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Abstract—Production systems often involve various uncertain-
ties such as unpredictable customer orders or inaccurate estimate
of processing times. Managing such uncertainties is becoming
critical in the era of “time-based competition.” For example, if a
schedule is generated without considering possible orders in the
future, new orders of significant urgency may interrupt those
already scheduled, causing serious violation of their promised
delivery dates. The consideration of uncertainties, however, has
been proven to be very difficult because of the combinatorial
nature of discrete optimization compounded further by the pres-
ence of uncertain factors.

This paper presents an effective approach for job-shop sched-
uling considering uncertain arrival times, processing times, due
dates, and part priorities. A separable problem formulation that
balances modeling accuracy and solution method complexity is
presented with the goal to minimize expected part tardiness and
earliness cost. This optimization is subject to arrival time and
operation precedence constraints (to be satisfied for each possible
realization), and machine capacity constraints (to be satisfied
in the expected value sense). A solution methodology based
on a combined Lagrangian relaxation and stochastic dynamic
programming is developed to obtain dual solutions. A good dual
solution is then selected by using “ordinal optimization,” and
the actual schedule is dynamically constructed based on the dual
solution and the realization of random events. The computational
complexity of the overall algorithm is only slightly higher than
the one without considering uncertainties. To evaluate the quality
of the schedule, a dual cost is proved to be a lower bound to the
optimal expected cost for the stochastic formulation considered
here. Numerical testing supported by simulation demonstrates
that near optimal solutions are obtained, and uncertainties are
effectively handled for problems of practical sizes.

Index Terms—Job-shop scheduling, Lagrangian relaxation, sto-
chastic dynamic programming, uncertainties.

I. INTRODUCTION

PRODUCTION systems have various uncertainties. Mate-
rials may arrive late, the processing times of one-of-a-

kind parts may substantially vary from estimates, and urgent
orders may arrive requiring prompt attention. Organizations
also have to deal with changes in part specifications, order
quantities, delivery dates, and even cancellations. It is reported
that such changes occur as frequently as every four to six
hours on average for a typical job-shop [10]. In this era of
“time-based competition,” the impact of such changes can
no longer be ignored. For example, if existing parts are
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scheduled without considering possible orders in the future,
new orders of significant urgency may interrupt those already
scheduled, rendering their planned processes delayed. Since
many manufacturing activities are now tightly coupled in a
complicated fashion, the delay of a single operation may have
a domino effect, causing the delay of subsequent operations
belonging to the same part and the delay of other parts
sharing the same machines. The consideration of uncertainties
in scheduling, however, has been proved to be very difficult
because of the combinatorial nature of discrete optimization
further compounded by the presence of uncertain factors. The
main aim of this work is to provide a new problem formu-
lation and a new methodology by considering key uncertain
processing requirements within a job-shop context that is one
of the most prevalent manufacturing environments.

A. Literature Review

There are many stochastic scheduling results which establish
the rules to determine the sequence of parts to minimize an ex-
pected objective function (e.g., [8] and [20]). Not many results,
however, have been obtained for the stochastic scheduling of
more than two machines, as the problems are considerably
harder [18]. Scheduling problems have also been considered
within the queueing framework where parts arrive at random
with random processing times. Most of the results obtained
in this area concentrate on performance analysis of simple
scheduling policies (e.g., the “first come first serve” and “last
buffer first serve” policies) by using probability and statistics
theory [11], rather than the generation of optimal or near-
optimal schedules.

Another method is the so called “scenario analysis” [17],
[19]. The idea is that by studying possible scenarios one may
come up with a “well hedged” solution. When attempting
to apply this method to job-shop scheduling, the number
of possible scenarios grows exponentially as the number of
uncertain events increases. The method is thus effective for
problems of very small sizes. To solve larger problems, many
dispatching rules combined with probabilistic or fuzzy theory
have been investigated (e.g., [7]). These methods have the
merit of being computationally efficient and can be applied
to problems of practical sizes. However, results obtained are
often of questionable quality, and there is no good way to
systematically improve the results.

To avoid the difficulties associated with uncertainties in
scheduling, an intuitive approach is to replace all random vari-
ables by their means, consequently converting the problem into
a deterministic one [18]. Existing deterministic methods can
then be used to solve the converted problem. The performance
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of this method (referred to as “mean method” in this paper),
however, may not be good.

B. Scope of This Paper

To develop a practical method with near optimal perfor-
mance, our idea is to seek a balance between modeling
accuracy and solution method complexity. Specifically, a new
“separable problem formulation” for scheduling job shops with
uncertain arrival times, processing times, due dates, and part
priorities is presented in Section II. These uncertain parameters
are treated as random variables with given discrete distribu-
tions. The problem is to minimize expected part tardiness and
earliness cost, subject to arrival time constraints, operation
precedence constraints, and machine capacity constraints. Ar-
rival time constraints and operation precedence constraints are
required to be satisfied for each possible realization of random
events to accurately model the uncertainties. Machine capacity
constraints, however, are required to be satisfied in expected
values to reduce computational complexity.

