
568 IEEE TRANSACTIONS ON POWER SYSTEMS, VOL. 21, NO. 2, MAY 2006

Payment Cost Minimization Auction for Deregulated
Electricity Markets Using Surrogate Optimization

Peter B. Luh, Fellow, IEEE, William E. Blankson, Student Member, IEEE, Ying Chen, Student Member, IEEE,
Joseph H. Yan, Gary A. Stern, Shi-Chung Chang, Member, IEEE, and Feng Zhao, Student Member, IEEE

Abstract—Deregulated electricity markets use an auction
mechanism to select offers and their power levels for energy and
ancillary services. A settlement mechanism is then used to deter-
mine the payments resulting from the selected offers. Currently,
most independent system operators (ISOs) in the United States
use an auction mechanism that minimizes the total offer costs
but determine payment costs using a settlement mechanism that
pays uniform market clearing prices (MCPs) to all selected offers.
Under this setup, the auction and settlement mechanisms are
inconsistent since minimized costs are different from payment
costs. Illustrative examples in the literature have shown that
for a given set of offers, if an auction mechanism that directly
minimizes the payment costs is used, then payment costs can
be significantly reduced as compared to minimizing offer costs.
This observation has led to discussions among stakeholders and
policymakers in the electricity markets as to which of the two
auction mechanisms is more appropriate for ISOs to use. While
methods for minimizing offer costs abound, limited approaches
for minimization of payment costs have been reported. This paper
presents an effective method for directly minimizing payment
costs. In view of the specific features of the problem including the
nonseparability of its objective function, the discontinuity of offer
curves, and the maximum term in defining MCPs, our key idea is
to use augmented Lagrangian relaxation and to form and solve
offer and MCP subproblems by using the surrogate optimization
framework. Numerical testing results demonstrate that the method
is effective, and the resulting payment costs are significantly lower
than what are obtained by minimizing the offer costs for a given
set of offers.

Index Terms—Augmented Lagrangian relaxation, deregulated
electricity markets, market clearing price (MCP), offer cost mini-
mization, payment cost minimization, surrogate optimization.

I. INTRODUCTION

DEREGULATED wholesale electricity markets (e.g., the
day-ahead, hour-ahead, and real-time markets) operated

by independent system operators (ISOs) in the United States
generally adopt an auction mechanism to select generation of-
fers and demand bids and their levels for energy and ancil-
lary services. A settlement mechanism is then used to deter-
mine the corresponding payments for the selected generation of-
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fers and demand bids. There are two main auction mechanisms,
namely, offer cost minimization where offers are selected to
minimize total supply offer costs, and payment cost minimiza-
tion, where offers are selected to minimize the actual payment
costs. The markets are settled by two main settlement mecha-
nisms, namely, the pay-as-offer (also referred to as pay-as-bid)
mechanism, where each selected supplier is paid at its offer
price, and the pay-at-MCP mechanism, where all selected sup-
pliers are paid at a uniform market clearing price (MCP), usually
the price of the most expensive selected offer.1 In practice, the
pay-at-MCP settlement mechanism is widely accepted and used
for payments, and so for the rest of this paper, the pay-at-MCP
settlement mechanism is assumed. It is also assumed for sim-
plicity that system demand is given, and therefore, demand bids
are not considered. The key question is what the objective func-
tion should be in the auction to select generation offers and to set
MCPs. Note that MCPs are most important to determine settle-
ment costs and have significant impacts on forward transactions
outside of the ISO markets.

Currently, most ISOs in the United States adopt the offer cost
minimization auction by using the traditional unit commitment
approach. The problem is NP hard, but in view of its separa-
bility,2 it can be effectively solved by using the Lagrangian re-
laxation technique for near-optimal solutions [1]–[4]. Further-
more, existing unit commitment and economic dispatch pack-
ages can be readily adapted to solve the problem by simply re-
placing generator cost functions by offer curves. This approach
is good or at least consistent for a market that uses the pay-as-
offer mechanism for market settlements. However, since most
ISOs in the United States use the pay-at-MCP mechanism for
settlement, the auction and settlement mechanisms are inconsis-
tent [5] since the payment costs are usually significantly higher
than the minimized auction costs for a given set of offers. Pro-
ponents of offer cost minimization indicate that if offer prices
represent true production costs, then this mechanism maximizes
social welfare [8], [12], [13]. Whether offer prices represent true
production costs, however, is subject to much debate.

