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The increasing demand for on-time delivery of products and low production cost is forcing manufacturers to seek effective schedules
to coordinate machines and operators so as to reduce costs associated with labor, setup, inventory, and unhappy customers. This paper
presents the modeling and resolution of a job shop scheduling system for J. M. Products Inc., whose manufacturing is characterized
by the need to simultaneously consider machines and operators, machines requiring significant setup times, operators of different
capabilities, and lots dividable into transfer lots. These characteristics are typical for many manufacturers, difficult to handle, and
have not been adequately addressed in the literature. In our study, an integer optimization formulation with a separable structure is
developed where both machines and operators are modeled as resources with finite capacities. Setups are explicitly considered following
our previous work with additional penalties on excessive setups. By analyzing transfer lot dynamics, transfer lots are modeled by using
linear inequalities. The objective is to maximize on-time delivery of products, reduce inventory, and reduce the number of setups. By
relaxing resource capacity constraints and portions of precedence constraints, the problem is decomposed into smaller subproblems
that are effectively solved by using a novel dynamic programming procedure. The multipliers are updated using the recently developed
surrogate subgradient method. A heuristic is then used to obtain a feasible schedule based on subproblem solutions. Numerical testing
shows that the method generates high quality schedules in a timely fashion.

1. Introduction

The increasing demand for on-time delivery of products
and low production cost is forcing manufacturers to seek
effective schedules to coordinate machines and operators so
as to reduce costs associated with labor, setup, inventory,
and unhappy customers. This paper presents the modeling
and resolution of a job shop scheduling system for J. M.
Products Inc., a typical small manufacturer of mechanical
components with about 10 people in Connecticut. Parts
are processed in lots, and all parts within a lot must be
completed on a machine before that machine can process
another lot. A lot, however, may be divided into multiple
“transfer lots,” each of which can move to the next process-
ing stage as soon as all parts within that transfer lot are
finished. This lot splitting allows individual transfer lots to
be processed concurrently at consecutive operation stages,
and can significantly reduce manufacturing lead times and
lower inventory levels. Some machines need to be set up
before they can process specific lots, and setups are “group-
dependent” in the sense that a different setup is needed when

processing is switched from a lot of a particular “group” of
part types to a lot of a different “group” of part types. Ex-
cessive setups are highly undesirable since they lead to un-
desirable setup costs and increase the chance of rework and
scrap. In addition, in view of limited personnel, operators
of different capabilities (e.g., operators for machine setups
or for processing) need to be efficiently scheduled and well
coordinated with machines. The objective is to deliver lots
on-time, to reduce the Work-In-Process (WIP) inventory,
and to decrease the number of setups. These characteristics
are typical for many manufacturers, difficult to handle, and
have not been adequately addressed in the literature.

2. Literature review

2.1. Multiple resources

Several studies on multiple resource scheduling where an
operation may require multiple resources (e.g., a machine
and an operator) have been reported in the literature

0740-817X C© 2003 “IIE”



974 Chen et al.

(Treleven and Elvers, 1985; Luh, Liu and Moser, 1999).
Most of them, however, were based on heuristics (Gargeya
and Deane, 1996). These methods have the merit of being
computationally efficient and can be applied to problems of
practical sizes. The results obtained, however, are often of
questionable quality, and it is very difficult to systematically
improve the results. Optimization-based methods were pre-
sented only in a few studies. For examples, multiple resource
scheduling to minimize weighted flow times was discussed
in Dobson and Karmarkar (1993). Since a “disjunctive
formulation” with a non-separable structure was used, a
large problem cannot be decomposed into smaller subprob-
lems to efficiently obtain solutions. Scheduling a job shop
with multiple resources was presented in Chen and Hsia
(1994). Without considering setups, operators were essen-
tially modeled as machines and the problem was solved by
using Lagrangian relaxation following our previous work
(Czerwinski and Luh, 1994).

2.2. Group-dependent setups

In an earlier survey on machine setups, 70% of industrial
schedulers reported that they had to deal with “sequence-
dependent setups” in which the setup time for a lot depends
on what is processed before that lot (Panwalkar et al., 1973).
Scheduling with sequence-dependent setups is recognized
as being very difficult, and most existing results in the litera-
ture focus on either a single machine or several identical ma-
chines (Kim and Bobrowski, 1994; Ovacik and Uzsoy, 1994;
Young et al., 1997). Only a few studies addressed sequence-
dependent flow shops or job shops, and branch-and-bound
and heuristics were the predominant methods. The com-
putation time of a branch-and-bound method, however,
increases drastically as the problem size increases (Brucker
and Thiele, 1996). “Group-dependent setups” are a special
kind of sequence-dependent setups where a setup is needed
when processing is switched from one “group” of parts to
another (groups could be defined based on selected fields
of the parts’ Group Technology code), and the setup time
depends only on the group which is being set up. A job
shop scheduling method considering group-dependent se-
tups based on Lagrangian relaxation was recently presented
in Luh et al. (1998) where operators were not considered.
To reduce the number of setups, most of the currently ex-
isting methods are based on either heuristics (Soumen and
Cheryl, 1993) or a branch-and-bound approach (e.g., Liao
and Chuang (1996) for a single facility).

2.3. Transfer lots

The handling of lot splitting can be generally classified into
two categories: (i) treating individual transfer lots as in-
dependent scheduling units; or (ii) by treating each lot as
an independent unit. The first category of methods that
treats each transfer lot as an independent unit has been fre-
quently reported in the literature (Vickson and Alfredsson,

1992; Trietsch and Baker, 1993). These methods require a
large number of decision variables (for individual trans-
fer lots), and a special set of constraints to ensure that all
transfer lots within a lot are completed before a machine
can process another lot. These lead to significant mathe-
matical difficulties except for very small problems (Dobson
and Karmarkar, 1989). The second category of methods
that treats each lot as an independent scheduling unit has
fewer decision variables and constraints than the first one.
An optimization-based formulation that elegantly describes
lot dynamics was recently developed in Liu and Luh (1996).
The model, however, includes nonlinear equalities making
the solution methodology difficult to implement.

