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Abstract—With the deregulation of electric power systems, Generation

market participants are facing an important task of bidding Level & ECP 150 | Generation
energy to an Independent System Operator (ISO). This paper Bidding Leyel & ECP
presents a model and a method for optimization-based bidding Strategies/v

and self-scheduling where a utility bids part of its energy and

self-schedules the rest as in New England. The model considers | Participant 1 || Participant 2 | | Participant L |

ISO bid selections and uncertain bidding information of other

market participants. With appropriately simplified bidding and

ISO models, closed-form 1SO solutions are first obtained. These Fig. 1. The relationship between ISO and participants.

solutions are then plugged into the utility’s bidding and self-sched-

uling model which is solved by using Lagrangian relaxation. . . .
Testing results show that the method effectively solves the problem total system cost, and the ECP is determined as the price of
with reasonable amount of CPU time. the highest accepted bid. In [5], a bid-clearing system in New

Zealand is presented. Detailed models are used, including net-
work, reserve, and ramp-rate constraints, and the problem is
solved by using linear programming. In [6], the dynamics of

. INTRODUCTION pricing is considered in market power assessment. In [7], an op-

A. Bidding, Self-Scheduling, and Literature Review timal bidding strategy is proved to be a unit's true cost under

. . the assumption that the bid of each unit does not effect the ECP.
W ITH the deregulation of electrical power systems, markq.this assumption is realistic since units with significant capaci-
participants bid energy to an Independent System Op‘ﬁ’és will affect ECP
ator (ISO). In the daily market, participants submit bids to the '
ISO who then decides energy clearing prices (ECP) and hou
generation levels of each participant over a 24-hour period. T
relationship between ISO and participants is shown in Fig. 1. InThe purpose of the paper is to present a model and a method
regions such as New England, a utility bids part of the enerfgr the bidding and self-scheduling problem from the viewpoint
and self-schedules the rest, whereas an independent power pfe utility, say Participant 1. To obtain effective solutions with
ducers (IPP) bids all its energy. This paper focuses on the dailgceptable computation time, bids are represented as quadratic
bidding and scheduling of a utility. functions of power levels. For Participant 1, these parameters
For each participant, bidding strategies ideally should be s&re to be optimized. For other participants, the parameters are
lected to maximize its profit. Game theory is a natural platfor@ssumed to be available as discrete distributions. Based on bids
to model such an environment [1]-[3]. In the literature, masubmitted, the ISO is to minimize the total system cost. The
trix games have been used for its simplicity, and bidding strageroblem for Participant 1 is then formulated to minimize its
gies are discretized, such as “bidding high,” “bidding low,” oexpected cost, including generation costs and payment to the
“bidding medium.” With discrete bidding strategies, payoff mamarket. The detailed models are presented in Section Il.
trices are constructed by enumerating all possible combinationdn Section Ill, the ISO problem is first solved with
of strategies, and an “equilibrium” of the “bidding game” calosed-form solutions. The solutions are plugged into Partici-
be obtained. It is difficult to incorporate self-scheduling in thpant 1's model with detailed modeling of units, and the problem
method. is solved by using Lagrangian relaxation as presented in Sec-
Modeling and solving the bid selection process by the IStn IV. Besides the subproblems in traditional hydrothermal
have also been discussed. In [4], bids are selected to minim&deduling, an additional bidding subproblem is constructed
to optimize bidding parameters. This subproblem is stochastic
because of the uncertainty of the market, and is optimized by a
gradient method. It is shown that this subproblem is inherently
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wherep,:(¢) is the amount of load that will be satisfied by the

Rate Level H
$/MW MW market for Participant at hourt.
BlockO | 10 100 Constraints (2) should be satisfied for all participants. For
simplicity of derivation, however, they are only required to be
Block 1 15 60 satisfied for Participant 1 but are ignored for others.
Block 2 20 40
C. The Model of Participant 1
Fig. 2. An example of bids. Participant 1 is to decide the generation levels of each unit
and a bidding strategy to maximize its profit, or to minimize
1. PROBLEM FORMULATION its costs while satisfying various constraints. The costs include

generation costs and payment to the market, with the payment
equal to ECP multiplied bypas1(t) — p.a1(t)). Only thermal
A bid consists of price offers and the amount of load to be satnits are considered to simplify presentation, however, there is
isfied by the market for each hour. Price offers specify a stack@ difficulty in incorporating hydro and pumped-storage units.
MW levels and the corresponding prices as illustrated in Fig. 2he problem is therefore
By integrating a staircase price offer curve, the bidding cost
function is piecewise linear. The amount of load to be satisfied
by the market is denoted ag;(t). _
To reduce the number of parameters associated with a prath
the piece-wise linear bidding cost function is approximated by T I
a quadratic”;(p.;(t)) (often done in scheduling problems [8]): 7 = E > > {Cti(pui(t)) + A (8)(pars(t) — par(t)}-