An alternate mechanism is the payment cost minimization
auction [5]–[11], which directly minimizes the payment costs
of consumers. Examples in the literature have shown that for a
given set of offers, if this auction mechanism is used, then the
payment costs can be significantly reduced as compared to what

1While markets are moving toward the locational marginal pricing (LMP) of
energy where the transmission network is considered, we shall for simplicity
consider uniform MCP of the day-ahead energy market.

2A problem is separable and can be decomposed into individual subproblems
if both the objective function and the constraints that couple the subproblems
are additive in terms of subproblem decision variables.
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is obtained by minimizing offer costs. This approach is also
consistent with the pay-at-MCP mechanism [5] because mini-
mized costs will be the same as settlement costs. However, if
this auction mechanism were adopted, suppliers may bid differ-
ently, and there is no guarantee that the expected savings will be
realized.

The disparate views held by proponents of the two auction
mechanisms have led to a discussion among stakeholders of
electricity markets as to which of the two auction mecha-
nisms is more appropriate for ISOs to use. While methods for
minimizing offer costs abound, limited approaches have been
reported for payment cost minimization. Most of the papers
on payment cost minimization mathematically formulate the
problem and use illustrative examples to demonstrate that it can
reduce procurement costs but present no solution methodology
[5], [7], [8], [11]. The only paper that presented a solution
methodology was based on forward dynamic programming
[10], but the author acknowledges that the method is not suited
for large-scale problems because of the curse of dimensionality.
The objective of this paper is not to discuss the pros and cons
of the two auction mechanisms but rather to present a novel and
effective solution methodology for solving the payment cost
minimization problem for a day-ahead energy market so that
the two mechanisms can be effectively compared.

For the rest of this paper, the problem is mathematically for-
mulated in Section II. The objective function to be optimized
is the total payment cost that contains cross product terms of
MCPs and offer levels as well as startup costs, and the opti-
mization is subject to system demand and individual unit con-
straints. MCPs are defined as the maximum prices of selected
offers and are not known prior to the selection but are the re-
sults of optimization. Additional difficulties would arise if the
standard Lagrangian relaxation method were used to solve the
problem, since the Lagrangian formed would be linear in terms
of offer levels.

Our solution methodology presented in Section III con-
sists of using the augmented Lagrangian, which is formed by
adding quadratic penalty terms of coupling constraints to the
Lagrangian to avoid the difficulties of solution oscillation that
would otherwise arise. The surrogate optimization framework is
then used to overcome the difficulties caused by inseparability
due to the product of MCPs and offer levels and the quadratic
penalty terms. The key idea of surrogate optimization is that
the relaxed problem does not have to be solved exactly. Rather,
approximate optimization is sufficient if the “surrogate opti-
mization conditions” can be satisfied. Once the conditions are
satisfied, the “surrogate subgradient” is “good” since it forms
an acute angle with the direction toward the optimal multipliers
and is used to update multipliers. In view of inseparability,
the relaxed problem as a whole is taken as a subproblem and
optimized with respect to the decision variables of a particular
offer one at a time. To overcome the difficulties caused by the
structural change of the augmented Lagrangian as MCP varies
when the selection status of the offer under consideration is
changed, decision variables of other offers may have to be
adjusted to satisfy the surrogate optimization condition.

Numerical testing results presented in Section IV show that
the auction and settlement mechanisms are consistent, and the

method is effective and yields significantly reduced payment
costs as compared to what is obtained by offer cost minimization
for a given set of offers.

II. PROBLEM FORMULATION

In this section, the offer cost minimization and the payment
cost minimization auction mechanisms are formulated to high-
light their differences. To present the key ideas of the new so-
lution methodology, the following simplifying assumptions are
made: system demand is given, system reserve constraints and
transmission congestion are not considered, startup costs are
fully compensated,3 and participants submit single block con-
stant price offers with maximum/minimum power levels.

Consider an energy market with supply offers indexed
by . For offer , the offer curve (or price) for
supplying power at time is denoted by

($/MW), and the cost curve, which is the integral
of the offer curve, is denoted by ($). The startup
cost is denoted by ($/Start) and is incurred if and only if
offer is turned “ON” from an “OFF” state. The objective of
the auction is to select offers and their associated power levels
to minimize an appropriate objective function while satisfying
relevant constraints. The pay-at-MCP mechanism is then used
for settlement.

