for each state is high,
resulting in high p,, (A}(t)). As a result, the GenCo offers low
energy price to capture potential price spikes. For a pumped-
storage unit, the risk management method typically forces the
unit to pump more water during offpeak hours in view of rela-
tively low prices and low uncertainties to be used during onpeak
hours with high prices and high uncertainties.

IV. NUMERICAL TESTING RESULTS

Numerical testing has been performed for a system con-
sisting of ten thermal units with piece-wise linear production
costs and a large pumped-storage unit with four identical
generators associated with one large pond in New England.
Three examples are presented. The first one shows how our risk
management scheme affects offering strategies and the profit
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Fig. 7. Pumped-storage offer curves at hour eight.

variance. The second demonstrates the interaction between the
energy and reserve markets, and how the pumped-storage unit
affects thermal offering strategies. In the above two examples,
the hourly market prices are obtained by adding random-
ness around actual New England MCPs. The third example
presents bidding results where hourly MCPs are predicted
by using a neural network. For better presentation of results,
thermal offer curves are aggregated, and only curves within
[-304(t),304(t)] are presented for all of the examples.

Example 1: Impact of Risk Management:
In this example, New England market data on July 12, 1999 are
used. The actual energy and reserve prices are shown in Fig. 5,
the GenCo’s own load is shown in Fig. 6, and the reserve re-
quirements are set to 15% of the corresponding loads. The MCP
distribution at each hour is assumed Gaussian with the actual
market price as the mean. The standard deviation o4(¢) is set as
10% of the corresponding hourly MCP. Fifteen price values uni-
formly distributed within the 6 o4(¢) confidential region (with
99.73% coverage) are generated for each hour. The self-sched-
uling requirement is assumed to be 80% of the GenCo’s own
load. For simplicity, the reserve market is ignored in this ex-
ample.

Two cases are tested, where risk management is not consid-
ered in Case 1 but considered in Case 2 with ?(w) = 0.045.
The offer curves for the pumped-storage unit at hours one and
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Fig. 8. Aggregated thermal offer curves at hour one.
TABLE 1
SIMULATION RESULTS
Case 1 Case 2 Diff. Rel. Diff.
Total Cost | 709,828 | 710,862 1,034 0.15%
Std. Dev. 22,636 18,819 3,817 —16.86%

eight are shown in Figs. 7 and 8, respectively. In view of the high
MCP uncertainty at hour eight, the pumped-storage unit gener-
ates more or pumps less by having lower offer prices in Case
2 as compared to Case 1. However, it has higher offer prices at
hour one to generate less or pump more to preserve water for
future use.

To investigate the impact of risk management on the expected
profit, Monte Carlo simulation was performed, and 500 sets of
market clearing prices were randomly generated based on price
distributions. For each scenario, a unit is awarded based on its
offer curves and the MCPs. By taking the awarded energy as
the demand requirements, unit commitment is then performed
to generate a schedule to fulfill market obligations at a minimum
cost. An expected total cost is then calculated over scenarios.
The testing results are summarized in Table I.

It can be seen that our risk management scheme reduces the
standard deviation of total cost by 16.86% at a cost of increasing
the expected total cost by 0.15%. In reality, the MCPs may not
be Gaussian, especially for extreme or unexpected situations
where high MCP uncertainties most likely imply high prices. In
those cases, the MCP could be underestimated in view of few
similar historical samples, and our risk management may reduce
operation costs as well as bidding risks, as to be demonstrated
in Example 3.

To evaluate how good the results are under New England
market rules where power blocks for each unit are fixed over
a bidding horizon, the solutions are projected to corresponding
blocks. The same Monte Carlo simulation is performed for 500
runs, and the average total costs are obtained at U.S.$ 710327
for Case 1 (with a 0.07% increase as compared to the results re-
ported in Table I) and U.S.$ 711431 for Case 2 (with a 0.08%
increase).

Finally, the unit commit problem is solved where the own
load is exactly supplied by the 11 units. The total cost is obtained
at U.S.$ 735 866. By taking the market as a flexible generator or
a dispatchable load, the expected total cost is reduced by 3.5%
without risk management and 3.4% with risk management.

Example 1: Impact of Risk Management:

This example uses the same data set of example 1 except that the
reserve market is included. To show how the pumped-storage
unit affects thermal offers, the pure thermal-unit system (Case 3)
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Fig. 9. Aggregated thermal offer curves at hour 8.

$/MWHr Bid Curves of Pumped-Storage Unit

40 —y¢—Bidcurveathour [
—&— Bid curve at hour 8

301

20 _g—x—r—* x

10 r ;
-1000 -500 0 500
Energy in MWHr

Fig. 10. Pumped-storage offer curves in case 4.

is tested, and the result is compared with that for the system with
the pumped-storage unit (Case 4). The aggregated offer curves
for thermal units at hours one and eight are shown in Figs. 9 and
10, respectively, and the pumped-storage offer curves are shown
in Fig. 11.

Comparing the thermal offer curves for the two cases, we can
see that with the pumped-storage unit, thermal units offer lower
energy price for hour one but higher price for hour eight. In view
of low price at hour one, the pumped-storage unit most likely
pumps as shown in Fig. 10, resulting in higher self-scheduling
energy requirement on thermal units. Therefore, the thermal
units have to offer low energy price for generating more power
to satisfy the self-scheduling requirement. On the contrary, the
pumped-storage unit would most likely generate (see the offer
curve in Fig. 11) in view of high price at hour eight, alleviating
the self-scheduling energy requirement on thermal units. There-
fore, the thermal units offer high energy price at hour eight,
allocating more capacity to the reserve market. The thermal
offer curves have been significantly changed with the pumped-
storage unit.