2.4. Scope of this paper

In this paper, both machines and operators are modeled as
resources with finite capacities. Operators may have differ-
ent capabilities, and machine setups are explicitly modeled
following our previous work (Luh et al., 1998) with addi-
tional penalties on excessive setups. By treating each lot as
an independent scheduling unit and analyzing transfer lot
dynamics, transfer lots are modeled using linear inequali-
ties instead of the nonlinear equalities as in Liu and Luh
(1996). A separable formulation considering all these fea-
tures is presented in Section 3. By relaxing resource ca-
pacity constraints and portions of precedence constraints,
this problem is decomposed into “lot subproblems” and
“group subproblems.” The lot subproblem is solved by us-
ing a novel Dynamic Programming (DP) procedure which
is much simpler than that presented in Liu and Luh (1996).
The group subproblem is solved by using the standard DP
with penalties on excessive setups embedded in state tran-
sition costs without requiring much additional computa-
tion. The Lagrangian multipliers are updated by using the
recently developed Surrogate Subgradient Method (Zhao
et al., 1999). A heuristic procedure is developed to adjust
subproblem solutions to obtain a feasible schedule satisfy-
ing all constraints as presented in Section 4. The method
has been implemented by using the object-oriented pro-
gramming language C++ with a Microsoft Access user in-
terface, and numerical testing shows that it generates high
quality schedules in a timely fashion. Through simultane-
ous consideration of machines and operators, machines and
operators are well coordinated to facilitate the smooth flow
of lots through the system. The explicit modeling of setups
and the associated penalties encourage lots with the same
setup requirements to be processed back-to-back to avoid
excessive setups. The linear description of transfer lots also
significantly reduces the implementation complexity with-
out sacrificing solution quality.

3. Problem formulation

The following formulation is built on our previous work
on job shop scheduling with group-dependent setups (Luh
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et al., 1998) and with transfer lots (Liu and Luh, 1996). It
has the following new features: (i) non-symmetric modeling
of machines and operators, while an operator can supervise
several operations at the same time; (ii) additional penalties
on excessive setups in the objective function; and (iii) linear
modeling of transfer lots. For clarity, the preliminaries are
presented first.

3.1. Notation and general description

3.1.1. Machines and operators
In the formulation, K discrete time units are considered
with index k ranging from zero to K − 1. There are H
machine types, and the number of type h machines (1 ≤
h ≤ H) at time k is given and denoted as Mkh. Based on
their skills, operators are classified into O operator types,
and the number of type o operators (1 ≤ o ≤ O) at time k
is given and denoted as Oko. These operators can roughly
be divided into operation operators who process specific
operations but cannot set up machines, and setters who set
up certain machines and process specific operations.

3.1.2. Lots and transfer lots
There are L production lots to process, indexed by l (1 ≤
l ≤ L). Lot l consists of a number of parts of the same part
type, and has its arrival time al , due date dl , and priority (or
weight) wl . Lot l can be divided into multiple equal-sized
transfer lots, and the number of transfer lots is given and
denoted as Nl . Lot l requires a sequence of Jl operations for
completion, and operation j (1 ≤ j ≤ Jl) of lot l is denoted
as (l, j).

Operation (l, j) has to be processed on a machine of type
h belonging to a given set of “eligible” machine types Hlj.
The processing time tljh of (l, j) for a transfer lot on a type h
machine is assumed given, and the processing may require
a certain percent of attention mljo of a type o operator be-
longing to a given set of “eligible” operator types Olj. The
first operation of lot l can be started only after the arrival
of the order or appropriate raw materials. Similarly, oper-
ation (l, j) of a transfer lot can be started on a machine
after the transfer lot has arrived from the predecessor oper-
ation (l, j − 1), and this machine has finished the preceding
transfer lot. If the predecessor operation (l, j − 1) requires
a longer processing time, an intermittent idling may occur
as illustrated in Fig. 1 for a lot with three transfer lots.

Fig. 1. Intermittent idling between transfer lots.

Consequently, the derivation of operation completion time
is quite complicated as will be detailed later.

3.1.3. Group-dependent setups
As mentioned earlier, some machines need to be set up be-
fore they can process specific lots. All the lots with the same
setup requirements for a particular operation are classified
as a “group.” Operations of group g on type h machines are
processed in several “runs,” where operations within a run
share a single setup. The nth run is denoted as (h, g, n), and
the setup for run (h, g, n) requires 100% attention of a type
o setter belonging to a given set of “eligible” operator types
Ohg for the Shg amount of time.

3.2. Modeling of resource capacity constraints

With the concept of runs, machine capacity constraints with
group-dependent setups can be described as follows. Oper-
ations without setup requirements and runs occupy ma-
chines, while runs provide “virtual” facilities to host oper-
ations with setup requirements.

3.2.1. Machine capacity constraints
The number of active operations without setup require-
ments and the number of active runs cannot exceed machine
capacity, i.e.,∑

(l,j)∈S̄

δljkh +
∑
g,n

φkhgn + Mkh, ∀ k, h. (1)

In the above, S̄ denotes the set of operations that do not need
a setup. The operation variable δljkh equals one if operation
(l, j) is assigned to a type h machine at time k, and zero
otherwise, i.e.,

δljkh =



1, if operation (l, j) is assigned to machine
type h and blj ≤ k ≤ clj,

0, otherwise,
(1a)

where blj and clj are the beginning time and completion
time of operation j of lot l, respectively. The run variable
ϕkhgn equals one if run (h, g, n) is active at time k, and zero
otherwise, i.e.,

ϕkhgn =



1, if run (h, g, n) is active at time k,
i.e., bhgn ≤ k ≤ chgn,

0, otherwise,
(1b)

where bhgn and chgn are the beginning time and completion
time of run (h, g, n), respectively.