A. Offer Cost Minimization Problem

Currently most ISOs run an auction that minimizes the total
offer costs

with (1)

System demand constraints require that the total power from all
selected offers should equal the system demand at each
time, i.e.,

(2)

These constraints couple individual offers. Similar to the unit
commitment problem where a unit can be on or off, a binary
variable is defined to represent the status of an offer: the
offer is ON (1) if it is selected and OFF (0) otherwise. Min-
imum/maximum power levels are represented as

if (3)

(4)

where and are, respectively, the minimum
and maximum power levels of offer at time . From (3) and
(4), the feasible region of is discontiguous. Since both

3Full compensation of startup costs is a simplifying assumption. The choice of
a startup compensation scheme is a regulator’s or ISO’s decision. More realistic
conditions such as demand bids and partial compensation of startup costs have
been considered in our working paper [21].
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the objective function and the coupling system demand con-
straints (2) are additive, the above formulation is separable. By
using Lagrange multipliers to relax (2), the problem can be con-
verted to a two-level optimization problem. At the low level, in-
dividual offer subproblems are minimized for a given set of mul-
tipliers, while multipliers are updated at the high level based on
subproblem solutions. This iterative process continues until the
system demand constraints are satisfied or some stopping cri-
teria are met.

The MCP for time is defined as the price for which de-
mand equals supply. Currently under offer cost minimization,
the Lagrange multiplier for system demand, which is equivalent
to the marginal cost of the last selected offer, is typically used as
the MCP. In view that the multipliers may include a price com-
ponent for the startup costs and all suppliers are paid at MCP,
this choice of MCP may significantly increase the total payment
costs. In general, for a uniform price settlement mech-
anism such as pay-at-MCP can be defined as the maximum offer
price of all selected offers for time , i.e.,

such that

(5)

The MCP thus defined is purely an energy price and is devoid
of any component of startup costs. Startup costs can be paid for
separately.

B. Payment Cost Minimization Problem

Under the payment cost minimization auction mechanism,
procurement costs are directly minimized. The problem as pre-
sented in [5] is

with

(6)

This minimization is subject to (2)–(4). Here is not
equivalent to the marginal cost but is defined per (5). Compared
to (1), the objective function is now complicated because it is a
function of both MCPs and power levels of selected offers, while
MCPs themselves are yet to be determined based on selected
offer curves per (5). Additionally MCPs as defined in (5) may
vary depending on the selected offers at a particular time. Thus,
during the iterative process, this can cause “jumps” in the values
of MCPs. Furthermore, the existence of cross product terms of
MCPs and in (6) makes the problem inseparable.4 Con-
sequently, the standard Lagrangian relaxation approach that re-
quires separability cannot be directly applied.

C. MCP-Offer Inequality Constraints

From (5), if offer is selected with power level ,
then should be greater than or equal to the offer price

. If not, i.e., , then has no role in

4In this paper, fp g and fMCP (t)g are treated as decision variables. There
are other ways to formulate the problem by exploiting special problem features.
However, the formulation presented here is generic.

determining . as defined in (5) is thus related
to selected offers only. For convenience of derivation, the offer
curve is redefined to be zero if no power is awarded, i.e.,

(7)

With (7), MCPs and all offers are now related through the fol-
lowing “MCP-offer constraints” in linear inequality form:

and or equivalently

and (8)

The above inequality constraints couple MCPs with all offers5

and will be relaxed by using a set of Lagrange multipliers. The
redefined offer curve (7), however, is now discontinuous at

.

III. SOLUTION METHODOLOGY

When the standard Lagrangian of the problem is formed by
relaxing (2) and (8) with multipliers and adding them to (6),
the relaxed problem is inseparable because of cross product
terms of offers levels and MCPs. Therefore, it cannot be decom-
posed into individual subproblems. Furthermore, if the relaxed
problem is optimized with respect to a particular offer, the lin-
earity of the Lagrangian in terms of offer levels will cause so-
lutions to oscillate. Consequently, direct application of the stan-
dard Lagrangian relaxation technique will not be effective. The
augmented Lagrangian [15]–[18] as opposed to the standard La-
grangian is thus used to overcome the linearity difficulty [19]
and [20], while the surrogate optimization framework of [14]
will be used to handle the inseparability difficulty.