In view of the high reserve price at hour eight, all units should
provide as much reserve as possible to maximize the profit.
Since the reserve contribution of a pumped-storage unit is the
same as the pumping level or the online capacity minus the gen-
erating level (see Fig. 4), the four generators should either pump
at pumping capacity, or generate at the minimum generation
limit to provide maximum reserve. These two optimal strate-
gies are obtained in the offer curve of Fig. 11. In this case, the
pumped-storage unit would most likely generate in view of the
high self-scheduling energy requirement and high MCP uncer-
tainty at hour eight. As aresult, the self-scheduling requirements
on thermal units are reduced, and more thermal capacity is allo-
cated to the reserve market by offering higher energy prices for
thermal units, as shown in Fig. 10. The pumped-storage offer
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Fig. 11. Multipliers associated with self-scheduling energy constraints.
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Fig. 12. Actual versus predicted MCP of August 8, 2000 New England.

curve at hour eight is totally changed due to the reserve market
as compared with those in Case 2 (see Figs. 8 and 11).

To further understand how the pumped-storage unit affects
the system’s operation, the multipliers vq(¢) associated with
the self-scheduling energy requirements for the Cases 3 and
4 are plotted in Fig. 12. At peak hours (e.g., hours 8, 9, 11,
12), the pumped-storage unit generates power on average and,
thus, reduces marginal costs v,4(t) by alleviating self-scheduling
energy requirements on thermal units. This is similar to the
case in unit commitment, where pumped-storage units cut the
peak load. From the testing results, it is also observed that the
pumped-storage unit contributes to the reserve market in addi-
tion to satisfying the self-scheduling reserve requirements. The
pumped-storage unit plays important roles in both the energy
and reserve markets.

Example 3: Offering Strategies Based on MCP Prediction:
In the above examples, optimizing offer curves is based on ac-
tual market prices. In this example, the energy market price is
predicted by using a classification-based neural network devel-
oped in [17]. The particular day selected is for August 8, 2000, a
relatively hot day in a mild summer, in New England. The actual
and predicted MCPs are shown in Fig. 12 where the predicted
hourly variance is also plotted. In view of the very low reserve
prices, Gaussian distribution is assumed with actual prices as
the means and 10% of the prices as the standard deviations for
the reserve prices.

By solving the bidding problem, a total cost of U.S.$ 738 580
is obtained without risk management, and U.S.$ 724 006 with
risk management. Since the MCP uncertainty is predicted higher
during the onpeak hours than that of offpeak hours, the pumped-
storage unit pumps more water during the offpeak hours. Con-
sequently, it generates more power during the onpeak hours,
leading to a 1.97% saving on the total cost, as the actual MCP
is substantially higher than the prediction.

To evaluate the solution quality, the problem is also solved
assuming that the actual MCPs are known, and a total cost is ob-
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tained at U.S.$ 708 480. Therefore, the offer strategies obtained
in this case is within 2.2% from the optimal solution with actual
MCP known.

The CPU time is about 4-5 min on a PC with a 600-MHz
Pentium III processor, making the algorithm computationally
efficient for daily use.

V. CONCLUSIONS

An optimization-based algorithm has been presented to
provide efficient energy and reserve offering strategies for a
hydrothermal power system under deregulated power mar-
kets. A stochastic mixed-integer optimization formulation is
established to systematically handle the MCP uncertainties,
bidding risk management, and self-scheduling requirements.
An optimal solution methodology combining Lagrangian
relaxation and stochastic dynamic programming method is then
presented. Numerical testing results show that the algorithm
is computationally efficient, and effective offer curves for
both energy and reserve markets are obtained in 4-5 min on
a PC. The risk management is proved to be an effective way
to reduce profit variances, thus the bidding risks. This paper
also demonstrates how the reserve market affects generation
offering strategies, and how a pumped-storage unit affects the
thermal offers.

APPENDIX
A LIST OF NOTATIONS

N and n number of units and unit index;

T and ¢ bidding time horizon and time (hour)
index;

Aq(t) and energy and reserve prices at ¢, respectively,

A (1) in dollars per megawatt hour;

N (1) a set of predicted energy price at ¢, in in
dollars per megawatt hourz = 1,2,...,I;

() a set of predicted reserve price at ¢, in in
dollars per megawatthour 5 = 1,2,....,.J;

o3, (t) and price variance prediction for energy and

o3 (t) reserve at ¢ respectively;

Aa(t, pn(t)) hourly energy offering price curve for unit
n as a function of generation level, in dol-
lars per megawatt hour;

Pn(Aa(t)) hourly energy offer for unit n as a function
of price, in megawatts;

T (A (2)) hourly reserve offer for unit n as a function
of price, in megawatts;

pa(t) and The company’s “own load” and the cor-

pr(t) responding reserve at ¢, respectively, in
megawatts;

ag(t) and self-scheduling coefficients for energy and

ar(t) reserve, respectively;

Cn(pn(t)) production cost curve for unit n as a func-
tion of generation;

Sn(t) startup cost for unit n at ¢;

Ca(pa(t)) revenue from own loads, a constant in the

bidding problem;
weight coefficient at ¢ for balancing the
profit versus risks;
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wy, (1) water discharged (positive) from or
pumped (negative) to the pond at time
t for pumped-storage unit n;

vp (1) pond level at ¢ for pumped-storage unit n;

V., and Vi min and max pond limits for
pumped-storage unit n respectively;

vq(t) and multipliers associated with the energy and

va(t) reserve self-scheduling requirements at ¢,

Y1(t), 2(t)
and 3

(1]

(2]

(3]

[4]

(3]

(6]

[7

—

(8]

[9

—

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]
[19]

respectively;

multipliers associated with the minimum
and maximum pond limits at £, and the end
pond level constraint, respectively.
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