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Abstract—Overhaul and repair services are important segments
of the remanufacturing industry, and are characterized by compli-
cated disassembly, repair and assembly process plans, stochastic
operations, and the usage of rotable inventory. In view of today’s
time-based competition, effectively scheduling such services and
managing rotable inventory and uncertainties are becoming im-
perative to achieve on-time deliveries and low overall costs. In this
paper, a novel formulation for overhaul and repair services is pre-
sented where key characteristics, such as uncertain asset arrivals
and operation processing times, and rotable parts are abstracted
to model an overhaul center and multiple repair shops in a dis-
tributed framework to reflect organizational structures. Interac-
tions between the overhaul center and repair shops are described
by sets of coupling constraints across the organizations. Rotable in-
ventory dynamics is formulated in terms of repair operation com-
pletion times and asset assembly beginning times to facilitate min-
imization of inventory holding costs through scheduling. A solu-
tion methodology combining Lagrangian relaxation, stochastic dy-
namic programming, and heuristics is developed to schedule oper-
ations in a coordinated manner to minimize total tardiness, earli-
ness, and inventory holding costs. Additionally, penalty terms as-
sociated with coupling constraint violations are introduced to the
objective function to improve algorithm convergence and schedule
quality, and a surrogate optimization framework is used to over-
come the inseparability difficulty caused by the penalty terms. Nu-
merical testing results show that the new approach is computation-
ally effective to handle rotable inventory and uncertainties, and
provides high quality schedules with low overall costs for stochastic
remanufacturing systems.

Note to Practitioners—Overhaul and repair services for jet
engines, helicopters, airplanes, are important segments of the
remanufacturing industry, and are characterized by complicated
disassembly, repair and assembly process plans, stochastic opera-
tions, and the usage of rotable inventory. In view of today’s highly
competitive business climate, effectively scheduling such services
and managing rotable inventory and uncertainties are becoming
critical to achieve on-time deliveries and low overall costs. In
this paper, a novel formulation for overhaul and repair services
is presented where key characteristics, such as uncertain asset
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arrivals and operation processing times, and rotable parts are
abstracted to model an overhaul center and multiple repair shops
in a distributed framework to reflect organizational structures. A
solution methodology based on decomposition and coordination
is developed to schedule operations to minimize total tardiness,
earliness, and inventory holding costs. Numerical testing results
show that the method is computationally efficient for managing
rotable inventory and uncertainties, and generates high quality
schedules with low overall costs. The value of rotable inventory to
reduce tardiness costs and buffer uncertainties is demonstrated,
and the robustness of the new method is evaluated by cases with
different settings of machine utilization levels and uncertainty
levels. The scalability of the method to solve large problems with
hundreds of assets is also demonstrated.

Index Terms—Inventory, Lagrangian relaxation, overhaul and
repair services, surrogate optimization.

LIST OF SYMBOLS

Arrival time of asset .
Beginning time of asset overhaul operation .
Optimal beginning time of asset overhaul operation

.
Beginning time of part repair operation .
Optimal beginning time of part repair operation

.
“Desired” disassembly beginning time of asset .
Completion time of asset overhaul operation .
Completion time of part repair operation .
Due date of asset .
Asset index.

operation of asset .
operation of part .

Earliness of asset , defined as
.

The SSG at iteration .
Machine type index.
Part index.
Inventory level of a rotable part type at time .
Operation index for both assets and parts.
Expected weighted penalties for tardiness, earliness,
inventory costs, and violations of coupling con-
straints.
Number of operations for part .
Expected cost of estimated from Monte Carlo runs.
Time index, .
Time horizon of scheduling.
Lagrangian function.
Cost for asset subproblem .
Optimal cost for asset subproblem .
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Cost for part subproblem .
Optimal cost for part subproblem .
Number of type machines available at time .
Iteration index.
Processing time of operation .
The set of all possible processing times for operation

.
Cardinality of .
Surrogate dual value at iteration .
Optimal dual value.
Required wait time of asset (representing, e. g.,
transportation time).
Required “time out” between operation and

.
Step size at iteration .
Tardiness of asset defined as

.
Random variable describing the service scope of part

.
Cumulative cost of stage for beginning time .
Weight for penalties for coupling constraint
violation.
Weight of tardiness penalty for asset .
Assembly beginning indicator defined to be 1 if as-
sembly operation begins at time and zero
otherwise.
Weight of earliness penalty for asset .
Repair completion indicator defined to be one if re-
pair operation of a part of rotable type is
completed at time , and zero otherwise.
Holding cost for each piece of rotable inventory of
part type per unit time.
0-1 operation variable which is one if operation
is performed on a machine type at time , and zero
otherwise.
Lagrangian multipliers for relaxing cross-organiza-
tion precedence constraints of part .
Lagrangian multipliers of inventory level of type at
time .
Lagrangian multipliers of machine type at time .