To solve the problem, expected machine capacity constraints
are relaxed by using Lagrangian multipliers. The problem is
thus decomposed into stochastic part-level subproblems, one
for each part. A subproblem is solved by using stochastic dy-
namic programming, with stages corresponding to operations,
precedence constraints embedded in allowable state transition
patterns, and state transitions governed by probabilities and
scheduling decisions as presented in Section III. The close-
loop nature of dynamic programming is fully exploited so that
arrival time constraints and operation precedence constraints
are satisfied for each possible realization of random events.
The multipliers are updated at the high level by using a
conjugate subgradient method, with subgradient calculated
from subproblem solutions. Finally, a good dual solution is
selected by using “ordinal optimization” [4], [9], and the actual
schedule is dynamically constructed based on the dual solution
and the realization of random events. The complexity of the
overall algorithm is only slightly higher than the one without
considering uncertainties [22].

To evaluate the quality of the schedule, a dual cost is proved
in Section IV to be a lower bound to the optimal expected cost
for the stochastic problems considered here. The quality of the
schedule obtained can be thus quantitatively measured.

The method has been implemented by using the object-
oriented programming language C under a UNIX en-
vironment, and data sets based on Delta industries, a job
shop in East Granby, CT, have been tested. It is observed
that through the satisfaction of arrival time constraints and
operation precedence constraints for each possible realiza-
tion of random events, uncertainties are effectively managed.
Through the satisfaction of expected capacity constraints in
the optimization process, the computational complexity is
well controlled without much loss of modeling accuracy
and scheduling performance, enabling the method to solve
problems of practical sizes.

II. PROBLEM FORMULATION

The disjunction formulation of job-shop is commonly used
in the literature (e.g., [1]). However, since it does not have a

“separable structure,” a large problem cannot be decomposed
into small subproblems by using Lagrangian relaxation to
obtain near-optimal schedules. The following formulation of
a stochastic job-shop scheduling problem is an extension
of our earlier separable formulation [6] without considering
uncertainties. In the formulation, there are discrete time
units, with index ranging from 0 to 1. There are
machine types, and the available number of typemachines
(1 ) at time is given and denoted as . There
are parts to be processed, and part has its
arrival time , due date , and priority (weight) . Part
is assumed to require a series ofoperations for completion
without assembly requirements, and operation
of part is denoted as . The first operation of part,

, can only be started after the arrival of the order or
appropriate raw materials. Operation has to be performed
on a machine of type belonging to a given set of “eligible”
machine types for a specified duration of time , and
the processing may start only after its immediate preceding
operation has been completed. For some parts, the arrival time

, processing time , due date , and priority (weight)
are not known exactly in advance. Such parameters are

modeled as independent random variables with given discrete
distributions. For simplicity, machine availability is assumed
to be deterministic. The objective is to maximize on-time de-
livery of parts and to reduce work-in-process (WIP) inventory.
The problem is formulated as follows with a list of symbols
provided in Appendix A for easy reference.

1) Arrival Time Constraints:The arrival time constraints
state that the first operation of partcannot be started until
the arrival of order or appropriate raw materials, i.e.,

(1)

where is the beginning time of .
2) Operation Precedence Constraints:The operation pre-

cedence constraints state that operation of part cannot
be started before the completion of operationof part plus
an elapse of “time-out” between the two operations, i.e.,

(2)

where is the completion time of , and is the
beginning time of .

3) Processing Time Requirements:The processing time re-
quirements state that operationof part must be assigned
the required amount of processing time , i.e.,

(3)

The “ 1” and “ 1” are needed in (2) and (3), respectively,
since the beginning times are assumed to refer to the beginning
of a period and the completion times to the end of a period
in the formulation. For example, 4 and 5 would
imply a processing time of 2 time units, thus .
When part has uncertain arrival and/or processing times,
(1)–(3) are required to be satisfied for each possible realization
to accurately model the uncertainties. For different realizations
of random parameters, the operation beginning times may be
different. The beginning times may thus be random decision
variables.
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An uncertain customer order is an order for a part which
may come with uncertain processing requirements or may not
come at all. It can be formulated as a part with uncertain arrival
time, processing times, due date, and part priority. The sum of
probabilities associated with all possible arrival times might
be less than one since the order may not come at all.

4) Machine Capacity Constraints:Machine capacity con-
straints state that the number of operations assigned to machine
type at time should be less than or equal to , the
number of machines available at that time, i.e.,

(4)

where is a 0–1 operation variable. It equals 1 if is
assigned to a machine of typeat time , and 0 otherwise, i.e.,

if operation ( ) is assigned to machine
type and

otherwise.
(5)

In view of the uncertainties, what we are looking for is not
a “static” schedule. Rather, we are looking for a “scheduling
policy” indicating what to do under various realizable circum-
stances. An “implementable schedule” is a scheduling policy
satisfying (1)–(4) for any realization of random parameters.