The augmented Lagrangian is formed by adding quadratic
penalty terms of coupling equality and inequality constraints to
the standard Lagrangian, leading to a quadratic relaxed problem
with improved convergence [17]. Although this leads to addi-
tional inseparability, the surrogate optimization framework is
able to efficiently handle the inseparability issues. The key idea
of surrogate optimization is that it is not necessary to accurately
minimize the relaxed problem. Rather, approximate optimiza-
tion is sufficient if the surrogate optimization conditions are sat-
isfied. Since the relaxed problem cannot be decomposed, it is
optimized as a whole with respect to the decision variables of a
particular offer or a particular MCP (an offer subproblem or an
MCP subproblem). In solving an offer subproblem, the decision
variables of other offers may have to be adjusted to overcome
the difficulties caused by the structural change of the augmented
Lagrangian as MCP varies when the selection status of the offer
under consideration is changed. Once the surrogate optimiza-
tion conditions are satisfied, multipliers are updated by using
the surrogate subgradient obtained.

5Some ISOs use piecewise linear offer curves. The formulation presented here
can be extended to handle such cases by replacing the constant offer curves in
(8) with these linear offer curves, which are differentiable except for a finite
number of discrete points.
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A. Augmented Lagrangian

Let multipliers and relax coupling system de-
mand constraints (2) and MCP-offer inequality constraints (8),6

respectively, then the augmented Lagrangian is formed as

(9)

where is a positive penalty coefficient, and are non-
negative slack variables converting inequality constraints (8) to
equality constraints.7 By minimizing analytically [17,
pp. 395–397], the relaxed problem is formed as

(10)

(11)

The augmented Lagrangian is inseparable because of the
cross product terms of MCP and and between elements
of .

B. Surrogate Optimization for Offer Subproblems

To solve a separable problem using the standard Lagrangian
relaxation technique, the relaxed problem is decomposed into
subproblems, which are optimally solved. The subgradient ob-
tained is then used to update the multipliers since it is a good
direction. Because of the inseparability of the original problem
(6), the relaxed problem cannot be decomposed. Rather, the re-
laxed problem is taken as a whole and optimized with respect to
a particular offer or a particular MCP. Furthermore for an offer
subproblem with a given set of multipliers at iteration

6The presence of the MCP-offer inequality constraints in the augmented La-
grangian brings offer-specific cost information into the solution process.

7One way to update the Lagrangian multipliers f�(t)g and f� (t)g in the
augmented Lagrangian is to use the method of multipliers [17]. This approach
typically requires the update of the penalty parameter from one iteration to the
next. In our implementation, the penalty parameter is chosen to be sufficiently
large and then fixed based on testing experience. The Lagrangian multipliers
f�(t)g and f� (t)g are then updated by using the surrogate subgradient method
of [14] as will be presented in Section III-D.

, it is not necessary to find exact optimized decision variables
to obtain a good direction. Rather, approximate optimiza-

tion is sufficient if the new decision variables satisfy the
following surrogate optimization condition:

(12)

while keeping all other variables at their latest available values.
If (12) (a special case of equation (28) in [14]) is satisfied, then
the resulting “surrogate subgradient” is a good direction in the
sense that it forms an acute angle with the direction toward the
optimal multipliers. In solving the offer subproblem, however,
(12) may not be satisfied in view of variation in MCPs when
the selection status of the offer is changed (to be illustrated later
by using a two-offer one-hour problem). To overcome this dif-
ficulty, our solution is to appropriately adjust other offers based
on the necessary condition for optimizing in (11) with re-
spect to over its differentiable region to satisfy the fol-
lowing modified surrogate optimization conditions (with (12)
as a special case):

(13)

If (13) is satisfied, then the surrogate subgradient is guaranteed
to be a good direction, and multipliers are updated.8 Otherwise,
all decision variables are kept at their old values, and another
subproblem is solved until (13) is satisfied.

Solving Offer Subproblems: To solve the subproblem for
offer , the ON/OFF status of each hour must be determined as
well as the offer level if ON. To this end, dynamic programming
is used where times are stages, ON/OFF statuses for each hour
are states, is a state transition cost, and the stage-wise cost

is obtained by collecting all terms pertaining to from
in (11) with the exception of

(14)

To evaluate in (14), and must
be determined. According to (5), depends on the set
of offers selected. A particular set of offers represents a distinct
“sub-region,” and is characterized by a unique . There-
fore the structure of for a sub-region may be different from
those of others because of the differences in MCPs, which in
turn depend on the set of offers selected. To determine
for an ON (or OFF) state in evaluating , the selection

8The proof of convergence of this algorithm is similar to that given in [14]
and is thus omitted here.
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TABLE I
OFFER PARAMETERS

status of other offers are assumed unchanged from the previous
iteration. in (14) is then obtained from solving MCP
subproblems per Section III-C to be presented later if the sub-re-
gion under consideration is unchanged from the previous itera-
tion. Otherwise, is determined per (8) to speed up the
convergence process.