3.2.2. Group constraints
Operations with setup requirements cannot be processed
unless one of the related runs is active and has been set up,
i.e., ∑

(l,j)∈S

δljkh ≤
∑

n

φkhgn −
∑

n

ζkhgn, ∀ k, h, g, (2)
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where S denotes the set of operations that require setups,
and setup variable ζkhgn equals one if run (h, g, n) is being
set up at time k, and zero otherwise, i.e.,

ζkhgn =



1, if run (h, g, n) is being set up at time k,

i.e., bhgn ≤ k ≤ chgn,
0, otherwise.

(2a)

Since setup and processing within a run may be per-
formed by different operators, the concept of a group is
not directly applicable to operators. This makes the model-
ing of operators and machines unsymmetrical when setups
are involved.

3.2.3. Operator capacity constraints
For each operator type, the sum of an operator’s attention
for operations and setups cannot exceed operator capacity,
i.e., ∑

lj

mljoδljko +
∑

gn

ζkogn ≤ Oko, ∀ k, o. (3)

In the above, operation variable δljko equals one if operation
(l, j) is performed by a type o operator at time k, and zero
otherwise, i.e.,

δljko =



1, if operation (l, j) is performed by operator
o and blj ≤ k ≤ clj ,

0, otherwise.
(3a)

Setup variable ζkogn equals one if run n of group g is being
set up by a type o operator at time k, and zero otherwise,
i.e.,

ζkogn =



1, if run n of group g is being setup by a type o
operator at time k, i.e., bogn ≤ k ≤ cogn,

0, otherwise.
(3b)

Since 0 ≤ mljo ≤ 100%, an operator’s attention may be
shared by several operations at the same time.

3.3. Precedence constraints and completion time constraints

In view of the existence of transfer lots and the concomitant
intermittent idling times between transfer lots, precedence
relationships for the problem are complicated. They will
be presented under the categories of operation precedence
constraints, arrival time constraints, completion time con-
straints, and run sequence constraints below.

3.3.1. Operation precedence constraints
The first transfer lot cannot be started before its predecessor
operation has been completed plus any required “time-out,”
i.e.,

bl,j−1 + tl,j−1,h + sl,j−1 ≤ blj, Vl, j > 1, h ∈ Hij, (4)

where sl,j−1 is any required “time-out” between operation
j − 1 and its succeeding operation j of lot l.

3.3.2. Arrival time constraints
The processing of a lot cannot be started before the arrival
of the order or appropriate raw materials, i.e.,

al ≤ bl1, Vl. (5)

3.3.3. Completion time constraints
Each lot must be assigned a sufficient amount of time to
process all its transfer lots on a machine belonging to an
eligible machine type, i.e.,

blj + Nl · tljh − 1 ≤ clj, V(l, j), h ∈ Hij. (6)

In view of possible intermittent idling times, the lot com-
pletion time is not a simple sum of the lot beginning time
and the required processing time. Nevertheless, it is clear
that the last transfer lot can be processed only after its pre-
decessor operation has been completed plus any required
“time-out,” i.e.,

cl,j−1 + tljh + sl,j−1 ≤ clj, V(l, j), h ∈ Hij, (7)

with cl0 ≡ −1, sl0 ≡ 0.
The above two linear inequality constraints succinctly de-

scribe the dynamics of transfer lots, and are key to our later
derivation. Note that in Liu and Luh (1996), the completion
times were modeled as

clj = max{blj + Nl · tljh − 1, cl,j−1 + sl,j−1 + tljh},
V(l, j), h ∈ Hij, (8)

where it is implicitly assumed that the last transfer lot of a lot
must be processed as early as possible. This assumption is
a special case of our linear modeling Equations (6) and (7).
Furthermore, since Equation (8) is nonlinear, the solution
methodology presented in Liu and Luh (1996) was very
complicated.

3.3.4. Run sequencing constraints
The runs of a particular group are assumed to be processed
in the ascending order of their run numbers, i.e.,

chgn + 1 ≤ bhg,n+1, V(h, g, n). (9)

3.4. Objective function

The objectives to be achieved are on-time delivery of lots,
a low WIP inventory, and a small number of setups. Since
direct minimization of the number of setups without intro-
ducing additional variables is difficult, our idea to achieve
a small number of setups is to first assume that a sufficient
number of runs is given and then penalize undesirable runs.
With a penalty on the duration of a run (h, g, n), some runs
may only include a setup, i.e., chgn = bhgn + Shg − 1, and
perform host operations, implying that the run in fact does
not exist. The objective is thus translated to the minimiza-
tion of penalties on lot tardiness, on releasing raw materials



Manufacturing scheduling 977

too early, and on durations of undesirable runs, i.e.,
min

{blj,clj,olj,hlj,bhgn,chgn,ohg}
J,

with

J ≡
∑

l

(
wlT2

l + βlE2
l

) +
∑
hgn

αhgnU(chgn − bhgn − Shg),

(10)

subject to the constraints of Equations (1)–(7) and (9).
In the above, tardiness Tl for lot l is the amount of over-

due time, i.e., max(0, cl − dl). For a given lot due date dl , a
desired lot start time bld can be roughly estimated, and earli-
ness El is then defined as the amount that lot beginning time
leads the desired start time, i.e., max(0, bld − bl) (see, e.g.,
Czerwinski and Luh (1994)). Weights wl and βl reflect the
importance of meeting on-time completion and low WIP
inventory, respectively. The unit step function U(x) equals
one if x ≥ 0 and zero otherwise, and U(chgn − bhgn − Shg)
thus characterizes whether or not the run (h, g, n) exists.
Weight αhgn is a penalty coefficient, and is set to zero or a
small value for acceptable runs and to a large value for un-
desirable runs. This indirect penalization on a large number
of setups keeps the objective additive without introducing
additional variables.