With random arrival and/or processing times, it is very
difficult to handle machine capacity constraints (4) mathemat-
ically for all possible realizations of random events because
of complexity. Machine capacity constraints are thus required
to be satisfied in the expected sense, i.e.,

(6)

The constraints (6) are approximations in the presence of
uncertainties. A schedule satisfying (1)–(3) and (6) is called
“model feasible.”

5) Objective Function:The objective of on-time delivery
of parts and low WIP inventory is translated to the mini-
mization of penalties on part tardiness and on releasing the
raw materials too early by selecting appropriate operation
beginning times and machine types from a set of
“eligible” machine types , i.e.,

with (7)

subject to constraints (1)–(3), and (6). In the above, tardiness
is the amount of overdue time, i.e., , with

the completion time of the last operation of part.
For a given part due date , a desired part beginning time

can be roughly estimated based on the critical path of the
part [6], i.e.,

(8)

where is the processing time of operation along
the critical path, and coefficient is related to the
desired WIP level and usually chosen to be relatively small.
Earliness is then defined as the amount of time that part
beginning time, , leads the desired beginning time,

i.e., . The square on tardiness reflects the
fact that a part becomes more critical with each time unit
after passing its due dates and similarly for the square on
earliness. Parameters and are given weights associated
with tardiness and earliness penalties, accounting for the
importance of meeting on-time completion and low work-in-
process inventory. Since on-time completion is the foremost
criterion in (7), is usually an order of magnitude smaller
than . The expectation is taken with respect to random
parameters and random decision variables.

A model feasible schedule satisfying (1)–(3), and (6) is
usually not an implementable schedule since (4) is generally
not satisfied. To obtain an implementable schedule, a list
scheduling heuristic developed in Section III-D is used to
dynamically construct the schedule based on optimization
solution and the realization of random events.

Since (1)–(3) are linear, and (6) and (7) are additive, the
formulation is thus “separable.” Lagrangian relaxation (LR)
technique can then be effectively applied as presented next.

III. SOLUTION METHODOLOGY

Similar to the pricing concept of a market economy, the
Lagrangian relaxation method replaces “hard” coupling con-
straints (expected machine capacity constraints) by “soft”
prices (Lagrange multipliers) for the use of machines at each
time. The original problem is thus decomposed into stochastic
part-level subproblems which are effectively solved by using
stochastic dynamic programming. The close-loop nature of
dynamic programming is fully exploited so that arrival time
constraints and operation precedence constraints are satisfied
for each possible realization of random events. These prices
or multipliers are then iteratively adjusted based on the degree
of constraint violations following again the market economy
mechanism, and these subproblems are resolved using the new
set of multipliers. Finally, a good dual solution is selected
by using “ordinal optimization,” and an on-line heuristic is
applied to adjust the dual solution selected to remove any
infeasibilities and dynamically construct an implementable
schedule based on the realization of random events. The
overall complexity is only slightly higher than the one without
considering uncertainties.

A. The Lagrangian Relaxation Framework

By using Lagrangian multipliers to relax expected ma-
chine capacity constraints (6), the following relaxed problem
is obtained:

with

(9)
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subject to arrival time constraints (1), operation precedence
constraints (2), and processing time requirements (3) for each
possible realization. By using (5) and regrouping relevant
terms, the relaxed problem can be decomposed into the fol-
lowing part-level subproblems:

with

(10)

subject to (1)–(3).
Let denote the resulting minimal subproblem cost. The

high level dual problem is then obtained as

with (11)

B. Dynamic Programming for Solving Subproblems

Recently, forward dynamic programming (DP) was imbed-
ded within the LR framework in [5] and [22] to solve part
subproblems to avoid algorithm convergence difficulties as
reported in [6]. However, it is well known that forward DP
can not be used to solve stochastic subproblems with uncertain
processing times. In this paper, backward stochastic dynamic
programming is used to solve part subproblems (10) to manage
uncertainties. In this procedure, each DP stage corresponds
to an operation, and at each stage, the states (or nodes)
are the possible operation beginning times. The subgradient
component

which will be needed to update the multipliers, is calculated
based on subproblem results. To better illustrate the DP
procedure, the deterministic case is first presented as follows.

1) DP for Deterministic Case:In this case, all parameters
of part are deterministic. The DP algorithm starts with the
last stage having the following terminal cost:

(12)

The cumulative cost when moving backward is then ob-
tained recursively as follows:

(13)

where is an integer variable equal to one if operation
is the first operation of part, and zero otherwise. The second
equality in (13) is derived because
is a fixed value for the given and . The optimal
is then obtained as the minimal cumulative cost at the first
stage, subject to the arrival time constraint. Finally, the optimal
beginning times and the corresponding machine types can be
obtained by tracing the stages forward. The computational
complexity of the above DP technique for partis

where is the cardinality of [5].
2) DP for Uncertain Case:Similar to the deterministic

case, the terminal cost for the stochastic case is given by

(14)

The expectation is taken with respect to all possible processing
times of the last operation, due dates, and weights. The
recursive DP equation is

(15)

subject to operation precedence constraints for each possible
processing time of operation. This expectation is taken with
respect to all possible processing times. Finally

(16)

subject to the arrival time constraints for each possible arrival
time. This expectation is taken with respect to all possible
arrival times to obtain the minimal subproblem cost.

