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Abstract—With the deregulation of electric power systems,
market participants are facing an important task of bidding
energy to an Independent System Operator (ISO). This paper
presents a model and a method for optimization-based bidding
and self-scheduling where a utility bids part of its energy and
self-schedules the rest as in New England. The model considers
ISO bid selections and uncertain bidding information of other
market participants. With appropriately simplified bidding and
ISO models, closed-form ISO solutions are first obtained. These
solutions are then plugged into the utility’s bidding and self-sched-
uling model which is solved by using Lagrangian relaxation.
Testing results show that the method effectively solves the problem
with reasonable amount of CPU time.

Index Terms—Bidding strategies, Lagrangian relaxation.

I. INTRODUCTION

A. Bidding, Self-Scheduling, and Literature Review

W ITH the deregulation of electrical power systems, market
participants bid energy to an Independent System Oper-

ator (ISO). In the daily market, participants submit bids to the
ISO who then decides energy clearing prices (ECP) and hourly
generation levels of each participant over a 24-hour period. The
relationship between ISO and participants is shown in Fig. 1. In
regions such as New England, a utility bids part of the energy
and self-schedules the rest, whereas an independent power pro-
ducers (IPP) bids all its energy. This paper focuses on the daily
bidding and scheduling of a utility.

For each participant, bidding strategies ideally should be se-
lected to maximize its profit. Game theory is a natural platform
to model such an environment [1]–[3]. In the literature, ma-
trix games have been used for its simplicity, and bidding strate-
gies are discretized, such as “bidding high,” “bidding low,” or
“bidding medium.” With discrete bidding strategies, payoff ma-
trices are constructed by enumerating all possible combinations
of strategies, and an “equilibrium” of the “bidding game” can
be obtained. It is difficult to incorporate self-scheduling in the
method.

Modeling and solving the bid selection process by the ISO
have also been discussed. In [4], bids are selected to minimize
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Fig. 1. The relationship between ISO and participants.

total system cost, and the ECP is determined as the price of
the highest accepted bid. In [5], a bid-clearing system in New
Zealand is presented. Detailed models are used, including net-
work, reserve, and ramp-rate constraints, and the problem is
solved by using linear programming. In [6], the dynamics of
pricing is considered in market power assessment. In [7], an op-
timal bidding strategy is proved to be a unit’s true cost under
the assumption that the bid of each unit does not effect the ECP.
This assumption is realistic since units with significant capaci-
ties will affect ECP.

B. Overview of the Paper

The purpose of the paper is to present a model and a method
for the bidding and self-scheduling problem from the viewpoint
of a utility, say Participant 1. To obtain effective solutions with
acceptable computation time, bids are represented as quadratic
functions of power levels. For Participant 1, these parameters
are to be optimized. For other participants, the parameters are
assumed to be available as discrete distributions. Based on bids
submitted, the ISO is to minimize the total system cost. The
problem for Participant 1 is then formulated to minimize its
expected cost, including generation costs and payment to the
market. The detailed models are presented in Section II.

In Section III, the ISO problem is first solved with
closed-form solutions. The solutions are plugged into Partici-
pant 1’s model with detailed modeling of units, and the problem
is solved by using Lagrangian relaxation as presented in Sec-
tion IV. Besides the subproblems in traditional hydrothermal
scheduling, an additional bidding subproblem is constructed
to optimize bidding parameters. This subproblem is stochastic
because of the uncertainty of the market, and is optimized by a
gradient method. It is shown that this subproblem is inherently
degenerated with an infinite number of equivalent solutions.
Numerical testing presented in Section V shows that the method
produces good bidding and self-scheduling results for practical
problems. Compared with a “mean method,” this new method
reduces system cost and effectively handles uncertainties with
a small increase in CPU time.
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Fig. 2. An example of bids.

II. PROBLEM FORMULATION

A. Representation of Bids

A bid consists of price offers and the amount of load to be sat-
isfied by the market for each hour. Price offers specify a stack of
MW levels and the corresponding prices as illustrated in Fig. 2.
By integrating a staircase price offer curve, the bidding cost
function is piecewise linear. The amount of load to be satisfied
by the market is denoted as .

To reduce the number of parameters associated with a bid,
the piece-wise linear bidding cost function is approximated by
a quadratic (often done in scheduling problems [8]):

(1)
where

is the participant index,
the hour index,
the accepted level by ISO,

and are nonnegative bidding parameters, and
the number of participants.

The is nonnegative, and is upper bounded by a maximal
value, i.e.,

(2)

Participant 1 does not have exact bids of others, but has prob-
ability distributions of and , ,
based on market information and experiences. The distributions
are represented by discrete sets of bids:

(3)

The probability of is with . For Participants
and depend on its unit characteristics and

others’ bids, and are to be optimized.