I. INTRODUCTION

OVERHAUL and repair services are important segments
of the remanufacturing industry.1 Such services are tradi-

tionally characterized by complicated process plans, stochastic
operations, and the usage of rotable inventory [8], [11], e.g.,

• highly variable operations including disassembly that dis-
assembles an asset into parts, part repair operations and
assembly that assembles repaired parts back into an asset.
The disassembly operation is often time consuming and
performed in conjunction with a “discovering” inspec-
tion process. The uncertain service scope is often a com-
bined result of customer requirements and the inspection
process.

1Remanufacturing is a process in which worn-out products are restored to
like-new conditions through a series of disassembly, clean, refurbish, and as-
sembly processes with the infusion of new parts as necessary in a factory envi-
ronment.

• highly variable processing times for various operations.
• the existence of serial-number-specific-parts (SNS)

required to be assembled into the original assets they
belonged to, rotable parts, which are refurbished parts
satisfying certain qualifications for general use, and the
concomitant rotable inventory.

Pressed by customers’ demand for fast deliveries [22], it
becomes imperative for service providers to achieve short
turn-around-times (TATs) and low overall costs by effectively
scheduling overhaul and repair operations and managing
rotable inventories. The above-mentioned characteristics, how-
ever, present major challenges, including how to formulate
and manage rotable inventory and uncertainties in a compu-
tationally efficient manner for high quality solutions, how to
model overhaul and repair operations to reflect organizational
structures and facilitate the optimization process. With jet en-
gine overhaul and repair as the background, this paper presents
a novel formulation for overhaul and repair services and the
corresponding solution methodology to address the above
challenges.

After a brief review of the literature in Section II, a model is
established in Section III to minimize the overall tardiness and
earliness penalties and inventory holding costs. Key character-
istics, such as uncertain asset arrivals and operation processing
times, uncertain service scopes, serial-number-specific parts
and rotable parts, are captured to describe an overhaul center
and multiple repair shops in a distributed framework to reflect
organizational structures. Interactions between the overhaul
center and repair shops are described by sets of cross-organiza-
tion coupling constraints (i.e., expected operation precedence
constraints and inventory level constraints). The rotable inven-
tory dynamics is formulated in terms of part repair completion
times and asset assembly beginning times, and this facilitates
minimization of inventory holding costs through scheduling.

In view that the above problem is NP hard but with a sepa-
rable formulation,2 Lagrangian Relaxation (LR) based methods
can be used to decompose the problem into asset or part level
subproblems by relaxing coupling constraints within and across
organizations using Lagrange multipliers or shadow prices. The
subproblems, which are not NP hard, can be easily solved, and
coordination of subproblem solutions is performed through it-
erative price updating to reduce coupling constraint violations.
In view of the size and the complexity of the problem, the stan-
dard LR-based method may converge slowly, and solutions may
contain significant levels of constraint violation. To improve al-
gorithm convergence and schedule quality, additional terms to
penalize coupling constraint violation are introduced to the ob-
jective function motivated by a method developed for power
systems [26]. In view that the penalty terms are not additive,
the resulting objective function is inseparable, and this presents
challenges to direct application of the Lagrangian Relaxation
technique.

To overcome the inseparability difficulty caused by penalty
terms, a surrogate optimization framework is developed in
Section IV. The key idea is to “pull out” all the terms associated

2A problem is separable if it has an additive objective function and additive
coupling constraints [2].
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with one particular asset or part to form a subproblem. By
keeping decision variables not belonging to it at their latest
values, the subproblem can be efficiently optimized by using
stochastic dynamic programming (SDP). Rotable inventory
and uncertainties are handled at the subproblem level without
excessive computational requirements. Although optimization
is approximate, the surrogate subgradient method (SSGM [27])
will allow the algorithm to converge.

The main aim of this paper is to provide a proper formulation
and corresponding solution methodology for scheduling over-
haul and repair services, an important segment of remanufac-
turing industry. Numerical testing results presented in Section V
show that the method is computationally efficient for managing
uncertainties, and generates high quality schedules with low
overall costs. The value of rotable inventory to reduce tardiness
cost and buffer uncertainties is demonstrated, and the robustness
of the new method is evaluated by cases with different settings
of machine utilization levels and uncertainty levels. The scala-
bility of the method to solve large problems with hundreds of
assets is also demonstrated.

II. LITERATURE REIVIEW

Remanufacturing and the associated repairable inventory
theory have been summarized by Guide and his colleagues in a
series of papers, including [6], [8], and [9]. Scheduling using
various priority dispatching rules and the Drum-Buffer-Rope
method were compared by using simulation and ANOVA
analysis [6], [9]. However, it was concluded that a specif-
ically designed framework and the corresponding models
were lacking for the production planning and control of re-
manufacturing systems [9]. In addition, a critical feature of
remanufacturing, i.e., the presence of rotable inventory, has not
been well addressed, although the value of rotable inventory
to buffer variability and to coordinate material flows has been
identified [10].