To better understand the above, the special case with uncer-
tain processing times only is illustrated next.

3) Solving Subproblem with Uncertain Processing Times:
When the processing times are random and other parame-
ters of part are deterministic, the algorithm is as follows. For
a particular and at the last stage, the cost is calculated
by (12) for each possible processing time. The terminal cost
is the expected value of all these possible costs

(17)

To move backward to a node at stagefrom stage ,
the decision of which node should be selected at stage
can be made for each possible processing time of operation,
subject to the operation precedence constraint. The associated
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TABLE I
MULTIPLIERS FOR EXAMPLE 3.1

Fig. 1. DP for uncertain processing times.

cost can be obtained as in (13). The cumulative cost of the
node is then the expected value of all the above costs, i.e.,

(18)

This procedure continues until the cumulative costs for all the
nodes at the first stage are obtained. Finally,is selected as
the minimum of the first stage cumulative costs subject to the
arrival time constraint. The complexity of the algorithm is

where is the set of all possible processing times ,
and is its cardinality. This complexity is only slightly
higher than that for the deterministic case.

4) Example 3.1—DP Procedure for Uncertain Processing
Times: This example illustrates the DP procedure for solving
a subproblem with uncertain processing times. Parthas three
operations with , and no time-out
between operations. Its processing times , , and
are either 1 with probability 0.5 or 2 with probability 0.5.
Operation 1 can be performed on machine type either 1 or
2. Operation 2 needs to be performed on machine type 2
and operation 3 on machine type 1. The multipliers are
assumed given (either from initialization or a dual solution)
as shown in Table I with planning horizon 7. The state
transition diagram for the DP algorithm is shown in Fig. 1.

Since the smallest processing time for operation 1 is 1,
the earliest possible beginning time for operations 2 is 1.
This implies that node 0 at stage 2 need not be considered.
Similarly, nodes 0 and 1 at stage 3 need not be considered.
Since the largest processing time for operation 3 are 2, the
latest possible beginning time is 5 to complete the part within

the planning horizon 7. Thus node 6 at stage 3 need not be
considered. Similarly, nodes 4 to 6 at stage 2 and nodes 2 to
6 at stage 1 need not be considered.

The expected costs for node 2 to node 5 at stage 3 can first
be calculated by (14). For stage 2, consider node 3 for example.
Since operation precedence constraints have to be satisfied,
only node 4 and node 5 at stage 3 can be selected for ,
and the one with a smaller cost is chosen. For , only
node 5 can be selected. The expected cumulative cost for node
3 at stage 2 can be obtained by (15). This procedure then
repeats. The optimal is then selected as the minimum 21.65
among all cumulative costs at stage 1 subject to the arrival time
constraint. The optimal beginning times and machine types can
be determined by tracing forward the optimal DP paths based
on the realizations of random arrival and processing times. The
optimal beginning time for the first operation is 0 with
corresponding machine type 1. The optimal beginning time
for the second operation depends on the realization of random

: if , and if , and they
correspond to two DP paths. Similarly, the optimal beginning
time of the third operation depends on the realization of
and with four possibilities as shown in Fig. 1.

5) Calculating Subgradients:The subgradient

is needed to update the multipliers as will be presented in the
next subsection. A key step to obtain the subgradient is to
calculate the expected machine utilization for stage

of part . To obtain this, all the nodes on the optimal DP
paths for part are located, and the probabilities that they are
selected as beginning times are determined. For a node on
the optimal paths at stage, the machine utilization can
be calculated for the optimal machine type and each possible
processing time. The machine utilization associated
with the node is then the expected value of all these
multiplied by the probability that this node will be selected.
Finally, the expected machine utilization for this stage

is the sum of the machine utilization for all these
nodes. This procedure is illustrated as follows.

Let denote the set of all nodes on the optimal paths at
stage 1. For any node , let denote the set of
all possible arrival times having as the optimal beginning
time. The probability that the node is selected as beginning
time is the sum of probabilities associated with all these
possible arrival times, i.e.,

(19)

When moving from stage to stage ( ),
let denote the set of all nodes on the optimal paths
at stage . For any node , let
denote the set of all pairs of and possible
processing time having as the optimal beginning time
for operation . The probability that the node is
selected as beginning time is thus the sum of all probabilities
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associated with these pairs , i.e.,

(20)

where is the probability associated with the possible pro-
cessing time .