The overall problem is to minimize Equation (10) subject
to Equations (1)–(7) and (9). The key decision variables are
the operation beginning times {blj}, the operation comple-
tion times {clj}, the machine type to be used {h ∈ Hlj}, the
operator type to be assigned {o ∈ Olj}, the run beginning
time {bhgn}, the run completion time {chgn}, and the setup
operator type to be assigned {o ∈ Ohg}. Once these variables
are determined, other variables can be easily derived. Since
Equations (4)–(7) and (9) are linear, and Equations (1)–(3)
and (10) are additive in terms of decision variables, the for-
mulation is “separable.” Lagrangian relaxation can thus be
effectively applied as presented in the following section.

4. Solution methodology

Similar to the pricing concept of a market economy, the
Lagrangian Relaxation (LR) method replaces “hard” cou-
pling constraints (e.g., resource capacity constraints) by the
payment of certain “prices” (i.e., Lagrange multipliers) for
the use of a machine and/or an operator for each time
unit. The original problem can thus be decomposed into
many smaller subproblems. These subproblems are much
easier to solve as compared to the original problem, and
their solutions can be efficiently obtained by using DP. Af-
ter these subproblems are solved, the multipliers are it-
eratively adjusted based on the degrees-of-constraint vi-
olation following again the market economy mechanism.
Subproblems are then resolved based on the new set of
multipliers. In mathematical terms, the “dual function” is
maximized in this multiplier updating process, and the val-
ues of the dual function are lower bounds to the optimal

feasible cost. Since the coupling constraints have been re-
laxed, the solutions of individual subproblems may not
constitute a feasible schedule. Therefore, at the termina-
tion of this multiplier updating process, a simple heuristic
is used to adjust subproblem solutions to provide a feasible
schedule satisfying all constraints. The quality of the feasi-
ble schedule can be quantitatively evaluated by comparing
its cost to the largest lower bound provided by the dual
function.

In Liu and Luh (1996), resource capacity constraints are
relaxed, and the resulting subproblems are subject to prece-
dence constraints with completion times described by the
nonlinear relationship of Equation (8). This nonlinear re-
lationship makes the DP procedure for subproblems very
complicated. As a result, it is difficult to implement the al-
gorithm and to maintain the software. In the following, re-
source capacity constraints and the precedence constraints
related to operation completion times, Equation (7), are re-
laxed by using Lagrange multipliers, and the relaxed prob-
lem is decomposed into individual lot and group subprob-
lems. The group subproblem is solved by using the standard
DP procedure with penalties on excessive setups embed-
ded in the state transition costs without requiring much
additional computation. By analyzing the lot dynamics, a
novel DP procedure is developed to solve lot subproblems.
As compared to Liu and Luh (1996), this DP procedure is
much simpler, and can be easily implemented based on our
previous modules for job shop scheduling (Luh et al., 1998).
This DP procedure also requires much less CPU time for
each iteration, although more iterations may be needed to
achieve the same schedule quality since more constraints
have been relaxed.

4.1. Lagrangian function

Since the resource capacity constraints, Equations (1)–
(3) and the precedence constraints related to comple-
tion time, Equation (7), are “hard” coupling constraints,
they are relaxed by using non-negative Lagrange multi-
pliers {πko}, {πkh}, {γgkh}, and {λlj}, respectively, and the
Lagrangian L is formed as:

L ≡
∑

l

(
wlT2

l + βlE2
l

) +
∑
hgn

αhgnU(chgn − bhgn − Shg)

+
∑

k,h∈Hij

{
πkh

[∑
l,j∈S

δljkh +
∑
g,n

ϕkhgn − Mkh

]}

+
∑

g,k,h∈Hlj

{
γgkh

[∑
l,j∈S

δljkh +
∑

n

ζkhgn −
∑

n

ϕkhgn

]}

+
∑

k,o∈Olj

{
πko

[ ∑
l,j

mljoδljko +
∑

gn

ζkogn − Oko

]}

+
∑

l,j

λlj(cl,j−1 + tljh + slj − clj). (11)



978 Chen et al.

After regrouping relevant terms within L, the relaxed
problem is decomposed into lot and group subproblems
which can be solved separately as discussed in the following
section.

4.2. Lot subproblems

Collecting all the terms in Equation (11) related to lot l and
using Equations (1a), (1b), (2a), (3a), and (3b) leads to the
following lot subproblems:

min
{bij,clj,olj,hlj}

Ll,

with

Ll ≡ wlT2
l + βlE2

l +
Jl−1∑
j=0

Llj(blj, clj, olj, hlj), (12)

where if (l, j) does not need a setup then:

Llj(blj, clj, olj, hlj) ≡
clj∑

k=blj

mijoπko +
clj∑

k=blj

πkh + λljtljh

+ (λl,j+1 − λlj)clj − λl1�lj, (13)

and if (l, j) requires a setup then

Llj(blj, clj, olj, hlj) ≡
clj∑

k=blj

mijoπko +
clj∑

k=blj

γgkh + λljtljh

+ (λl,j+1 − λlj)clj − λl1�lj, (14)

subject to the arrival time constraint, Equation (5), opera-
tion precedence constraints, Equation (4), and completion
time constraints, Equation (6). In the above, λlJl+1

= 0, and
�lj equals one if (l, j) is first operation of lot l and zero
otherwise. In Equations (13) and (14),

∑clj

k=blj
mijoπko re-

flects the operator utilization cost,
∑clj

k=blj
πkh the machine

utilization cost,
∑clj

k=blj
γgkh the cost for occupying a run,

and λljtljh + (λl,j+1 − λlj)clj − λlj�lj the cost for violating
Equation (7). A lot subproblem thus reflects the balance
between tardiness and earliness penalties, operator utiliza-
tion costs, machine utilization costs, the costs for occupying
runs, and costs for violating the precedence constraints re-
lated to completion times.