With respect to stochastic scheduling, two categories of
approaches have been developed: optimization-based methods
and dispatching rules [20]. Optimization-based methods were
developed to find optimized scheduling policies for a given
problem context based on probabilistic analysis [12], [13],
[24] or fuzzy analysis (e.g., [3]). Most results focused on
single machine problems or for sequential tasks, with few
available for manufacturing systems with complicate process
plans or rotable inventories. With respect to dispatching rules,
an extensive list of rules has been investigated, ranging from
simple ones to complex combination of rules [4], [17], [23].
These rules are computationally efficient, however, the results
are often of questionable quality, and there is no good way
to systematically improve the results. Another approach is
the scenario analysis that obtains “well-hedged” solutions by
studying possible scenarios [15], [16]. In view that the number
of possible scenarios grows exponentially as the number of
uncertain events increases, the application of this method is
limited to small problems.

Our recent work combines Lagrangian relaxation with sto-
chastic dynamic programming to provide near-optimal sched-
uling policies for job shops with uncertain arrival times and pro-

Fig. 1. Schematic of the overhaul and repair services.

cessing time with quantifiable quality [18]. More will be said in
Section IV-A. However, the disassembly/assembly processes or
rotable inventories have not been considered.

III. PROBLEM FORMULATION

A. Problem Description

The overhaul center and repair shops could organizationally
be divisions within one company or multiple companies; there-
fore a distributed model is used to reflect this organizational
structure as shown in Fig. 1. For simplicity, only one repair
shop is included in the figure, although in reality there could
be multiple repair shops. Assets arrive at the overhaul center to
be dissembled into individual parts, and for each asset, the ar-
rival time is stochastic. Depending on the customer requirement
and the outcome of the disassembly/inspection process, a part
could be in a serviceable condition waiting to be reassembled,
to be repaired in a particular repair shop with a specific routing
or processing plan, or to be scrapped. For simplicity of consid-
eration, scrapping a part triggers the ordering of a new part with
an uncertain lead-time in this paper. A repair shop consists of
one or multiple machine types each with one or multiple iden-
tical machines. Part repair times are generally stochastic. A part
could be either serial-number-specific (SNS) or rotable. A SNS
part after repair should be assembled to the asset it originally
belonged to. A rotable part will be sent to the rotable inventory
after repair, and to be assembled to an asset requiring the same
type of part.

From the above description, it can be seen that overhaul and
repair operations are subject to coupling constraints within in-
dividual organizations (e.g., machine capacity constraints), and
linked through sets of coupling constraints across the organi-
zations (e.g., precedence constraints and inventory level con-
straints). Effective scheduling and coordination are needed to
achieve a shared goal of on-time asset deliveries and low inven-
tory costs. In the following, overhaul center, repair shops, and
the cross-organization relationships will be formulated, and fi-
nally the objective function will be presented. A list of symbols
is provided for easy reference.

B. Formulations of the Overhaul Center

The overhaul center is formulated based on the model of [25]
and consists of one or multiple machine types, with the capacity
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of type machine at time given and denoted as . After an
asset arrives, it will go through a series of overhaul operations
(i.e., disassembly and assembly) with each operation processed
by a specific machine type . The overhaul operations of an
asset will be denoted by . Let represent the aggre-
gate operation of disassembling an asset into parts, and
the aggregate operation of assembling parts back into the asset.
These operations are subject to the following constraints.

Processing Time Requirements: Operation needs to
be scheduled on a machine of the required type for a random
amount of time

(1)

where is the operation beginning time, the operation
completion time, and is a random variable with a given dis-
crete distribution.3

Expected Machine Capacity Constraints: The number of ac-
tive operations scheduled on a machine type should be less
than or equal to the capacity of that machine type at any time.
Let be an operation indicator defined to be one if operation

is active at time on machine type , and zero otherwise,
then machine capacity constraints can be formulated as follows:

in the overhaul center (2)

The above constraints are “coupling constraints” within the
overhaul center as they couple decision variables belonging to
different assets. They are generally difficult to handle, and are
particularly complicated for stochastic scheduling in view of
the multitude of possible realizations of random events. For this
reason, they are approximated by the following expected ma-
chine capacity constraints:

in the overhaul center (3)

These constraints are to be satisfied in the expected sense (as
opposed to the sample path sense) in the core of the optimization
algorithm, and to be strictly satisfied in the schedule implemen-
tation phase.

Arrival Time Constraints: Disassembling an asset cannot be
started until the asset has arrived at the overhaul center, satis-
fying the arrival time constraints

(4)

where is the arrival date of asset and also is a discrete
random variable with a given distribution, is a required wait
time, and is the beginning time of disassembly.

C. Formulations of Part Repair Shops

After the disassembly/inspection process, the distribution of
a discrete random variable is obtained to describe whether
part is in serviceable condition, to be scrapped, or to be
repaired with a particular routing, with each option represented

3For simplicity, it is assumed that the distributions of all random variables are
independent of each other.

by a discrete value with an assigned probability. The uncertain
service scopes can be effectively described by using this random
variables .

A part to be repaired will be assigned to a particular repair
shop according to its specified processing plan. Similar to the
overhaul center, a repair shop also contains multiple machine
types each with a number of identical machines. Part has
to go through a series of operations with each operation
processed by a specific machine type . For both serial-number-
specific parts and rotable parts, their repair operations are sub-
ject to the following constraints.