Once all these nodes are located and associated probabilities
determined, the expected machine utilization for a
particular can be calculated as follows. For a node

at stage , the machine utilization can
be derived for the optimal machine type and each possible
processing time. The machine utilization associated
with the node is then the expected value of all these
multiplied by the probability that this node will be selected.
Finally, the expected machine utilization for this stage

is the sum of the machine utilization for all the
nodes .

The subgradient is finally calculated by

(21)

The complexity of calculating

is

because the number of the nodes at a stage is at most.
When this method is used to calculate the subgradient for a
deterministic case, the complexity is the same as that of the
deterministic method [15].

C. Solving the Dual Problem

The dual function in (11) is concave, piece-wise linear,
and consists of many facets [21]. Each facet corresponds to
a possible scheduling policy of the relaxed problem. Because
of the combinatorial nature of discrete optimization further
compounded by various possible realizations of uncertain
factors, the number of possible scheduling policies increases
drastically as the problem size increases. Therefore for a
practical problem the number of facets is extremely large, and
the dual function approaches a smooth function especially near
its maximum. This smoothness of the dual function motivates
the use of conjugate gradient method [3] to iteratively solve
the high level dual problem (11), using subgradient instead of
gradient in the conjugate gradient formula. For a given set of
multipliers, subproblems are solved as explained above to ob-
tain the optimal subproblem solutions, and multipliers are then
updated based on the degrees of constraint violation using the
conjugate subgradient method. This iterative procedure repeats
until some stopping criteria are met. The overall solution is of
semi close-loop nature since close-loop subproblem solutions
are obtained by using DP given Lagrangian multipliers.

D. Selecting a Dual Solution and Implementing a Schedule

Since expected machine capacity constraints (6) are relaxed
in the LR process, the solutions of subproblems when put
together generally do not provide a model feasible schedule,
i.e., the expected machine capacity constraints (6) might be vi-
olated at particular time units. Furthermore, since the expected
machine capacity constraints are a kind of approximation,
a model feasible schedule satisfying (6) is generally not
implementable, i.e., machine capacity constraints (4) might
be violated. To obtain an implementable schedule, a list
scheduling heuristic is used based on a selected dual solution
and the realization of random events. How to select a good
dual solution is presented first.

1) Selecting a Dual Solution:In view of the heuristic na-
ture of how feasible schedules are constructed, a dual solution
with a high dual cost may not necessarily be associated
with a good feasible schedule. One therefore has to try out
several candidate dual solutions having high dual costs to
find one which generates a good feasible schedule. In the
stochastic setting, each dual or feasible solution is in fact
a policy, indicating what to do under which circumstances.
To obtain the expected value of the objective function (7)
for a single dual solution thus involves simulation, and is
very time consuming. The idea of ordinal optimization [4],
[9] is employed to perform short simulation runs on selected
candidate dual solutions to determine the “ranking” of their
expected costs. A winner of the short tryout is then the
dual solution selected to generate implementable schedules,
and rigorous simulation runs are then performed to obtain
performance statistics.

2) Implementing a Schedule:To obtain an implementable
schedule, the list scheduling heuristic developed is a modified
version of what was presented in [15]. The difference is
that the schedule here is dynamically constructed based on
the realization of random events by exploiting the close-loop
nature of DP solutions. In the heuristic, a list of “assignable”
operations is created at time 0 and updated at each subsequent
time unit based on the realization of random events and
DP solutions. Operations are then scheduled on the required
machine types according to this list as machines become
available. If there are not enough machines of a particular
type for operations, the incremental changes in cumulative DP
costs of the operations are used to determine which operations
should be assigned at the time slot and which ones are to be
delayed by one time unit. Once an operation is delayed and
scheduled for a later time, the beginning time of its succeeding
operation is determined based on this scheduled time rather
than its original beginning time. The procedure is illustrated
as follows.

Step 1: For all the operations whose raw materials are
available at time 0, an operation list is created in
the ascending order of their beginning times.

Step 2: Operations are scheduled on the required machine
types according to this operation list as machines
become available.

Step 3: If machine capacity constraint (4) for a partic-
ular machine type is violated at the time slot,
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the operations with small incremental change in
optimal cost-to-go are to be delayed by one time
unit, where the incremental change in optimal
cost-to-go for is defined as

(22)
Step 4: Terminate the process if all operations are as-

signed to required machine types. Otherwise, go
to next time slot.

Step 5: If a part arrives, the operation list is updated by
inserting the part’s first operation in the ascend-
ing order of beginning times. If operation
is completed and it has a succeeding operation

, the beginning time of is
determined by the scheduled time and processing
time of according to the DP solution. The
operation list is updated by inserting the succeed-
ing operation in the ascending order of beginning
times. Then go to Step 2.

Because of the semi close-loop nature of the subproblem
solutions, rescheduling is needed periodically or after a major
random event occurs with the latest information. Rescheduling
can achieve better result without requiring much additional
computation time if the multipliers are initialized at their
previous values.