To determine , one option is to keep other of-
fers at their latest available values. However, this may lead to
the violation of (12) as explained before. Thus, other offers are
adjusted based on the necessary condition for optimizing in
(11) with respect to over its differentiable region

(15)

If (15) is satisfied, then the penalty term on system demand in
for hour , i.e., , is

usually small, and (13) is likely to be satisfied. If
is smaller than the value given by (15), then offers that are cur-
rently selected are increased to their maximum offer levels se-
quentially starting with the least expensive offers in terms of
their offer costs. If selected offers at their maximum offer levels
cannot satisfy (15), then the least expensive offers in terms of
amortized costs [the sum of energy and startup costs divided by
the total power (MW)] that are currently off are sequentially se-
lected until (15) is satisfied. If is greater than the
value given by (15), then the most expensive offers that are cur-
rently on are sequentially deselected until (15) is satisfied. In
view that (15) is linear in terms of offer levels, the adjustments
can be done efficiently.

With evaluated for both ON and OFF states for all ,
the ON/OFF status and the offer level for each hour of offer are
obtained by using dynamic programming following Guan et al.,
1992. Multipliers are then updated by using the surrogate sub-
gradient method to be presented in Section III-D after solving
one or a few subproblems to satisfy (13).

The rationale for maintaining the Lagrangian relaxation
framework to solve one offer subproblem at a time is to reduce
the computational complexity as compared to the approach
of optimizing all offers at the same time. An example will be
presented next to illustrate how an offer subproblem is solved
and the need for adjusting other offers.

Illustrative Example of Solving Offer Subprob-
lems: Consider a one-hour two-offer problem with offer
parameters presented in Table I and three sub-regions depicted
in Fig. 1. The axis in Fig. 1 represents the level of Offer
1 and is characterized by minimum/maximum power levels
and an offer price as given in Table I and similarly for .
Three offer selections are possible as represented by three
sub-regions: on the axis represents the case where Offer

Fig. 1. Sub-regions for the two-unit one-hour example.

1 is selected and Offer 2 is not; the rectangular represents
the case where both Offers 1 and 2 are selected; and on the

axis represents the case where Offer 2 is selected and Offer
1 is not. Each sub-region is characterized by a unique MCP.

For this example, the augmented Lagrangian is given by

(16)

For a given set of multipliers and MCP, in (16) is quadratic
in ; therefore, level curves in are parallel lines with
slope of negative one as shown in Fig. 1. Assume that in the
previous iteration, both Offers 1 and 2 were selected, and an op-
timal point ( , ) in is obtained with a
feasible cost of $1300. The global optimal solution, which can
be easily determined from Table I, is in with only Offer 1
selected at 60 MW for a feasible cost of $1200. For a new set of
multipliers , consider the subproblem for Offer 2 where

in (16) is to be minimized with respect to to satisfy (13).
Two cases with either ON or OFF should be considered. With

ON, there are an infinite number of equivalent solutions in
satisfying the system demand [e.g., (30, 30), (45, 15), and

(15, 45)], and one of them is associated with the latest value of
. With OFF, if is kept at its previous value, then

, and in (16) includes
a large penalty term causing (13) to be violated. Thus, it is nec-
essary to adjust to by using (15) to satisfy (13).
Although in this particular case the MCPs for and are
the same, MCP in general might have to be obtained by solving
MCP subproblems or by using (8). With the above adjustment,

, and a comparison of the costs for the ON and OFF
states of ($1300 versus $1200) shows that Offer 2 should be
OFF. Without the above adjustment, the algorithm may get stuck
in sub-region without ever finding the optimal set of offers.