Processing Time Requirements: Each repair operation needs
to satisfy the following processing time requirement:

(5)

If a part is scrapped, a replacement part will be ordered. In
this case, (5) can be used with being the lead-time to order
a new part. Similarly, if a part is in a serviceable condition, (5)
can be used with being the required time-out (representing,
e.g., transportation time).

Operation Precedence Constraints: Repair operation
cannot be started until its preceding operation

has been completed, possibly plus a required time-out
(representing, e.g., transportation time). This translates to

the following operation precedence constraints:

(6)

Expected Machine Capacity Constraints: Similar to (3), the
expected machine capacity constraints for repair shops are given
as

in the repair shop (7)

For simplicity of the notation, it is assumed that the overhaul
center and repair shops generally do not share same machine
types, and the same symbol is used to denote the machine
capacity. In addition, the uncertain service scope described by

can be effectively handled by the above constraints.

D. Formulations of Cross-Organization Relationships

Overhaul and repair operations are linked through sets of op-
eration precedence constraints and rotable inventory constraints
as follows.

Expected Operation Precedence Constraints: The first re-
pair operation of a part cannot be started until the asset it belongs
to has been disassembled, plus a required time-out (repre-
senting, e.g., transportation time), i.e.,

or equivalently (8)

Similarly, assembling asset cannot be started until all its se-
rial-number-specific parts have been repaired or their replace-
ments have arrived, plus a required time-out, i.e.,

(9)
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In addition, all required rotable parts should be available at
the inventory pool, and this will be explained in detail later. In
view that operation processing times are stochastic, the above
coupling precedence constrains (8) and (9) are approximated by
their expected forms

(10)

(11)

They are to be satisfied in the expected sense in the core of
the optimization algorithm, and will be strictly satisfied in the
schedule implementation phase.

Rotable Inventory: The inventory level of a particular rotable
part type at time , i.e., , is affected by overhaul or re-
pair operations. It is increased by one when the last repair oper-
ation for a part of rotable type is completed or when a service-
able rotable part or a replacement of a scrapped part has arrived
possibly plus a required time-out (assuming zero here for sim-
plicity). It is decreased by one when such a part is needed for
assembly. The inventory level is thus formulated in terms of re-
pair completion times and assembly beginning times. To do this,
two indicator variables are introduced: the repair completion in-
dicator is defined to be one if repair operation
for a part of rotable type is completed at time , or when
a serviceable part or a replacement of a scrapped part has ar-
rived at time (the latter will not be explicitly represented
here for the sake of simplicity), and zero otherwise. Similarly,
the assembly beginning indicator is defined to be one if
assembly operation for a part of type begins at time
and zero otherwise, as illustrated in Fig. 2.

The inventory dynamics for a rotable part of type is then
formulated as the following flow balance equation:

(12)

with a given initial inventory level . Inventory level
at can then be recursively obtained in terms of repair comple-
tion times and assembly beginning times to facilitate the sched-
uling process

(13)

Inventory Level Constraints: Rotable inventory is subject to
the following nonnegativity constraints:

and (14)

In view that an assembly cannot be started unless a rotable part
of each required type is available in the inventory pool, and (14)
imposes additional constraints on assembly operations. Similar

Fig. 2. Repair completion and assembly beginning indicators.

to machine capacity constraints, the above are approximated by
their expected forms

and (15)

or

and (16)

Note that inventory level constraints are now formulated in
terms of repair completion times and assembly beginning times,
and this facilitates the optimization process and represents a
unique feature of this paper. In addition, the uncertain service
scope described by can be effectively handled by (16).

E. The Objective Function

It is assumed that the overhaul center and repair shops share
the same goal to achieve on-time asset delivery (with given re-
quired TATs) and low inventory costs. This goal is translated to
minimizing the weighted sum of expected tardiness and earliness
penalties plus expected inventory-holding costs. Assuming that
each piece of rotable inventory of part type incurs a holding
cost of per unit time, the objective function is then modeled
as shown in (17) at the bottom of the page. In the above equa-
tion, the summation over is over all rotable inventory types.

In view of the existence of a large number of coupling
constraints with various natures, the standard Lagrangian re-
laxation technique may not be effective to reduce the level of
constraint violation and obtain a satisfactory solution within
a short period of time. To improve algorithm convergence
and schedule quality, additional terms to penalize coupling
constraint violations are introduced motivated by a method de-
veloped for power systems [26] as shown in (18) at the bottom
of the next page, where is the weight for penalties for cou-
pling constraint violation. The overall problem is to minimize

(18) subject to constraints within organizations, including
operation processing requirements (1) and (5), arrival time
constraints (4), operation precedence constraints (6), expected
machine capacity constraints (3) and (7); and cross-organiza-
tion constraints, including expected precedence constraints (10)
and (11), and expected inventory level constraints (16) with
given machine capacities and initial inventory levels

. The decision variables are operation beginning times

(17)
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for disassembly, repair, and assembly operations. In view that
the new penalty terms involve the max operator and are not
additive, the resulting formulation is inseparable.