IV. PERFORMANCE EVALUATION

A. Performance Evaluation via Simulation

To analyze algorithm performance for large size problems,
a simulation shell has been developed. Random numbers are
generated according to the discrete distributions of random
parameters, and Monte Carlo simulation is performed based
on the dual solution selected as described in Section III-D-
1. After runs, sample cost is available for run ,
1 . The expected cost can then be estimated as

. The accuracy of the estimate can
be statistically evaluated based on the confidence region for a
given probability of error . Furthermore, confidence region
can be used as a simple way to compare two algorithms using
the same set of random variables. If the confidence regions
of two methods do not overlap, the one having smalleris
better with confidence . Otherwise, a so-called “optimal”
comparison technique can be used based on hypothesis testing
[2].

B. Evaluation of the Solution via Duality Gap

Although simulation can be used to obtain statistics of a
schedule, it cannot tell how close the schedule is to the optimal
one. For the deterministic case, the dual cost has been proved
to be a lower bound to the optimal cost following the “weak
duality theorem” [3]. For the formulation considered here,
the following theorem provides a stochastic version of the
important result.

Theorem 4.1:If is the expected tardiness and earliness
cost of an optimal implementable schedule, then .

The proof of the theorem is provided in Appendix B. The
theorem states that a dual cost is a lower bound to the
expected cost of an optimal implementable schedule. The
(relative) duality gap can thus be used as another
measure of schedule quality.

V. NUMERICAL RESULTS

This algorithm was implemented in C under a UNIX
environment. Testing has been performed on a SUN ULTRA
1 workstation to compare the performance of our method
with that of the “mean method.” In the mean method, all
random variables are replaced by their means, and the con-
verted deterministic problems are solved by using our previous
LR/DP technique [22]. In the testing, all the multipliers
are initialized at zero. The conjugate subgradient algorithm
for multiplier updating is terminated after a fixed amount
of computation time. Based on the dual solution selected,
the two methods then use the same heuristics as described
in Section III-D-2 without rescheduling. In the numerical
results to be presented, the first two small examples are used
to show the solutions in detail and the insights obtained.
Their expected costs are obtained by enumerating all possible
events and determining their associated probabilities. The
other examples draw data from Delta industries, an engine
part manufacturer in Connecticut, to demonstrate that our
method can effectively handle uncertainties for problems of
practical sizes. The expected costs are obtained by Monte
Carlo simulation. Each example may include several cases, and
the percentage difference of the expected costsbetween
the two methods

Difference of
of Mean Method of Our Method

of Our Method
(23)

is given for each case.
Example 5.1—Scheduling with Uncertain Orders:In this

example, five existing parts and a new order are to be
scheduled on two different machines over a planning horizon
of 14 time units. The new order (Part 6) may come on time 2
with probability 0.9, or it may not come at all. If it comes, its
single operation has an uncertain processing time of either 1
time unit with probability 0.3 or 3 with probability 0.7. Data
are shown in Table II, and the parameterin (8) is set to 1,
meaning that the desired WIP level is very low.

The problem is first solved by using our method in 0.09
CPU s. The Gantt charts of resulting implementable schedule
are presented in Fig. 2 with an expected cost 4.37. The lower
bound is obtained at 4.361 with a relative duality gap 0.2%.
For this small example, it can be shown that the schedule is
optimal by exhaustive search.

The problem is also solved by using the mean method with
the same 0.09 CPU s. In the mean method, the new order is
treated as coming with certainty having a processing time of 2
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TABLE II
DATA FOR EXAMPLE 5.1

(a)

(b)

(c)

Fig. 2. Gantt charts with uncertain orders, our method.

units. The Gantt charts of the resulting implementable schedule
are presented in Fig. 3, and the expected cost is 5.805.

For this example, our method has 32.8% lower expected cost
than that of the mean method. In the mean method, the new
order is treated as coming with certainty and with processing
time 2. In this circumstance, Part 1 should start before Part
2 to avoid the tardiness penalty of Part 1 and the earliness
penalty of Part 2. This sequence, however, fails to consider
the tardiness penalties of Parts 2–5 when the processing time
of Part 6 is 3.

The above example demonstrates a case in which our
method outperforms the mean method when on-time delivery
is more important than low WIP inventory. The following two
variational cases show that our method also outperforms the
mean method when low WIP inventory becomes important or
more uncertain orders are involved.

Case 2: The earliness weights of all parts are changed
to 0.5. The new order (Part 6) may come on time 2 with
probability 0.6, or it may not come at all. If it comes, its
single operation has an uncertain processing time of either 2
time units with probability 0.2, or 3 with probability 0.8. The
rest of the data is the same as above.

For this case, the schedule generated by the mean method
has an expected cost 5.4 among which 3.4 is associated with
tardiness and 2.0 is associated with earliness. The schedule

(a)

(b)

(c)

Fig. 3. Gantt charts with uncertain orders, mean method.