B. The ISO Model

The ISO decides hourly generation levels of participants to
satisfy the total submitted load at the minimum cost over 24
hours. Bids of all participants are available to the ISO, and the
deterministic ISO problem is

(4)

subject to

(5)

where is the amount of load that will be satisfied by the
market for Participant at hour .

Constraints (2) should be satisfied for all participants. For
simplicity of derivation, however, they are only required to be
satisfied for Participant 1 but are ignored for others.

C. The Model of Participant 1

Participant 1 is to decide the generation levels of each unit
and a bidding strategy to maximize its profit, or to minimize
its costs while satisfying various constraints. The costs include
generation costs and payment to the market, with the payment
equal to ECP multiplied by . Only thermal
units are considered to simplify presentation, however, there is
no difficulty in incorporating hydro and pumped-storage units.
The problem is therefore

with

(6)
In the above, is the number of hours, the number thermal in
units, the cost function of thermal unit, the genera-
tion level of unit at hour , and the ECP at hour. The
expectation is taken with respect to uncertain bidding parame-
ters reflected through and .

For each hour, the load balance constraint requires that

(7)

In the following, the of ISO scheduling will be solved first, fol-
lowed by bidding and self-scheduling.

III. T HE ISO SCHEDULING

From ISO’s point of view, its problem is deterministic. When
Participant 1 solves the ISO problem, however, it only has dis-
tributions of parameters, and has to solve the ISO problem for
every set of bidding parameters. Solution of the ISO problem
for the th set is derived as follows. The indexis omitted
as appropriate for simpler presentation.

Lagrangian multipliers are used to relax (5), and
and to relax (2). The resulting Lagrangian is:

(8)

In (8), , , and satisfy

and

The three cases of ISO solutions are presented below.
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A. Case 1: Accepted Level in Bound ( )

With the given , (8) can be decomposed subprob-
lems. The subproblem for participantis

(9)
The solution for (9) is

(10)

In (10), is assumed to be nonzero. If it is zero, a
quadratic function with a small is used to approximate
the linear function following the idea of [9]. With an analytical
solution for each subproblem, it is not necessary to iteratively
update at the high level. Substituting (10) into (5), one
obtains the ECP :

(11)

Substituting (11) into (10), one obtains the accepted level for
Participant 1 at hour as

(12)

The energy clearing price and the accepted level
for Participant 1 are functions of , and

. To simplify (11) and (12), let

(13)

and

(14)

Then (11) and (12) can be rewritten as:

(15)

and

(16)

Participant 1 may be a buyer or a seller depending on the sign
of , where is the solution for
to be derived later.

B. Case 2: Zero Accepted Level )

In this case, the bidding prices of Participant 1 are high,
causing . The derivation is similar to Case 1 with

(17)

and

(18)

C. Case 3: Maximum Accepted Level

In this case, Participant 1’s bidding price is low, resulting in
and the following energy clearing prices

(19)

The derivation is similar to Case 1 with ECP determined by
other participants’ bids.

IV. BIDDING STRATEGY AND SELF-SCHEDULING

For Participant 1’s problem, using multipliers to relax
demand constraints (7) the Lagrangian can be written as

(20)

The RHS of (20) is separable for a given , and can be de-
composed into individual thermal unit subproblems and a bid-
ding subproblem. A two-level algorithm is developed, where at
the low level, individual subproblems are solved, and at the high
level, is updated.

A. Solutions of Thermal Subproblems

A Thermal Subproblem is

with

This minimization is subject to individual unit constraints.
With given, the subproblem is deterministic, and can
be solved by using the method presented in [10].

B. The Solution of the Bidding Subproblem

The bidding subproblem is

with

(21)

In (21), and are obtained from ISO scheduling as
presented in Section III, and depend on bids of participants. This
bidding subproblem is therefore stochastic. In the following, the
deterministic version of the subproblem will be solved first. The
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stochastic version can be similarly solved except that the ex-
pectation of LB is optimized. Following the derivations of Sec-
tion III, three cases will be considered, i.e.,

and

Case 1—Accepted Level in Bound (
): The degeneracy of the bidding subproblem (21) will

be analyzed first, and then a numerical method to obtain a
solution is presented.

Solution Degeneracy Analysis:From the ISO load balance
constraints (5), the net energy exchange between Participant 1
and the market is

(22)

By substituting (22) into (21), can be rewritten as

(23)

By substituting (10), (13) and (14) into (23), becomes

It is separable in time. To obtain its minimum, the partial deriva-
tives with respect to , and are set to zeros, i.e.,

(24)

(25)

(26)

where

and

It is clear that cannot be zero, therefore, the
simultaneous equations (24)–(26) degenerate to

(27)

With three variables and one constraint (27) for each, the bid-
ding subproblem has an infinite number of solutions. The de-
generacy can be seen from Fig. 3 with the case of two partici-
pants. Suppose that Line 2 is the bidding price curve of Partici-
pant 2, and Line 1 is an optimal bidding strategy of Participant 1
with optimal and . Another bid of Partic-
ipant 1 is an equivalent solution if it satisfies and

because it results in the same energy
clearing price and the net energy exchange ( .