A. Representation of Bids

min
par1(t), ar(t),bi(t), pei(t)

t=1 =1
Cl(pAl(t)) = al(t)p?—ll(t) + bl(t)plLll(t)? l= 17 27 T L7 . (6)
(1) Inthe above?’is the number of hourd, the number thermal in
where units, Cy; the cost function of thermal unit p;(¢) the genera-
l is the participant index, tion level of units at hour¢, and %, (¢) the ECP at hout. The
t the hour index, expectation is taken with respect to uncertain bidding parame-
pai(t) the accepted level by ISO, ters reflected throughy, (t) andp.11(2).

ai(t) andb;(t)  are nonnegative bidding parameters, and For each hour, the load balance constraint requires that
L the number of participants.
Thep_y(t) is nonnegative, and is upper bounded by a maximal Z P (t) + E(par (t) — pai(t) = palt). (7)
value, i.e.,
— In the following, the of ISO scheduling will be solved first, fol-
0 < pailt) < Pa(d). 2 ! '
< pat) <Pal?) @) Jowed by bidding and seif-scheduling.
Participant 1 does not have exact bids of others, but has prob-
ability distributions of{a;(t), b;(t) andpr; ()}, 1 = 2, --- L, Hl. THE ISO SCHEDULING
based on market information and experiences. The d|str|but|onq:rom ISO’s point of view, its problem is deterministic. When
are represented by discrete sets of bids: Participant 1 solves the ISO problem, however, it only has dis-
; i . tributions of parameters, and has to solve the ISO problem for
J J o1J J — - q = — . ) .
B =Aap, by, Py 1 =2, -+ L, J=12 0 (3) every set of bidding parameters. Solution of the ISO problem
The probability ofB? is p/ with E _, 1’ = 1. For Participants for the jth setB’ is derived as follows. The indekis omitted
1, ay(t), by(t) andpas (¢) depend onits unit characteristics andS @ppropriate for simpler presentation.

others’ bids, and are to be optimized. Lagrangian multipliers\s;(¢) are used to relax (5), and (t)
andw2(t) to relax (2). The resulting Lagrangian is:
B. The ISO Model
The ISO decides hourly generation levels of participantsiso = Z {Z Cr(pa, (1)) + A ()

satisfy the total submitted load at the minimum cost over 24 t=1
hours. Bids of all participants are available to the ISO, and the

L L
deterministic 1SO problem is : <Z pai(t) — Z pAz(t)> }

L T T
Jiso = miI} Z Z Ci(Pai(t)), (4) = > m(®)pa(t Z () (pa1(t) —Pai(t)- (8)
rat) =1 = t=1 t=1
subject to In (8), 71(t), ma(t), andp i (¢) satisfy

] (t)pAl(t) =0, ande(t)pAl (t) =0.

The three cases of ISO solutions are presented below.

L L
Z pAl Z le )
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A. Case 1: Accepted Level in Bourtd<€ pa1(t) < p4,(%)) and
With the given{A;(¢)}, (8) can be decomposed subprob- ph(6) =0. (18)
lems. The subproblem for participahis
C. Case 3: Maximum Accepted Leyghk:(t) = P4, (%))
pl?ll(r}) Z{al () +b(Opa(®) = A (Bpar(®)}- In this case, Participant 1's bidding price is low, resulting in
(9) pai(t) = D41 (t) and the following energy clearing prices
The solution for (9) is