TABLE III
DATA FOR EXAMPLE 5.2

generated by our method does not yield any earliness penalty,
and the expected cost associated with tardiness is 4.56. Overall,
the expected cost 5.4 obtained by the mean method is 18.42%
higher than the one 4.56 obtained by our method, implying
that a better balance between on-time delivery and low WIP
inventory is achieved by our method.

Case 3: Suppose that parts 3–5 are also new orders, any of
which may arrive on time 4 with probability 0.5 or it may not
come at all. The rest of the data is the same as for Case 2.

The schedule in Case 3 is much more complicated than
the one in Case 2, with a total of 24 possible realizations
as opposed to three realizations in Case 2 for either method.
The schedule generated by our method has an expected cost
3.54 which is 52.54% smaller than 5.4 generated by the mean
method. The difference between the two methods in Case 3
is larger than 18.42% of Case 2 since more uncertainties are
involved.

Example 5.2—Scheduling with Uncertain Arrival Times:In
this example, three parts are scheduled on two different
machines over a planning horizon of 30 time units. Parts 1
and 2 are available for processing starting from time zero. The
arrival time for Part 3 is random: either 1 with probability 0.7
or 2 with probability 0.3. Data are shown in Table III, and the
parameter in (8) is set to 2.

The problem is first solved by using our method in 0.06
CPU s. The Gantt charts of resulting implementable schedule
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(a)

(b)

Fig. 4. Gantt charts with uncertain arrival, our method.

(a)

(b)

Fig. 5. Gantt charts with uncertain arrival, mean method.

are presented in Fig. 4 with an expected cost 6.9. The lower
bound obtained is 6.897 with a relative duality gap 0.043%.
For this small example, it can also be shown that the schedule
is optimal by exhaustive search.

The problem is resolved by using the mean method with the
same 0.06 CPU s where the arrival time of Part 3 is replaced
by its mean 1. The Gantt charts of the resulting implementable
schedule are presented in Fig. 5 with an expected cost 8.25.

For this example, our method has an expected cost 19.57%
lower than that of the mean method. The reason can be
explained as follows. In the mean method when the arrival time
of Part 3 is 1, operation (3, 1) starts before (1, 2). When Part 3
does not arrive at time 1, operation (1, 2) waits for its arrival. In
our method, operation (3, 1) has two possible beginning times,
corresponding to the two possible arrival times. Operations (3,
1) and (1, 2) can thus be switched to respond to different arrival
times, leading to a smaller expected cost.

To examine the impact of various probability distributions,
the following three cases are considered where Part 3 arrives
either at time 1 with probability or at time 2 with probability

.

Case 2: 0.5.
Case 3: 0.1.
Case 4: is randomly generated 100 times based on a

uniform distribution over [0, 1].

The schedules generated by our method are identical to
those shown in Fig. 4 for both Case 1 or Case 2. The schedule
generated by the mean method is identical to the one shown in
Fig. 5 for Case 1. For Case 2, the mean method has a different
Gantt chart as presented in Fig. 6.

Fig. 6. Gantt chart for Case 2 with uncertain arrival, mean method.

TABLE IV
NUMERICAL RESULTS FOR EXAMPLE 5.2

For each case including the original one ( 0.7), the
expected costs associated with the two methods and their
differences are summarized in Table IV.

Among the first three cases with 0.7, 0.5, 0.1, Case 3
with 0.1 has the least uncertainty resulting the smallest
difference (3.45%) between the two methods. Our method,
however, significantly outperforms the mean method when
uncertainties are substantial.

Example 5.3: This example uses data from Delta Industries
with contrived uncertainties, and is to show the effects of
various levels of uncertainties on scheduling performance.
In this example, 87 parts with a total of 461 operations
are scheduled on 48 machines belonging to 27 machine
types over a planning horizon of 100 time units. Three
cases are considered, having 10%, 30%, and 45% parts with
uncertainties, respectively. These uncertain parts are randomly
selected, and for an uncertain part, each parameter has 50%
probability to be uncertain with three possible discrete values.
The algorithm is terminated after 5 min. Ordinal optimization
then conducts 30 simulation runs for the last 15 dual solutions,
and the one yielding the lowest average cost is selected.
One thousand Monte Carlo runs are performed to obtain
the expected cost for the particular setting. The procedure is
repeated five times (five subcases), each having different sets
of uncertain parts and uncertain parameters. Testing results are
summarized in Table V, including for each subcase whether
the confidence regions of the two methods overlap or not
with error probability 0.05. For comparison purposes,
the deterministic problem without uncertainties is also tested
and presented as Case 0.