IV. SOLUTION METHODOLOGY

A. Overview

Lagrangian relaxation (LR) is a powerful approach for
constrained optimization of NP-hard problems with separable
formulations [2], [18], [25]. To be consistent with the organiza-
tional structure, ideally a two-step relaxation is carried by the
traditional LR. First, cross-organization constraints (10), (11),
and (16) are relaxed by using sets of Lagrangian multipliers
or “shadow prices,” and the overall problem is decomposed
into individual subproblems, one for each organization. The
coupling constraints within individual organizations (3) and (7)
are then relaxed, and organizational subproblems are further
decomposed into asset or part-level subproblems. Subproblems
can be solved by individual organizations in a distributed
fashion based on their internal situations and inter-organi-
zational prices. Coordination of subproblem solutions are
achieved through the iterative updating of multipliers based
on the “pricing” concept of market economy, and either by a
coordinator in a synchronous fashion [5], or by individual or-
ganizations in an distributed and asynchronous fashion without
a coordinator (e.g., [19]).

In this paper, for simplicity of derivation but without loss
of mathematical correctness, coupling constraints across and
within individual organizations are relaxed at the same time. The
relaxed problem is inseparable, and the traditional LR-based
approach cannot be directly applied. To overcome this diffi-
culty, a surrogate optimization framework is established where
all terms associated with one asset or part are “pulled out” from
the Lagrangian to form an subproblem with decision variables
belonging to other assets or parts kept at their latest available
values. These asset or part subproblems are solved by individual
organizations. For simplicity of presentation, it is assumed that
there is a coordinator to coordinate individual subproblems and
update all the multipliers in a synchronous fashion. Interested
readers can, respectively, refer to [5] and [19] for more informa-
tion about synchronous and asynchronous distributed coordina-
tion by individual organizations. The schematic of the approach
is given in Fig. 3.

Fig. 3. Schematic of the new LR-based approach.

B. Forming the Relaxed Problem

For simplicity of derivation and presentation, coupling con-
straints, including cross-organization precedence constraints
(10) and (11), inventory level constraints (16), and intra-orga-
nizational machine capacity constraints (3) and (7) are relaxed
at the same time by using sets of Lagrangian multipliers ,

and . For simplicity of notation, the same symbol
is used to relax machine capacity constraints (3) and (7). The
relaxed problem is to minimize defined below

(19)

The minimization is subject to operation processing require-
ments (1) and (5), arrival time constraints (4), and operation

(18)
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precedence constraints (6), with given machine capacities
, initial inventory levels , and all multipliers. The

decision variables are beginning times for disassembly, repair,
and assembly operations. This relaxed problem is inseparable
in view that the Lagrangian contains inseparable penalty
functions.

C. Formulations and Resolution of Asset Subproblems

To overcome the inseparability difficulty, all terms associated
with a particular asset are “pulled out” from to form an
asset subproblem while decision variables not belonging to are
kept at their latest available values. The subproblem for asset
is thus formulated as shown in (20) at the bottom of the page,
subject to operation processing requirements (1) and arrival time
constraints (4). The decision variables are beginning time
for disassembly and for assembly, and are to be optimized
by the overhaul center. It should be noted that disassembly and
assembly are related to repair operations through the relaxed
expected operation precedence constraints (10) and (11), and to
rotable inventory through the relaxed expected inventory level
constraints (16). The multipliers and therefore play a
key role to coordinate these operations.

The subproblem is solved by using backward stochastic dy-
namic programming (SDP, [18]), where a stage corresponds to
an operation, and a state corresponds to a possible operation
beginning time. The SDP algorithm starts with the last stage
(i.e., assembly) having the following expected terminal cost, as
shown in (21) at the bottom of the page.

The expected cumulative cost at the first stage (i.e., assembly)
as the algorithm moves backward is

(22)

The resulting optimal cost is obtained as the minimal ex-
pected cumulative cost at the first stage

(23)

subject to arrival time constraints (4). The computational com-
plexity for solving subproblem is , where is
the time horizon, is the set of all possible processing times
for operation , and is its cardinality. The optimal be-
ginning times can be determined by tracing forward the optimal
SDP path based on the realization of random arrival and pro-
cessing times. The result of SDP is a policy describing what to
do under which circumstance, and will be used to construct fea-
sible schedules based on the realization of random events. The
above optimization is approximate in view that decision vari-
ables not belonging to the subproblem are kept at their latest
available values.

with

(20)

(21)
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D. Formulations and Resolution of Part Subproblems

By pulling out terms related to part from the relaxed
function , the subproblem for is formulated as shown in
(24) at the bottom of the page, subject to operation processing
requirements (5) and operation precedence constraints (6). The
decision variables are beginning times for repair operations, and
are to be optimized by the corresponding repair shop. Similar
to an asset subproblem, this part subproblem is optimized by
using SDP, and the optimal cost is obtained as the minimal
expected cumulative cost at the first repair stage

(25)

The computational complexity for solving part subproblem
is , where is the set of all possible

processing times for , and is its cardinality.