4.3. DP for solving lot subproblems

DP has been used to solve part subproblems for standard
job shop scheduling, e.g., Luh et al. (1998). For the lot sub-
problem under consideration, in view that both operation
beginning and completion times are decision variables, the
following equalities are used to separate the costs associ-
ated with operation beginning and completion times so as
to solve them individually:

Llj(blj, clj, olj, hlj) = Lb
lj(blj, olj, hlj) + Lc

lj(clj, olj, hlj), (15)

where if (l, j) does not need a setup; then

Lb
lj(blj, olj, hlj) ≡ −

blj−1∑
k=0

mijoπko −
blj−1∑
k=0

πkh + λljtljh, (16)

and if (l, j) requires a setup; then

Lb
lj(blj, olj, hlj) ≡ −

blj−1∑
k=0

mijoπko −
blj−1∑
k=0

γgkh + λljtljh, (17)

and if (l, j) does not need a setup; then

Lc
lj(clj, olj, hlj) ≡

clj∑
k=0

mijoπko +
clj∑

k=0

πkh

+ (λl,j+1 − λlj)clj − λl1�lj, (18)

and if (l, j) requires a setup; then

Lc
lj(clj, olj, hlj) ≡

clj∑
k=0

mijoπko +
clj∑

k=0

γgkh

+ (λl,j+1 − λlj)clj − λl1�lj, (19)

In the DP procedure, each operation has two stages,
one corresponding to operation beginning times where the
states are possible beginning times, and the other operation
completion time where the states are possible completion
times. To clearly describe the DP procedure, the schematic
for a lot with three operations is shown in Fig. 2.

The DP procedure starts with operation 3, the last oper-
ation of the lot. The stagewise cost for the completion stage
can be calculated by using Equations (18) and (19), and for
the beginning stage by Equations (16) and (17). The cost
for the entire operation for a particular beginning time is
the sum of the beginning stagewise cost and the minimum
of the completion stagewise cost subject to the completion
time constraint, Equation (6). Generally, the procedure is
as follows:

VlJl

(
blJl

, olJl
, hlJl

)
≡ min

clJl

{
Lb

lJl

(
blJl

, olJl
, hlJl

) + Lc
lJl

(
clJl

, olJl
, hlJl

) + wlT2
l

}
,

≡ Lb
lJl

(
blJl

, olJl
, hlJl

) + min
clJl

{
Lc

lJl

(
clJl

, olJl
, hlJl

) + wlT2
l

}
,

(20)

Fig. 2. DP procedure for a lot subproblem.
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subject to Equation (6). The DP procedure then moves to
operation 2. Similar to operation 3, the cost for operation 2
for a particular beginning time is the sum of the begin-
ning stagewise cost and the minimum of the completion
stagewise cost subject to the completion time constraints,
Equation (6). The cumulative cost for operations 2 and 3
is then the sum of the operation 2 cost and the minimum
of the operation 3 cost among possible operation 3 begin-
ning times and eligible machine and operator types subject
to the operation precedence constraints, Equation (4). The
DP procedure then moves to operation 1, and the process
repeats. Generally, the DP procedure is as follows:

Vlj(blj, olj, hlj)

≡ βlE2
l �lj + Lb

lj
(blj, olj, hlj) + min

clj
Lc

lj
(clj, olj, hlj)

+ min
{bl,j+1,ol,j+1,hl,j+1}

Vl,j+1(bl,j+1, ol,j+1, hl,j+1),

1 ≤ j ≤ Jl − 1, (21)

subject to Equations (6) and (4). The optimal L∗
l is then ob-

tained as the minimal cumulative cost for the first operation,
subject to the arrival time constraint, Equation (5). Finally,
the optimal beginning times, completion times, and the cor-
responding machine and operator types can be obtained
by forward tracing the stages. This DP procedure is un-
conventional because of the complex relationships among
beginning and completion times of adjacent stages as de-
scribed by Equations (4), (6) and (7). The complexity is
O(2K

∑
j |Hlj| × |Olj|), where |x| is the cardinality of set x.

4.4. Group subproblems and their solutions

Collecting all the terms in Equation (11) related to group g
on machine type h leads to:

min
{bhgn,chgn,ohgn}

Lhg,

with

Lhg ≡
∑

n

bhgn+Shg−1∑
k=bhgn

πko +
∑

n

chgn∑
k=bhgn

πkh −
∑

n

chgn∑
k=bhgn+Shg

γkhg

+
∑

n

αhgnU(chgn − bhgn − Shg), (22)

subject to the run sequencing constraints, Equation (9). In
Equation (22),

bhgn+Shg−1∑
k=bhgn

πko,

reflects the setter utilization cost,

chgn∑
k=bhgn

πkh,

the cost for occupying a machine, and

−
chgn∑

k=bhgn+Shg

γkhg,

the value for hosting operations. A group subproblem thus
reflects the balance among setter utilization costs, costs for
occupying a machine, values for hosting operations, and
penalties on excessive setups.

Since the processing time for a run is unspecified, the be-
ginning and completion times are all decision variables. The
following equality is employed to separate the cost associ-
ated with a run into three portions related to run beginning
time, run completion time, and the penalty for an undesir-
able run:

bhgn+Shg−1∑
k=bhgn

πko +
chgn∑

k=bhgn

πkh −
chgn∑

k=bhgn+Shg

γgkh

+ αhgnU(chgn − bhgn − Shg)

=
{

bhgn+Shg−1∑
k=bhgn

πko −
bhgn−1∑

k=0

πkh +
bhgn+Shg−1∑

k=0

γgkh

}

+
{

chgn∑
k=0

πkh −
chgn∑
k=0

γgkh

}
+ αhgnU(chgn − bhgn − Shg).