C. Formulating and Solving MCP Subproblems

As discussed above, the difficulty for solving offer sub-
problem is that , , are coupled, and

affect the structure of the subproblem objective
function depending on the set of selected offers. Therefore, a
subproblem for offer is formed by optimizing the augmented
Lagrangian in (11) as a whole, and decisions of other offers
may have to be adjusted to satisfy the surrogate optimization
conditions. To solve , in view that there is no cross
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product term of MCPs for different hours and MCP-offer
constraints have been relaxed, MCPs for different hours can
be solved independently for a given set of . Therefore,
by collecting all terms involving from (11) while
keeping all other variables at their latest available values,
MCP subproblems are formed, one for each

(17)

Similar to (13) for offer subproblems, a good direction for mul-
tiplier updating can be obtained if the following condition is sat-
isfied for MCPs

(18)

To solve (17), note that consists of a linear term
and multiple quadratic terms depending

on the magnitude of of individual
offers. If is positive, then the max-
imum term is a quadratic function of . Otherwise,
the maximum term takes zero value. Thus, the second term
of in (17) represents many “half-quadratics” demar-
cated by , as depicted in Fig. 2 for a
one-hour four-offer problem. In the figure, the axis is
divided into four segments (S1–S4) based on the demarcation
of , , 2, 3, and 4. In general,
multiple segments are formed and the number of segments is
limited by the number of offers. For each segment, the sum
of an appropriate number of half-quadratics and the linear
term is optimized and a segmental is obtained. The
segmental that minimizes in (17) then
gives the overall . For example in segment S1 of
Fig. 2, the segmental MCP is obtained by minimizing the sum
of four half-quadratics and the linear term, while in S4, the
segmental MCP is obtained by minimizing one half-quadratic
and the linear term. Thus, the MCP subproblem can be solved
without major computational requirements. With MCPs solved
as above, if the condition in (18) is satisfied, then multipliers
are updated by using the multiplier updating formula to be
presented next. Otherwise, MCPs are kept at their old values
and another subproblem is solved until (18) is satisfied.

D. Updating Multipliers and Stopping Criteria

The surrogate subgradient component with respect to the
system demand multiplier is obtained from in (11) as

(19)

Similarly, the surrogate subgradient component with respect to
the MCP-offer multiplier for offer is

(20)

Fig. 2. Cost function components for L .

All the multipliers are updated at the high level after solving one
or a few subproblems while satisfying (13) or (18) based on the
following surrogate subgradient updating formulae:

(21)

(22)

where is the step size at iteration and is given by

(23)

In the above, is the optimal dual value, and and are,
respectively, the column vectors of the surrogate subgradient
components with respect to and . Since is generally
unknown, the best feasible cost obtained thus far is used as an
approximation for .

E. Constraint Violation and Stopping Criteria

The level of constraint violation with respect to the system
demand equality constraint (2) at time is given by the ab-
solute value of , i.e., . For MCP-offer inequality
constraints (8), if is negative, then the constraint is sat-
isfied and there is no violation. If is positive, then the
constraint is violated. Consequently, the level of constraint vi-
olation is given by . Let denote the
column vector of for all and , then the level of
constraint violation for the entire problem can be measured by
the L-2 norm of the following constraint violation vector:

(24)

The iterative process is terminated if the number of iterations is
greater than a preset value or if the level of constraint violation
is less than a specified small positive number.
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Fig. 3. Flow chart of the algorithm.

F. Generating Feasible Solutions

Since the system demand and MCP-offer constraints have
been relaxed, subproblem solutions, when put together, may not
constitute a feasible solution. In addition, in view of the linear
level curves as depicted in Fig. 1, there are generally an infi-
nite number of equivalent solutions with the same feasible cost

. Simple heuristics are thus used to generate a reasonable fea-
sible solution based on subproblem solutions. In the heuristics,
selected offers with prices lower than are awarded
full power, and selected offers with prices equal to
are adjusted to satisfy the system demand constraints (2). If the
selected offers cannot meet the system demand, a nonselected
offer with the lowest amortized per MW cost is chosen, and this
process is repeated until the system demand is met. MCPs are
then updated by using definition (8). The flow chart is given in
Fig. 3.

IV. NUMERICAL RESULTS

The above algorithm for payment cost minimization was
implemented in C++ on a Pentium-IV 1.3-GHz personal com-
puter. For comparison purposes, offer cost minimization was
also solved by using augmented Lagrangian relaxation with
multipliers updated by using the standard surrogate subgradient
method. In this section, three examples are presented. Example
1 illustrates the subtle differences between the two methods
and shows that payment cost minimization takes into account
the effect of MCPs on actual payment for a given set of offers.
Example 2 tests the scalability of the method when applied to
a reasonably sized problem and shows that significant savings
over offer cost minimization can be achieved. Example 3 estab-
lishes that the performance of the payment cost minimization
method is significantly better than that of offer cost minimiza-
tion with New England system demand data averaged over five
days in May 1999 and for a set of randomly generated offers.