E. Solving the High Level Dual Problem

Assuming the existence of a coordinator, the high level dual
problem is to find an optimal set of multipliers to maximize the
following dual function, i.e.,

(26)

where is in (19) evaluated at optimal beginning times ob-
tained from subproblem solutions, and the optimization is sub-
ject to nonnegativity of multipliers. To solve (26), the surrogate
subgradient (SSG, [27]) method is used. The key idea is that a
proper search direction can be obtained under certain conditions
without solving optimally all the subproblems. In fact, an ap-
proximate optimization of one or a few subproblems is needed
to get a proper SSG direction. This surrogate optimization over-
comes the inseparability difficulty while allowing more frequent
multiplier updating as compared to the standard LR method.

It has been shown in [27] that if at iteration , the following
condition is satisfied:

(27)

then surrogate dual value is always less than the optimal dual
value , i.e.,

(28)

Furthermore, the surrogate direction forms an acute angle with
the direction toward optimal multipliers, and therefore is a
proper direction. This property allows the new stochastic LR
(SLR) method to converge to an optimal dual solution. The
components of the SSG at iteration is then given by

in the overhaul center

(29)

in repair

(30)

(31)

(32)

(33)

where are optimal beginning times from subproblem solu-
tions. It should be noted that in (29) and (30), the same symbol

is used to represent the subgradients for multipliers in
the overhaul center and repairs shops.

The multipliers are updated in the SSG direction

in overhaul centers or repair shops

(34)

(35)

(36)

The step size at iteration is set to be

(37)

where is the optimal dual value and the surrogate dual
value obtained at iteration . Since is not known, the “Vari-
able Target Value Method” (VTVM) for the subgradient opti-
mization [14] is extended to the SSG method context to system-
atically provides an estimate of to be used in (37).

To initialize SSGM, the objective function of (17) is used
for the first iteration. In view that this problem is separable, the
traditional LR approach is used and all subproblems are mini-
mized to satisfy .

with

(24)
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F. On-Line Dispatching by Using Heuristics

Subproblem solutions, when put together, are generally in-
feasible since expected coupling constraints (3), (7), (10), (11),
and (16) have been relaxed. Furthermore, in view that these con-
straints are in fact approximations of actual constraints (2), (8),
(9), and (14), a schedule satisfying all the expected constraints
is generally not implementable. A list scheduling heuristics is,
therefore, developed based on the heuristics of [18], where a list
of “assignable” operations is created at time 0 and updated at
each subsequent time unit based on SDP solutions and the real-
ization of random events. The procedure is illustrated as follows.

1) For all the operations ready to be dispatched at time 0, an
operation list is created in the ascending order of their as-
signed optimal beginning times based on the SDP policy.

2) Operations are scheduled on the required machine types
according to the operation list as machines become avail-
able

3) When multiple operations competed for a less number of
machines at a particular time unit, incremental tardiness
costs for delaying by one time unit are calculated. Op-
erations are then assigned to machines in the descending
order of their incremental tardiness costs until all available
machines are used. The remaining operations are delayed
by one time unit.

4) The process terminates if all operations are assigned to
the required machine types. Otherwise, go to the next time
unit.

5) If operation is completed and it has a succeeding opera-
tion , the beginning time for is determined by
the SDP policy based on the realization of the processing
time of . The operation list is then updated by inserting
succeeding operations in the ascending order of their be-
ginning times. Then go to 2).

The overall complexity of the algorithm including
Lagrangian relaxation, stochastic dynamic programming,
and heuristics, is mainly determined by the total number of
subproblems solved during the process, and increases as the
size of the problem increases.

G. Performance Evaluation

To evaluate the performance of our method, Monte Carlo
simulation has been performed based on subproblem solutions.
Random variables were realized based on their discrete distri-
butions. After runs, the sample mean of independent realiza-
tions , with provides an estimate of the ex-
pected cost

(38)

The associated sample variance is given by

(39)

To compare the performance of different algorithms for a par-
ticular case, the same number of Monte Carlo runs was per-
formed using the same set of random variables for each method.
Then the sample mean and sample variance of the cost differ-
ences were calculated, and optimality comparison technique is
used based on hypothesis testing to derive the significance of
comparison [1].

In view that the surrogate dual cost is a lower bound to the
optimal dual cost [27] and is a lower bound to the expected
feasible cost [18], is a lower bound to the expected feasible
cost. The relative duality gap or its approximation

is used as a measure of schedule optimality.