L
bi(t
o A = bi(®) 0 > < a t) + 2le(t)>
Palt) = —————. (10) =2 a(t)
2ay(t) N (t) = - . (19)
In (10), a;(t) is assumed to be nonzero. If it is zero, a Z 1
guadratic function with a smal;(¢) is used to approximate —2 a(t)

the linear function following the idea of [9]. With an analytical
solution for each subproblem, it is not necessary to iterativ o{he derl\;atmn Its sgrgnar to Case 1 with ECP determined by
updateA,(¢) at the high level. Substituting (10) into (5), one er participants’ bids

obtains the ECR\} :
h(®): IV. BIDDING STRATEGY AND SELF-SCHEDULING

L
Z <bz(t) I 2PMz(t)> For Participant 1's problem, using multiplieks(¢) to relax

. — \a(?) demand constraints (7) the Lagrangian can be written as
Au(t) = L . (11) ,
2w L =B S Culpal))+ N () pan (1) —p (1)
- t=1 =1
Substituting (11) into (10), one obtains the accepted level for T
Participant 1 at hout as +> 0 At Z pei(t)=E (pa () —pl, (1))

t=1

Z 2pan(t) + Z bl a bl (20)
=2 ( (12) The RHS of (20) is separable for a givehy (¢) }, and can be de-
composed into individual thermal unit subproblems and a bid-
2+ 2“12 m ding subproblem. A two-level algorithm is developed, where at
=2 the low level, individual subproblems are solved, and at the high
The energy clearing pricaj,(t) and the accepted levellevel, {\;(#)} is updated.
ph, () for Participant 1 are functions of(¢), b1(¢) and
par1(t). To simplify (11) and (12), let A. Solutions of Thermal Subproblems

pai(t) =

L L bi(t) A Thermal Subproblem is
co(t) =2 pwi(t) + )’ (13)
=2 =2
and ;ltru(rtl) Ly, with Ly; = ;fuél Z{ Chi(pri(t)) — A(Bpu(t)}
I
ca(t) = Z ! . (14) This minimization is subject to individual unit constraints.
1=2 a(t) With {\;(¢)} given, the subproblem is deterministic, and can

Then (11) and (12) can be rewritten as: be solved by using the method presented in [10].

WOE (co(t) + 2pari(£))ar (t) + bi (F) (15) B. The Solution of the Bidding Subproblem
M C1 (t)*al (t) + 1 ’

and The bidding subproblem is

co(t)/2 +pmi(t) — cr(t)ba(t)/2 (16) min Ly,
Cl( ) a; +1 ' pu1(t), a1(t), b—1(t)

Participant 1 may be a buyer or a seller depending on the s?ﬁHh

pa(t) =

of (phy1 () — pa1(t)), wherepy, (t) is the solution o,y (2) )
to be derived later. Ly =EY {\®)pan(t) — piu(®)]
B. Case 2: Zero Accepted Leviely; (¢) = 0) — MO |pm1() — Pl (D]} (21)

In this case, the bidding prices of Participant 1 are hlgn1 1), X%
causingp a1 (t) = 0. The derivation is similar to Case 1 with

Ay (t) = 2le(01)(tJ)r CO—(t),

+(t) andp™, (t) are obtained from ISO scheduling as
presented in Section lll, and depend on bids of participants. This
bidding subproblem is therefore stochastic. In the following, the

17 deterministic version of the subproblem will be solved first. The
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stochastic version can be similarly solved except that the ex- A 2
pectation of LB is optimized. Following the derivations of Sec- A3/ MW)

tion Ill, three cases will be considered, i.e., 7 1

M o
0 <par(t) <Par(t), par(t) =0, andp.1(t) = P (1).

Case 1—Accepted Level in Bound (< pa(t) <
D41 (t)): The degeneracy of the bidding subproblem (21) will . >
be analyzed first, and then a numerical method to obtain a P'A1 Pa2 Pal PA (Mw)
solution is presented.