Example 1: Consider a simple four-offer two-hour problem
as described in Table II with all offers in an off state at Hour 0.

The results of offer cost minimization are summarized in
Table III, and the results of payment cost minimization are

TABLE II
SUPPLY OFFER PARAMETERS FOR EXAMPLE 2

TABLE III
RESULTS FOR EXAMPLE 1, OFFER COST MINIMIZATION

TABLE IV
RESULTS FOR EXAMPLE 1, PAYMENT COST MINIMIZATION

summarized in Table IV. For this small problem, the optimal
solution is known, and so the duality gap, which is the relative
difference between the optimal feasible cost and the surrogate
dual cost, can be evaluated. The duality gaps for both cases
are 0%.

Since Offers 1 and 2 are comparatively cheaper than Offers
3 and 4 and have no startup costs, they should be selected and
awarded their maximum levels for both hours. Their combined
capacity of 90 and 120 MW for hours 1 and 2, respectively, is
less than the system demand.
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To satisfy the remaining system demand of 10 MW for hour
1 and 30 MW for hour 2, offer cost minimization compares
the incremental offer costs of choosing Offer 3 or 4. If Offer
3 is selected for both hours, the incremental offer cost is $2650
($2600 energy charge and $50 startup cost). If Offer 3 is selected
for hour 1 but Offer 4 is selected for hour 2, the incremental
cost is $3400 ($1550 for energy, $1850 startup cost). If Offer 4
is selected for both hours, the incremental offer cost is $3000
($1200 energy charge and $1800 startup cost). Therefore under
offer cost minimization, Offer 3 is selected for both hours. How-
ever, Offer 3 sets the MCP of $65/MW for both hours, leading
to an actual consumer payment of $16 300, which is signifi-
cantly higher than the minimized cost of $6050. This clearly
demonstrates that offer cost minimization minimizes the offer
costs without considering the effects of MCPs on the payment
by consumers.

To satisfy the remaining system demand of 10 and
30 MW for hours 1 and 2, respectively, payment cost
minimization compares the incremental payment cost
of Offers 3 or 4. If Offer 3 is selected for both hours,
the MCPs will be $65, and the incremental payment
cost will be MW

MW incremental cost for Offers and
energy charge for last and MW respectively

startup . If Offer 3 is selected for hour 1 but Offer
4 is selected for hour 2, the MCP will be $65 for hour
1 and $30 for hour 2, and the incremental payment
cost will be MW

MW incremental cost for Offers and
energy charge for last and MW respectively

startup . If Offer 4 is selected for both hours,
the MCPs will be $30, and the incremental payment
cost will be MW

MW incremental cost for Offers and
energy charge for last and MW respectively

startup . Thus, Offer 4 is selected for both hours, leading
to a total payment cost of $9300 by consumers. It can thus be
seen that the payment cost minimization takes into account
the effects of MCPs on the actual payment by consumers, and
the minimized cost and the actual payment cost are the same
at $9300, which is significantly lower than the current ISO
practice with a savings of $7000 for the given set of offers.

If offers represent true production costs, then the total offer
costs obtained under offer cost minimization represents the costs
associated with the most efficient selection of offers. The dif-
ference in total offer costs between payment cost minimization
and offer cost minimization can then be viewed as the cost of
“production inefficiency” by using payment cost minimization.
From Tables III and IV, the above difference is $350 (or 5.8% of
the total offer costs under offer cost minimization). Thus, even if
it is assumed that offers represent true production costs, the loss
in production efficiency is only a fraction of the payment sav-
ings of $7000 (or 75.3% of the total payment costs) achieved by
using payment cost minimization.