V. NUMERICAL RESULTS

The method and the simulation environment were imple-
mented by using Matlab on a Pentium IV 2 GHz PC with 512
SDRAM. Numerical testing has been performed based on a test
bed developed by the United Technologies Research Center in
conjunction with Pratt & Whitney and i2 Technologies under
the project “Condition-Based Maintenance” supported by the
National Institute of Standards and Technology’s Advanced
Technology Program. In the test bed, each asset has two rotable
parts of different types, and each part requires a series of
two repair operations. The overhaul center has two machine
types, one for disassembling assets into parts, and the other for
assembling parts into assets. There is a single repair shop that
contains two machine types, one for the first repair operations,
and the other for the second repair operations. The asset disas-
sembly and assembly times are deterministic. The asset arrival
times and part repair times are uncertain with their distributions
randomly selected from sets of given three-value distributions
with specific variances. These distributions are symmetric,
taking values at , and with probabilities ,

, and , respectively. By adjusting and , the mean
and variance can be separately controlled.
In the following, three examples are examined. The first is

a small problem with 12 assets under different settings of ini-
tial inventory. The performance of the new method is compared
with that of the “mean method,” where all random variables are
replaced by their means, and the converted problems are solved
by using the deterministic LR approach with additional penalty
terms. The second example is a medium-sized problem with 100
assets under different levels of machine utilization, and the per-
formance of the new method is compared with that of the tra-
ditional SLR method without additional penalty terms and the
FIFO rule. The third example considers problems with 100, 200,
and 300 assets to demonstrate the scalability of the new method.

For all the examples, assets arrive randomly at the overhaul
center in-between day 5 and day 35 to go through all disas-
sembly, repair, and assembly operations. The due date of an
asset is its expected arrival time plus a required turn-around-
time, which equals the expected total processing time plus a
slack time uniformly distributed within the interval . The
tardiness and earliness weights of each asset are 1 and 0.05, re-
spectively, and the weight for additional penalty terms is 1.
The inventory holding cost is 0.1 per day for both rotable part
types. For LR-based methods, the multipliers are initialized at
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Fig. 4. Performance of the new method under different initial inventories.

zero, the surrogate subgradient (SSG) method is used to up-
date the multipliers, and the algorithms terminated after a fixed
amount of computation time. The data sets and testing results
are available at www.engr.uconn.edu/msl.

Example 1: Twelve assets containing 24 parts with a total of
72 operations are to be scheduled on four machine types over a
time horizon of 90 days. The number of machines per type is two
for the overhaul center, and four for the repair shop. Three cases
with different levels of initial rotable inventory are considered,
with for Cases 1, 2, and 3 equals (0, 0), (1, 1)
and (2, 2), respectively. For all the cases, the variances of asset
arrival times and repair times are set to be 0.8 (i.e., ).

The results of the new SLR method after 32 s of optimiza-
tion and 500 Monte Carlo simulation runs are summarized in
Fig. 4. The duality gap by using the new method for solving
Cases 1, 2, and 3 is 8.19%, 3.40% and 1.48%, respectively. It
can be seen that with the increase of the initial inventory from
zero in Case 1 to one in Case 2, the mean feasible cost de-
creases significantly. In view that the assembly can be started
early by using rotable parts available in the inventory without
waiting for original parts to be repaired, assets are assembled in
a timely fashion and the mean tardiness cost is reduced signif-
icantly from 53.81 in Case 1 to 13.66 in Case 2, leading to the
decrease of mean feasible cost from 59.84 to 27.38. The stan-
dard deviation of the feasible cost also significantly decreases
from 27.53 to 3.03, implying more predictable asset deliveries.
Further increase of the initial inventory from one in Case 2 to
two in Case 3 has less impact on delivery performance. The in-
crease of the mean inventory holding cost from 13.72 in Case
2 to 26.43 in Case 3, exceeds the decrease of the mean tardi-
ness and earliness cost from 13.66 to 11.33, and this leads to
an increase of the mean feasible cost from 27.38 to 37.76. The
asset deliveries, however, become more reliable and the stan-
dard deviation of the feasible cost decreases further from 3.03
to 0.88. By examining the results obtained for different levels of
initial inventory, a good balance between on-time delivery and
low rotable inventory cost can be achieved.

To examine the impact of uncertainties, Case 4 is considered
where the situation is the same as that of Case 2 except that the
variances of uncertain parameters were increased from 0.8 to 1.6
(i.e., ). The performance of the new SLR method is com-
pared with that of the mean method for Cases 2 and 4 with low
and high levels of uncertainties, respectively. Both algorithms
were terminated after 32 s and the results are summarized in
Fig. 5.

From the figure, it can be seen that the standard deviation of
total feasible cost for Case 4 is higher than that for Case 2 for

Fig. 5. Performance comparison between the new SLR method and the mean
method under different uncertainty levels.

both methods as expected. Comparing the performance of the
new SLR method with that of the mean method, the new SLR
method generates better schedules with lower feasible costs and
lower standard deviations, and the comparison of the mean fea-
sible cost is statistically significant with 80% of confidence for
Case 2 when the uncertain level is low, and 85% of confidence
for Case 4 when uncertainty level is high. The duality gap by
using the new SLR method is 3.4% for Case 2 and 13.34% for
Case 4. The duality gap by using the mean method is 45.10%
for Case 2, and 60.11% for Case 4. The above demonstrates that
the new SLR method can effectively handle uncertainties and
obtain high quality schedules without excessive computational
requirements.