Solution Degeneracy Analysigzrom the ISO load balance Fig. 3. Degeneracy of the deterministic bidding subproblem.
constraints (5), the net energy exchange between Participant 1

and the market is Obtaining a Solution: Having shown the degeneracy of (21)
I above, it is straightforward to obtain one of its solutions. Sub-
Pri(t) — pai(t Z pai(t) — pan(B)]. (22) stituting A3 () in (15) andp?,; (¢) in (16) into (21), the sub-
e problem cost at hour can be written as
By substituting (22) into (21)L.5 can be rewritten as Lg(t)

2 [ (c®ar(®) + 2pan (Bar(t) T bi(t)
LB:Z{[ — A (t ]Zml — pant t)]}. (23) —{< o Dan(®) 11 M(t))

t=1 co(t)/2+pmi(t) — cr(t)ba(t)/2
By substituting (10), (13) and (14) into (23),; becomes % <le(t) - cléw)l (1) +11 : )} '

T (28)
Lp = Z Hea OO M OO (o)} To minimize Lp(t), any two of its three decision variables

= ay(t), b1(t), arepy1(¢t) are fixed first, and the third one is
Itis separable in time. To obtain its minimum, the partial derivasptimized by a gradient method.

tives with respectte; (t), b1 (t) andpys1 (t) are setto zeros, i.e.,  Case2—Zero Accepted Leveli((t) = 0): In this case, the
OLp(t) _ dLp(t) Ny (1) _ accepted level for Participant 1 is zero, therefore the bidding
dar(t)  ONL(E) dar(t) (24)  subproblem cost is obtained by substituting (17) and (18) into

(
(t) (21):
dLp(t)  OLp(t) 9Ny (P)
by () — AN (t) Oby(t)
(t)
(t)

= 0 (25) 2 [co@) }
’ Lp(t) = — t)+ — M ()| Pa(t). 29
(1) cl(t)PMl() () 1) | Paa(t). (29)
OLp(t) - OLp(t) 0Ny (t) -0 (26) Minimizing (29), the solution is
OPyn(t) 9Ny (t) OPwn(t) .
Pan(t) = [Aa(®)er(t) — co(B)]/4. (30)
where
* _ Participant 1 purchases,,, (t) from the market at the energy
IN, (2 t)+2 t 6 (¢ , . 11
8aM((t)) = o) [c 1(934; ((t)) +011](2) i ), clearing price of the hour.
! B Case 3—Maximum Accepted Leveh{(t) = B, (t)): In
I (t) 1 this case, Participant 1's accepted levgl (t) reaches the max-
obi(t)  ca(®a(t)+1’ imum, and the ECP is determined by bids of others. A solu-
and tion to this bidding subproblem is to set(t) equal to 0, and
Ny (2) 201 (t) b1(t) equal to Participant 1’s marginal cost without bidding.
apan () a(Darlt) + i‘ghllj\/:/eads twa1(t) = D44 (t) if Participant 1's generation cost
Itis clear that @3, (t)/0b: (¢ )) cannot be zero, therefore, the  The Stochastic Bidding Subproblem and Solutidiow con-
simultaneous equations (24)—(26) degenerate to sider the stochastic version. Following (21) and (28) the sub-
L n(t problem is changed to
20— e (0N - [N (1) + o] = 0. (27)
O (t) J

min E[Lp(t Z (31)

With three variables and one constraint (27) for eac¢he bid- —

ding subproblem has an infinite number of solutions. The de- '
generacy can be seen from Fig. 3 with the case of two partitirthe aboveL;(¢) is similar toL z(t) in (28), andE[L z(¢)] is

pants. Suppose that Line 2 is the bidding price curve of Parti@function ofa; (¢), b1 (¢) andpy1(¢). With a derivation similar

pant 2, and Line 1 is an optimal bidding strategy of Participanttd that for the deterministic case, it can be shown that (25) and
with optimalay, b1, pa1, parr andX,,. Another bid of Partic- (26) degenerate to one as can be seen from Fig. 4. Suppose that
ipant 1 is an equivalent solution if it satisfies< & < Ay, and Participant 2 has two possible bidding prices, Line 2L (bidding
Ph1 = py1— (pa1—p's; ) because it results in the same energgt low prices) and 2H (bidding at high prices), and Line 1 is
clearing price\,, and the net energy exchange i — p.1)- an optimal bidding strategy for Participant 1. Another bid of