(23)

The group subproblem can be solved by using DP in a
way similar to that presented in Luh et al. (1998). Since
the run beginning and completion times are all decision
variables, each run has two stages, one corresponding to
the run beginning time and the other the run completion
time. The stagewise costs for a run beginning stage and
a run completion stage are given by the first and second
terms on the right-hand side of Equation (23), respectively.
Since αhgnU(chgn − bhgn − Shg) is associated with the begin-
ning and completion times of the same run, it represents
the state transition cost when moving from the run begin-
ning stage to the run completion stage. If this run exists
(chgn ≥ bhgn + Shg), there will be a penalty of αhgn. Other-
wise, there will be no such penalty. With these stagewise and
state transition costs, the group subproblems can be solved
by using the standard backward DP procedure. The cumu-
lative costs are calculated by moving from the completion
stage of the last run to the beginning stage of the last run,
and then moving to the completion stage of the preceding
run subject to Equation (9). This process then repeats until
the beginning stage of the first run is reached. The setup
operator type and run beginning and completion times are
determined by forward tracing the stages.

4.5. Dual problem and updating Lagrange multipliers

4.5.1. The dual problem
Let L∗

l denote the minimal lot subproblem cost for lot l
and L∗

hg the minimal group subproblem cost for group g on
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machine type h, then the high level dual problem is:

max
{πko,πkh,γgkh,λlj}

D,

with

D ≡
∑

l

L∗
l +

∑
h,g

L∗
hg −

∑
k,o

πhoOko

−
∑
k,h

πkhMkh +
∑

l,j

λljslj. (24)

4.5.2. Solving the dual problem
Among the existing methods for solving dual problems,
the subgradient method is the most widely used technique.
Since the subgradient method requires the minimization
of all subproblems before each update of the multipliers,
solving the subproblems becomes time consuming for large
problems with many lots and runs. To overcome this diffi-
culty, the Interleaved SubGradient (ISG) method was de-
veloped in Kaskavelis and Caramanis (1998) and later ex-
tended to the Surrogated SubGradient (SSG) method in
Zhao et al. (1999) where a proof of convergence is pro-
vided. These two methods update the multipliers after solv-
ing each subproblem, and converge faster than the subgra-
dient method especially for large problems. In our study,
the SSG method is used to solve the dual problem, Equa-
tion (24).

4.6. Heuristics

The updating of multipliers is stopped after a fixed amount
of computation time or a fixed number of iterations have
been executed. Since resource capacity constraints and
the operation precedence constraints related to completion
times have been relaxed, subproblems solutions generally
do not constitute a feasible schedule when put together. A
heuristic procedure is thus developed to adjust the subprob-
lem solutions to form a feasible schedule following Luh et
al. (1998) as is summarized next.

A list of operations is first created by arranging all the
operations in the ascending order of their beginning times
obtained from the optimization. An operation for a lot can
be started after its first transfer lot has finished the pre-
decessor operation, the machine has been set up, and the
required machine and operator are available. The corre-
sponding operation completion time is calculated based on
the lot’s beginning time, the processing time of a transfer
lot, the time of possible intermittent idling as described by
Equation (8), and the availability of machines and opera-
tors. If machine or operator capacity constraints are vio-
lated at time k, a greedy heuristic based on the incremental
change in J determines which operation should begin at
that time unit, and which ones should be delayed. Setup for
a machine is determined based on the machine’s status. If
the machine has been set up for a group and the next lot to

Fig. 3. Flowchart of the solution methodology.

be processed belongs to the same group, then no setup is
needed. Otherwise a setup is needed.

The quality of a feasible schedule obtained is quan-
titatively evaluated by its relative duality gap, which is
the relative difference between the feasible schedule cost
J and the largest dual value D obtained, i.e., duality
gap = (J − D)/D × 100%.

The overall solution methodology is summarized in the
flowchart displayed in Fig. 3.

5. Numerical results

The method has been implemented by using the object-
oriented programming language C++, with a Microsoft
Access user interface. Testing has been performed on a
Pentium Pro200 PC, and four examples are reported here
to demonstrate the performance of the developed method.
The first two small examples concentrating on multiple re-
sources and transfer lots are used to present the solutions in
detail and the insights obtained. The third example draws
on data from J. M. Products Inc. to demonstrate that our
method can generate near-optimal schedules within a rea-
sonable computational time for problems of practical sizes.
The fourth example is to demonstrate the performance of
the method with randomly generated data. For all the ex-
amples, multipliers are initialized at zero.

5.1. Example 1 (Multiple resources)

This example is to demonstrate the benefit of simultane-
ously considering both machines and operators in the opti-
mization. In the problem, five lots with one part in each lot
are to be scheduled on three different machines attended by
three operators. Setup is not needed for any operation, and
the data is shown in Table 1.

The problem is first solved by considering the operator
capacity constraints, Equation (3), in both the optimiza-
tion and heuristics as presented in this paper in 2.00 CPU
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Table 1. Data for example 1

Lot l Op. j Mach. Hlj tljh dl wl Olj mljo

1 1 1 1 0 1 1 1
2 2 2 1 0.7
3 2 3 3 1

2 1 3 3 3 1 2 1
2 1 2 2 1

3 1 3 2 5 1 3 0.6
2 1 2 1 1

4 1 2 1 10 1.5 1 1
2 3 2 2 1
3 3 1 1 1

5 1 1 2 8 0.5 1 0.3
2 2 1 3 0.5

seconds. The Gantt chart of the schedule obtained is shown
in Fig. 4 with a cost of 34. The lower bound D obtained
is 33.69 with a relative duality gap 0.92%. For this small
example, it can be shown that the schedule is optimal by
exhaustive search.