Example 2: In this example, 100 assets (containing 200
rotable parts) with 600 operations are to be scheduled on four
machines types over a time horizon of 90 days. Two cases with
different levels of machine utilization were tested to compare
the performances of the new SLR method, the traditional SLR
method without additional penalty terms, and the FIFO dis-
patching rule. For both cases, the number of machines per type
in the overhaul center is set to be 10. The number of machines
per type in the repair shop is set to be 24 for Case 1, and 20 for
Case 2, to represent low and high levels of machine utilization,
respectively. The initial rotable inventory level is set to 5
for both rotable part types, and the variances of uncertain pa-
rameters are set to 0.8 (i.e., ). The LR-based algorithms
were terminated after the 375 s of optimization, and then 100
Monte Carlo simulation runs were performed.

The results are summarized in Table I, where the “con-
straint violation” is the sum of coupling constraint vio-
lations of subproblem solutions. For example, the viola-
tion of machine capacity constraints (3) is calculated by

. As the machine utiliza-
tion level increases, the mean feasible cost obtained by using
the new method increases by 31.31% since more assets are
delayed when competing for a less number of machines.

The new SLR method outperforms the traditional SLR
method by reducing the feasible cost by 28.8% for Case 1, and
39.1% for Case 2. The comparisons are statistically significant
with 99% confidence, demonstrating that the new method with
additional penalties improves the feasibility of subproblem
solutions and leads to high-quality schedules. The new method
also significantly outperforms the FIFO dispatching rule with
99% confidence.
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TABLE I
PERFORMANCE OF THE METHODS UNDER DIFFERENT

MACHINE UTILIZATION LEVELS

Example 3: Three cases are considered, having 100, 200, and
300 assets to be scheduled over a time horizon of 90 days to
demonstrate the scalability of the new method. The initial inven-
tory levels is scaled to be 5 for both part types for Case 1,
10 for Case 2, and 15 for Case 3. The machine utilization levels
are set to be approximately equal for the three cases, with the
number of machines per type in the overhaul center set to be 10
for Case 1, 20 for Case 2, and 30 for Case 3; and the number
of machines per type in the repair shop set to be 20 for Case 1,
40 for Case 2, and 60 for Case 3. The variances of the uncertain
parameters are set to be 0.8 for all the cases. In addition, three
problem instances were randomly generated and tested for each
case. The new SLR algorithms were terminated after 375, 587,
and 744 seconds for cases with 100, 200 and 300 assets, respec-
tively. One hundred Monte Carlo runs were then performed and
the numerical results are summarized in Table II.

It is observed that high quality schedules are generated by the
new method for problems of considerable sizes within a reason-
able amount of CPU time. The feasible costs from the method
are significantly lower than those from the FIFO dispatching
rule with 90% confidence for Subcases 1.3 and 3.2, and 99%
confidence for others. The results thus demonstrate the scala-
bility of the method, implying that large problems can be effec-
tively solved without excessive computational requirements.

In the above cases, the algorithms were terminated after a
fixed amount of computation time. To further examine the con-
vergence of the new method terminated after different computa-
tional times, Subcase 3.3 was solved with the algorithm termi-
nated after 3, 6, 9, and 12 min. One hundred Monte Carlo runs
were then performed for each to obtain the sample means of the
feasible cost. Testing results are summarized in Fig. 6.

It can be seen from the figures that the sample mean of the
feasible cost decreases while the surrogate dual cost increases
as the time increases, resulting in a decrease in the duality gap.
High quality schedules can be obtained within a reasonable
amount of CPU time (9 minutes in this case).

TABLE II
TESTING RESULTS FOR LARGE-SIZED PROBLEMS

Fig. 6. Testing results for Subcase 3.3 (300 asset problem).

As mentioned at the beginning of this Section, a test bed de-
veloped by the United Technologies Research Center was used
for testing. A realistic problem may consist of hundreds of assets
each with hundreds of major parts, and each part may require
tens of repair operations. We have not been able to get realistic
data sets since the information needed for optimization is not
readily available. The current practice of aerospace aftermarket
is relatively traditional in view of how inventory is planned and
resources are scheduled. It is hopeful that such implementation
barriers will be removed with the advancement of IT infrastruc-
ture in the future.

VI. CONCLUSION

In this paper, a novel formulation and the corresponding so-
lution methodology have been established to schedule overhaul
and repair services, an important segment of the remanufac-
turing industry. Rotable inventory are effectively considered in
the schedule optimization process through a novel formulation
of inventory dynamics in terms of operation beginning and com-
pletion times. Adding penalties on coupling constraint viola-
tion improves algorithm convergence, and can be extended to
other problems having a large number of coupling constraints
of various types. The problem is then solved by using LR within
the surrogate optimization framework—a new direction for in-
separable optimization. Testing results supported by simulation
demonstrate that the new method generates high quality sched-
ules with low expected costs and variances, and that the method
is robust with respect to different levels of initial inventory,
uncertainty, machine utilization, and problem size. The value
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of rotable inventory to reduce the mean and variance of tardi-
ness cost at the expense of inventory holding cost has also been
demonstrated.
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