ZHANG et al. OPTIMIZATION BASED BIDDING STRATEGIES 985

}"M($/MW)A 2 r 2 BIDDING PARA-I\r/ﬁzEIE_FIeES (IDF PARTICIPANT 2
AMH |

AML vZiss // by (t) (%) | Pma(®) (%)

| Case| L M| H|L[M|H

%/ o ALH 1) 80 100] 120[2030] 40

i PaiH > 2| 80| 100{ 120[ 10 30] 50

P'AILpA2H PA2L PAIL PA (MW) 3f 60| 100 140(20{30} 40

4| 100| 120| 140|20(30]| 40

Fig. 4. Degeneracy of the stochastic bidding subproblem. 5| 20| 40| 60]20(30]| 40

by(t) (%): b,(t) as a percentage of Participant 1’s marginal
Participant 1 is an equivalent solution if it satisfies< ¥ < cost without bidding;
Avr, @i = ap andp)y,; = pai—(pain—p'y,;)- Thedifference  pya(t) (%): pypa(t) as a Percentage of Participant 1’s Load.
between this and the deterministic case is #tjas required to
be equal ta; so that Line 1’ is parallel to Line 1, ang,,; also

satisfiespy;; = pym1 — (paim — Play ) to result in the same TABLE I
CosT COMPARISON OFMEAN METHOD AND STOCHASTIC METHOD
expected net energy exchange.

In solving the subproblent; is fixed, andpys; anda; are -
optimized using the gradient method. Case| Mean Meth ($) |Stoc Meth (3) | Savings (%)
1 106,169 105,759 0.39%
C. Update of Multipliers at the High Level 2 100,730 100,365 0.56%
- I . 3 102,420 101,431 0.97%
Multipliers are updated to maximize dual functiggi; ): 2 103.076 102,682 0.38%
5 105,334 104,800 0.51%

Mgé P(A1), with p(A,) = L, (32

Min
pari(t), ar(t), bi(t), pei(t)

whereL is defined in (20). With a given set of subproblem sop,, ., (¢) as a percentage of Participant 1’s original load are listed
lutions obtained at the low level, this is a deterministic problern Table |.
The subgradient 0f(A1) is a7’ x 1 vectorgx:, and thetth el-  The method is compared with the “mean method” which con-
ement is siders Participant 2's bidding model as deterministic with each
7 parameter set to its mean value. Comparison of testing results
_ _ e s for Participant 1 based on 100 simulation runs is presented in
9x () = palt) ; palt) = (pan(®) =l (e)- - (33) Table Il. Case 2 represents a volatile market with a large vari-
ance onpy2(t), and the saving of the stochastic method over
The dual problem is usually solved by a subgradient methtiie mean method is increased as compared with the base case.
[11]-[13], and is solved in this paper by the bundle trust regidDase 3 also represents a volatile market with large variance on
method (BTRM) presented in [14], [15] to improve the conver,(t), and the saving is increased as compared with the base
gence. BTRM is a kind of bundle method that accumulates sutase. Cases 2 and 3 therefore show that the method works better
gradients obtained thus far in a bundle, and use a convex cahman the mean method in volatile markets. Case 4 represents a
bination of these subgradients to find a search direction. Olnore expensive market with the mean valué4t) increased
taining the convex combination coefficients involves quadratiyy 20%, and the saving over the mean method is 0.38%. Case 5
programming that is recursively solved in BTRM to reduce timepresents a cheap market with the mean value decreased by
requirements. 40%, and the saving is 0.51%. Cases 4 and 5 therefore show
that the method works well in both expensive and cheap market
V. NUMERICAL RESULTS situations.
The average CPU time for the mean method is 70 seconds,

The method has been implemented if-€ based on our hy- and that of the stochastic method is about 95 seconds. The CPU

drothermal scheduling code [8]-[10]. A data set provided . .
Northeast Utilities (NU) is used to demonstrate the capabilitib[%}:gne requirements are close because both methods solve the bid
i

of the method in handling various market situations. To simpli ng subproplem using a gradient method, and there is only one
. . ochastic bidding subproblem.
testing, all other market participants are aggregated as Partici-
pant 2 with three possible bidding strategies, bidding &y (
bidding medium {/), and bidding high &) each with the same
probability 1/3. The High value for2(t) is 0.09, Medium 0.05,  Built on an existing hydrothermal scheduling approach, an
and Low 0.01. Participant 2'6,(t) andpas2(¢t) are varied to innovative model and an efficient Lagrangian relaxation-based
represent different market situations. With Case 1 as the basethod are presented to solve the bidding and self-scheduling
four additional cases are created whésé&) as a percentage problem. Numerical testing shows that the method effectively
of Participant 1's original marginal cost (without bidding) andhandles various market situations.

VI. CONCLUSIONS
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