The problem is then solved by ignoring the operator ca-
pacity constraints in the optimization and considering them
only in the heuristics for the same 2.00 CPU seconds. The
Gantt chart of the schedule obtained is shown in Fig. 5 with
a cost of 42.

The cost obtained by our method is 23.5% lower than that
obtained by the method not considering operator capacity
constraints in the optimization. This can be explained as
follows. When operator constraints are ignored in the opti-
mization, operation (2, 1) should be scheduled before (3, 1)
to avoid a higher tardiness penalty. This sequence, however,
fails to consider the fact that both (1, 3) and (3, 1) need op-
erator 3 therefore one of them has to be delayed.

5.2. Example 2 (Transfer Lot)

This example is to demonstrate that scheduling with trans-
fer lots can greatly improve the system performance. There
are three lots with an equal weight of one to be scheduled
on three machine types, with one machine per type. There
are four parts in lot 1, and two parts in lots 2 and 3. Setup
is not needed and operators are always available. The data
is given in Table 2.

Fig. 4. Schedule considering operator capacity constraints in the
optimization.

Fig. 5. Schedule ignoring operator capacity constraints in the op-
timization.

The problem is first solved by treating each part as a
transfer lot in 3.00 CPU seconds. The Gantt chart of the
schedule obtained is shown in Fig. 6 with a cost of 605. The
lower bound is 588.89 with a relative duality gap of 2.74%.

This problem is then solved without considering transfer
lots for the same CPU seconds. The Gantt chart of the
schedule obtained is shown in Fig. 7 with a cost of 1021.
The lower bound is 999.00 with a relative duality gap of
2.21%.

The cost obtained considering transfer lots is 68.7% lower
than that without considering transfer lots, implying that
transfer lots can significantly improve on-time delivery and
reduced inventory.

5.3. Example 3 (Data from J. M. Products Inc.)

This example draws on data from J. M. Products Inc. In the
example, 32 lots with a total of 12 000 parts belonging to
15 part types are to be scheduled on 14 machine types with
a total of 27 machines over a time horizon of 2800. The
average number of operations per part is 5.8, and 42.5% of
the operations need setups belonging to 53 groups. Setups
can only be done by one of three setters, while operations
can be attended by either a setter or one of six operation
operators. About 27.6% of all operations require partial
operator attention. Three cases are discussed below.

The first case is to demonstrate the capability of our
method to solve a practical problem. Three subcases are
considered without additional penalties on excessive setups:

1. transfer lot size = 100;
2. transfer lot size = 200;
3. no transfer lot considered.

Table 2. Data for example 2

Lot l Op. j Mach. H tljh dl

1 1 1 2 1
2 2 1
3 3 2

2 1 1 3 0
2 2 1
3 3 2

3 1 2 1 1
2 3 2
3 1 3
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Fig. 6. Schedule considering transfer lots.

For each subcase, the algorithm is terminated after 30
iterations, and the test results are summarized in Table 3.
It can be seen that the algorithm generated near-optimal
schedules within a reasonable computational time. Sched-
ules considering transfer lots are significantly better than
the one without considering transfer lots; and for the for-
mer, the one with a smaller transfer lot size has a better
solution as expected although it requires a slightly more
computational time.

The second case is to demonstrate the effects of hav-
ing additional penalties on excessive setups in the objective
function, Equation (10). The data of the first subcase is used
with an additional penalty of 200 on all runs beyond the first
one within each group. With 30 iterations, the schedule ob-
tained has 79 setups with a feasible tardiness and earliness
cost of 62 263. Compared with the first subcase that has 90
setups and a feasible cost of 52 181, the number of setups
in this case is significantly reduced, although the schedule
has a higher feasible cost. This example thus demonstrates
a trade-off between on-time delivery and a small number
of setups.

The third case is to compare our method with a “quick
heuristic,” and the testing is based on the data of the
first case. The “quick heuristic” is as follows. By ignoring
machine and operator capacity constraints, the beginning
times of all operations of all lots are first determined based
on the lot due dates, subject to the operation precedence
constraints and arrival time constraints. The heuristics de-
scribed in Section 4.6 is then used to construct a feasible
schedule based on the beginning times thus obtained. Us-
ing the “quick heuristic,” schedules are obtained in less
than 30 seconds for each of the subcases, and have fea-
sible costs of 69 183, 76 379, and 89 815, respectively. They
are 32.5, 35.8 and 41.9% higher than the 52 181, 56 232, and
63 270, respectively, obtained by using our method, imply-
ing that our method significantly outperforms this “quick
heuristic.”

Fig. 7. Schedule without considering transfer lots.

Table 3. Test results for example 3

Feasible Duality CPU time
Subcases Transfer lot size cost gap (%) (seconds)

1 Transfer lot size = 100 52 181 8.94 307
Number of transfer

lots = 120
2 Transfer lot size = 200 56 232 9.18 299

Number of transfer
lots = 60

3 No transfer lot 63 270 6.74 281

5.4. Example 4 (Data randomly generated)

This example is to further demonstrate the performance of
our method with the data in example 3 randomly modi-
fied. Three subcases are considered. The first subcase is to
randomly increase or decrease the number of parts in each
lot and its due date. The number of parts within each lot
has a 50% probability to be increased or decreased by a
random integer uniformly distributed over [0, 300], and the
due date is changed in a similar way. A lot is then divided
into equal-sized transfer lots each having as many parts as
possible but less than 150, and the algorithm is terminated
after 10 minutes. The procedure is repeated 25 times (25
simulation runs), and the smallest, largest, and average du-
ality gaps obtained in 10 minutes are 5.41, 17.93 and 9.21%,
respectively, implying that all schedules are obtained with
near-optimal quality in a reasonable computational time.
The algorithm is then retested for each run with 15 min-
utes. The results obtained have a higher dual costs for all 25
simulation runs but have lower feasible costs only for three
simulation runs as compared with the results obtained in
10 minutes. Better dual costs are thus obtained as the com-
putation time increases. Good feasible costs, however, can
be generally obtained within a reasonable CPU time (10
minutes in the case).