Fig. 3. Degeneracy of the deterministic bidding subproblem.

Obtaining a Solution:Having shown the degeneracy of (21)
above, it is straightforward to obtain one of its solutions. Sub-
stituting in (15) and in (16) into (21), the sub-
problem cost at hourcan be written as

(28)

To minimize , any two of its three decision variables
, , are are fixed first, and the third one is

optimized by a gradient method.
Case2—Zero Accepted Level ( ): In this case, the

accepted level for Participant 1 is zero, therefore the bidding
subproblem cost is obtained by substituting (17) and (18) into
(21):

(29)

Minimizing (29), the solution is

(30)

Participant 1 purchases from the market at the energy
clearing price of the hour.

Case 3—Maximum Accepted Level ( ): In
this case, Participant 1’s accepted level reaches the max-
imum, and the ECP is determined by bids of others. A solu-
tion to this bidding subproblem is to set equal to 0, and

equal to Participant 1’s marginal cost without bidding.
This leads to if Participant 1’s generation cost
is low.

The Stochastic Bidding Subproblem and Solution:Now con-
sider the stochastic version. Following (21) and (28) the sub-
problem is changed to

(31)

In the above, is similar to in (28), and is
a function of , and . With a derivation similar
to that for the deterministic case, it can be shown that (25) and
(26) degenerate to one as can be seen from Fig. 4. Suppose that
Participant 2 has two possible bidding prices, Line 2L (bidding
at low prices) and 2H (bidding at high prices), and Line 1 is
an optimal bidding strategy for Participant 1. Another bid of
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Fig. 4. Degeneracy of the stochastic bidding subproblem.

Participant 1 is an equivalent solution if it satisfies
, and . The difference

between this and the deterministic case is thatis required to
be equal to so that Line 1’ is parallel to Line 1, and also
satisfies to result in the same
expected net energy exchange.

In solving the subproblem, is fixed, and and are
optimized using the gradient method.

C. Update of Multipliers at the High Level

Multipliers are updated to maximize dual function :

Max with Min (32)

where is defined in (20). With a given set of subproblem so-
lutions obtained at the low level, this is a deterministic problem.
The subgradient of is a vector , and the th el-
ement is

(33)

The dual problem is usually solved by a subgradient method
[11]–[13], and is solved in this paper by the bundle trust region
method (BTRM) presented in [14], [15] to improve the conver-
gence. BTRM is a kind of bundle method that accumulates sub-
gradients obtained thus far in a bundle, and use a convex com-
bination of these subgradients to find a search direction. Ob-
taining the convex combination coefficients involves quadratic
programming that is recursively solved in BTRM to reduce time
requirements.

V. NUMERICAL RESULTS

The method has been implemented in Cbased on our hy-
drothermal scheduling code [8]–[10]. A data set provided by
Northeast Utilities (NU) is used to demonstrate the capabilities
of the method in handling various market situations. To simplify
testing, all other market participants are aggregated as Partici-
pant 2 with three possible bidding strategies, bidding low (),
bidding medium ( ), and bidding high ( ) each with the same
probability 1/3. The High value for is 0.09, Medium 0.05,
and Low 0.01. Participant 2’s and are varied to
represent different market situations. With Case 1 as the base,
four additional cases are created where as a percentage
of Participant 1’s original marginal cost (without bidding) and

TABLE I
BIDDING PARAMETERS OFPARTICIPANT 2

TABLE II
COSTCOMPARISON OFMEAN METHOD AND STOCHASTIC METHOD

as a percentage of Participant 1’s original load are listed
in Table I.

The method is compared with the “mean method” which con-
siders Participant 2’s bidding model as deterministic with each
parameter set to its mean value. Comparison of testing results
for Participant 1 based on 100 simulation runs is presented in
Table II. Case 2 represents a volatile market with a large vari-
ance on , and the saving of the stochastic method over
the mean method is increased as compared with the base case.
Case 3 also represents a volatile market with large variance on

, and the saving is increased as compared with the base
case. Cases 2 and 3 therefore show that the method works better
than the mean method in volatile markets. Case 4 represents a
more expensive market with the mean value of increased
by 20%, and the saving over the mean method is 0.38%. Case 5
represents a cheap market with the mean value decreased by
40%, and the saving is 0.51%. Cases 4 and 5 therefore show
that the method works well in both expensive and cheap market
situations.

The average CPU time for the mean method is 70 seconds,
and that of the stochastic method is about 95 seconds. The CPU
time requirements are close because both methods solve the bid-
ding subproblem using a gradient method, and there is only one
stochastic bidding subproblem.

VI. CONCLUSIONS

Built on an existing hydrothermal scheduling approach, an
innovative model and an efficient Lagrangian relaxation-based
method are presented to solve the bidding and self-scheduling
problem. Numerical testing shows that the method effectively
handles various market situations.
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