It can be observed that near-optimal schedules are generated
by our method for this practical problem within a reasonable
amount of CPU time. Our method is substantially better
than the mean method in subcases 1.4, 2.4, 3.2, and 3.5,
and is moderately better than the mean method for subcases
1.1, 2.1, 2.2, and 3.4 having lower expected costs with
nonoverlapping confidence regions. For other subcases, since
uncertain parts are randomly selected and their parameters
randomly generated, insignificant uncertainties may not have
major impact. The two methods thus lead to similar results as
expected with overlapping confidence regions, and the result of
“optimal comparison technique” is also mostly inconclusive.
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TABLE V
NUMERICAL RESULTS FOR EXAMPLE 5.3

This is consistent with what was mentioned in the literature
(e.g., [19]).

Example 5.4:This example also uses data from Delta In-
dustries with contrived uncertainties, and is used to show
the improvement in schedule quality as computation time
increases. In this example, 38 parts with a total of 130
operations are scheduled on 35 machines belonging to 14
machine types over a planning horizon of 90 time units, where
eight parts have uncertain arrival times and processing times.
Four cases are considered in which the algorithm is terminated
after 1, 3, 5, and 7 min, respectively. For each case, ordinal
optimization conducts 30 simulation runs for last a few dual
solutions before the termination of the algorithm and selects
the best one. Based on the selected dual solution, 1000 Monte
Carlo runs are then conducted to obtain the expected cost.
Testing results for each case are shown in Fig. 7, where the
confidence regions are obtained with an error probability
0.05. The dual costs associated with the mean method are
not included in the figure since they are generally not lower
bounds to the optimal expected costs.

From the testing, it can be seen that our method becomes
better than the mean method as computation time is reasonably
long, and better dual costs are obtained as the computation
time increases. Good expected costs, however, can be obtained
within a reasonable CPU time (5 min in this example).

VI. CONCLUSION

The job-shop scheduling problem with considering un-
certain arrival times, processing times, due dates and part
priorities is addressed. A novel methodology that balances
modeling accuracy and solution methodology complexity is
presented. Through the satisfaction of arrival time constraints
and operation precedence constraints for each possible realiza-
tion of random events, uncertainties are effectively managed.
The expected capacity constraints reduce the computational
complexity without much loss of modeling accuracy and
scheduling performance. The fundamental “weak duality the-
orem” of LR is proved to hold for the stochastic formulation
considered here, providing a quantifiable measure of schedule

Fig. 7. Testing results and confidence regions for Example 5.4.

quality. Testing results supported by simulation demonstrate
that our method can be substantially better than the mean
method, and near optimal schedules are generated by our
method for problems of practical sizes within reasonable CPU
times.

Although only uncertain arrival times, processing times,
due dates, and part priorities are considered, the formulation
and methodology can be extended to handle other kinds
of uncertainties, e.g., uncertain number of iterations for a
particular operation (representing rework, [16]). The handling
of unpredictable machine breakdowns is also an important
issue, however, does not fall directly into current framework,
and is a subject for future research.

APPENDIX A
List of Symbols

Arrival time of part .
Beginning time of part .
Desired beginning time of part.
Beginning time of operation .
Optimal beginning time of operation
in subproblem.
Beginning time of operation in an
optimal implementable schedule.
Completion time of part .
Completion time of operation .
Completion time of operation in an
optimal implementable schedule.
Due date of part .
Dual cost.
Earliness of part .
Earliness of part in an optimal imple-
mentable schedule.
Change of cumulative DP cost for .
Machine type index.
Selected machine type index for .
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Optimal machine type index selected for
.

Set of machine types.
Set of machine types eligible for .
Cardinality of .
Part index 1 .
Total number of parts to be scheduled.
The th operation of part .
Operation index, ;
Expected tardiness and earliness cost.
Number of operations of part.
Tardiness and earliness cost for Monte Carlo
run .
Tardiness and earliness cost estimated from
Monte Carlo runs.
Tardiness and earliness cost of an optimal
implemenetable schedule.
Time index, .
Time horizon of scheduling.
Lagrangian function.
Subproblem .
Optimal cost for subproblem.
Number of type machines available at
time .
Required “timeout” between operation

and .
Processing time of operation on ma-
chine type .
Tardiness of part.
Tardiness of an optimal implementable
schedule.
Set of all possible values of random pro-
cessing times .
Cardinality of .
Cumulative cost of state at stage for ,

.
Weight of tardiness penalty for part.
Weight of earliness penalty for part.
0–1 operation variable identifying if
is active on machine type at time .
0–1 operation variable of an optimal imple-
mentable schedule.
Lagrangian multiplier of machine type at
time .
0–1 integer variable distinguishing if
is the first operation of part.

APPENDIX B
PROOF OF DUAL COST AS LOWER BOUND

Proof of Theorem 4.1:Let , , , , and be
the beginning time, completion time, 0–1 operation variable,
tardiness, and earliness associated with an optimal imple-
mentable schedule, respectively. According to (4), we have

(24)

Thus for any

(25)

Furthermore, since is the minimal cost of subproblem (10)

(26)

Therefore

(27)
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