The second case is based on the data of the first subcase of
case 1 in example 3 with the number of operators randomly
increased by an integer uniformly distributed over [0, 2].
Each new operator has a 50% probability to be a setter or
an operation operator, and the algorithm is terminated af-
ter 10 minutes. The procedure is repeated 25 times, and the
smallest, largest and average duality gaps thus obtained are
4.5, 11.39 and 7.82%, respectively. The number of operators
is then randomly decreased in the same way, and the algo-
rithm is terminated in 10 minutes and repeated 25 times.
The smallest, largest and average duality gaps thus ob-
tained are 6.47, 16.23 and 8.74%, respectively. Near-optimal
schedules are thus obtained in a reasonable computational
time.

The third case is based on the data of the first subcase of
case 1 in example 3 with additional penalties on excessive
runs beyond the first few within each group. The number of
runs without additional penalties is randomly determined
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based on an integer uniformly distributed over [1, 4], and
the algorithm is terminated after 10 minutes. The proce-
dure is repeated 25 times, and the average number of se-
tups obtained is 85 with a feasible cost of 57 254 as com-
pared to the first subcase of example 3 having 90 setups
and a feasible cost of 52 181. This case thus demonstrates a
trade-off between on-time delivery and a small number of
setups.

6. Conclusions

The modeling of scheduling features of particular interest to
small manufacturers and the mathematical resolution of the
resulting problem have been presented. The simultaneous
consideration of machines and operators can be extended
to solve problems with general multiple resource require-
ments (machines, operators, tools, pallets, etc.). The indi-
rect consideration of the goal for small numbers of setups
effectively achieves the goal without introducing additional
variables or major computation requirements. The idea to
partially relax precedence constraints is of practical signifi-
cance, and can be used to handle other cases when compli-
cated operation precedence relations are involved (e.g., job
shop scheduling with fuzzy processing times). Extensive nu-
merical testing demonstrates that high quality schedules are
obtained for problems of practical sizes within reasonable
CPU times.
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Nomenclature

al arrival time of lot l;
bl beginning time of lot l;
bld desired start time of lot l;
blj beginning time of operation (l, j);
bhgn beginning time of run (h, g, n);
cl completion time of lot l;
clj completion time of operation (l, j);
chgn completion time of run (h, g, n);
dl due date of lot l;
D dual cost;

El earliness of lot l;
h machine type index;
hlj selected machine type index for (l, j);
H set of machine types;
Hlj set of machine types eligible for (l, j);
|Hlj| cardinality of Hlj;
(h, g, n) the nth run of group g on machine type h;
l lot index 1 ≤ l ≤ L;
(l, j) the jth operation of lot l;
j operation index, 1 ≤ j ≤ Jl ;
J feasible cost;
Jl number of operations of lot l;
k time index, 0 ≤ k ≤ K − 1;
K time horizon of scheduling;
L total number of lots to be scheduled;
L Lagrangian function;
Ll lot subproblem of lot l;
Lhg group subproblem of group g on machine

type h;
L∗

hg optimal cost for group g subproblem on machine
type h;

L∗
l optimal cost for subproblem of lot l;

mljo percentage of type o operator attention for oper-
ation (l, j);

Mkh number of type h machines available at time k;
Nl number of transfer lots in lot l;
o operator type index;
olj selected operator type index for (l, j);
ohgn selected operator type index for (h, g, n);
O set of operator types;
Olj set of operator types eligible for (l, j);
|Olj| cardinality of Oij;
Ohg set of operator types eligible for setup of group g

on machine type h;
|Ohg| cardinality of Ohg;
Oko number of type o operator available at time k;
S set of all operations requiring setup;
Shg setup time of group g on machine type h;
slj required “time-out” between operation (l, j − 1)

and (l, j);
S̄ set of all operations that do not need setup;
tljh processing time of operation (l, j) on machine

type h for a transfer lot;
Tl tardiness of lot l;
U(x) unit step function

U(x) =
{

1 if x > 0,

0 otherwise;

wl weight of tardiness penalty for lot l;
αhgn penalty for run (h, g, n);
βl weight of earliness penalty for lot l;
δljkh 0-1 operation variable

δljkh =
{1 if (l, j) is active on machine

type h at time k,

0 otherwise;
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δljko 0-1 operation variable

δljko =
{1 if (l, j) is performed by

type o operator at time k,

0 otherwise;

ϕkhgn 0-1 run variable

ϕkhgn =
{

1 if run (h, g, n) is active at time k,

0 otherwise;

ζkhgn 0-1 setup variable

ζkhgn =




1 if (h, g, n) is being set up on time
k belonging to time interval
[bhgn, (bhgn + Shg − 1)],

0 otherwise;

ζkogn 0-1 setup variable

ζkogn =




1 if run n of group g is being set
up by type o operator at time
k belonging to time interval
[bhgn, (bhgn + Shg − 1)],

0 otherwise;

πkh Lagrangian multiplier of machine type h at time
k;

πko Lagrangian multiplier of operator type o at time
k;

γgkh Lagrangian multiplier of group g on machine
type h at time k;

λlj Lagrangian multiplier for precedence constraints
related to completion times;

�lj 0-1 integer variable distinguishing if (l, j) is the
first operation of lot l.
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