Example 2: Consider a 24-h problem with 25 participants,
each submitting a single constant block offer for all the hours.
The system demand is given in Table V, and offer parameters are
presented in Table VI with a total capacity of 4620 MW. Among

TABLE V
SYSTEM DEMAND FOR EXAMPLE 2

TABLE VI
SUPPLY OFFERS FOR EXAMPLE 2

the offers, there are four nuclear plants with low offer prices (be-
tween $30 and $37/MW) but very high startup costs for a total
capacity of 1305 MW. There are four base load plants with offer
prices between $40 and $47/MW and startup costs lower than
those for nuclear plants for a total capacity of 1110 MW. Eleven
cycling plants make up 1590 MW and have prices between $55
and $70/MW. Six gas turbines make up the remaining 615 MW,
and among them, three have prices between $75 and $80/MW
with relatively high startup costs, while the other three have
high prices between $90 and $95/MW but relatively low startup
costs. Assume that initially all nuclear and base load units were
on while other units were off.

The hourly MCPs for the two methods together with system
demand are depicted in Fig. 4. Observe that the MCPs under
payment cost minimization are usually less than those under
offer cost minimization, and this translates to lower actual pay-
ment costs. Table VII summarizes various costs and shows that
for this example, $134 945 (or 2.56%) savings can be achieved.
Annual energy costs in the U.S. run in the tens of billions of dol-
lars; therefore, even a 0.1% savings represents significant sav-
ings of tens of millions of dollars annually. The difference in
total offer costs between payment cost minimization and offer
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Fig. 4. Hourly MCPs for example 2.

TABLE VII
SUMMARY OF COSTS FOR EXAMPLE 2

cost minimization is $14 646 (or 0.43% of the total offer costs
under offer cost minimization). Thus, even if it is assumed that
offers were made based on marginal costs, the loss in production
efficiency is only a fraction of the payment savings achieved by
using payment cost minimization.

To test scalability, the payment cost minimization method
was applied to problems with varying number of hours9 or
number of participants. The CPU times needed for obtaining
good results are summarized in Table VIII. It can be seen that
the method scales well since the increase in computational time
is almost linear (at least it is not exponential) with an increase
in the number of hours or offers.

9CPU times for different hours are presented in Table VIII to illustrate the
scalability of the method. In most ISOs in the U.S., the scheduling horizon for
the day-ahead market is 24 hours.

TABLE VIII
SCALABILITY RESULTS

TABLE IX
CHARACTERISTICS OF SUPPLY OFFERS FOR EXAMPLE 3

Fig. 5. Average hourly MCPs for example 3.

Example 3: Consider a problem with 25 participants over a
24-h period. The system demand was generated based on the
means and standard deviations of the New England load over
five days in May 1999. Using these historical values, 35 sets of
system demand were randomly generated based on Gaussian
distributions. Twenty-five supply offers were also randomly
generated with Gaussian distributions based on Table IX. These
supply offers were designed so that the average supply capacity
is 30% above the maximum mean demand. The offers are made
up of nuclear, hydro, and thermal units, each with identical
parameters over the day.

The average hourly MCPs obtained for the 35 sets of system
demand for both methods are depicted in Fig. 5, together with
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TABLE X
SUMMARY OF AVERAGE COSTS FOR EXAMPLE 3

system demand. Similar to Example 2, the MCPs for payment
cost minimization are usually less than those for offer cost min-
imization. As summarized in Table X, the average savings in
payment costs is $354 326, or 4.7%, demonstrating the consis-
tent performance of the new method.

V. CONCLUSION

Currently most ISOs in the U.S. conduct auctions by using
the offer cost minimization mechanism but settle the markets
with the pay-at-MCP scheme. Under this system, the auction
and settlement mechanisms are inconsistent, and this can lead to
higher payment costs for consumers for a given set of offers. A
new method that uses augmented Lagrangian relaxation within
the surrogate optimization framework has been presented for
solving the payment cost minimization problem. To the best of
the authors’ knowledge, this is the first systematic and practical
method for solving the payment cost minimization problem. It
can facilitate the discussion on which auction mechanism ISOs
should use by providing a tool that can be used for compara-
tive analysis and allows ISOs to adopt this auction if so desired.
Numerical results show that the new method is viable and can
lead to significant savings for consumers for the given set of
offers since it considers the impact of MCPs on total payment
costs while offer cost minimization does not. The methodology
has been extended to consider more realistic conditions such as
demand bids and partial compensation of startup costs in [21].
Research is currently ongoing to incorporate more practical as-
pects of the deregulated markets, such as ancillary services, and
transmission congestion under a location-based market pricing

framework. Finally, the method is generic and can be extended
to other NP hard problems. In particular, the successful treat-
ment of the inseparability issues encountered with this problem
opens the door for the resolution of many inseparable integer or
mixed integer problems.
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