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Abstract

Effective scheduling of production lots is of great impor-
tance for manufacturing medium to high-volume products
that require significant setup times. Compared to traditional
entire-lot production, lot splitting techniques divide a produc-
tion lot into muitiple smaller sublots so that each sublot can
be “transferred” from one stage of operation to the next as
soon as it has been completed. “Transfer lots,” therefore, sig-
nificantly reduce lead times and lower work-in-process (WIP)
inventory. The mathematical modeling, analysis, and control
of transfer lots, however, is extremely difficult. This paper pre-
sents a novel integer programming formulation with separa-
ble structure for scheduling job shops with fixed-size transfer
lots. A solution methodology based on a synergistic combi-
nation of Lagrangian relaxation, backward dynamic program-
ming (BDP), and heuristics is developed. Through explicit
modeling of lot dynamics, transfer lots are handled on stan-
dard machines, machines with setups, and machines requir-
ing all transfer lots within a production lot to be processed
simultaneously. With “substates” and the derivation of DP
functional equations considering transfer lot dynamics, the
standard BDP is extended to solve the lot-level subproblems.
The recently developed “time step reduction technique” is
also used for increased efficiency. It implicitly establishes two
time scales to reduce computational requirements without
much loss of modeling accuracy and scheduling perfor-
mance, thus enabling resolution of long-horizon problems
within controllable computational requirements. The method
has been implemented using object-oriented programming
language C++, and numerical tests show that high-quality
schedules involving transfer lots are efficiently generated to
achieve on-time delivery of products with low WIP inventory.

Keywords: Job Shop Scheduling, Transfer Lots,
Optimization, Lagrangian Relaxation, Dynamic Programming

1. Introduction

Scheduling of production lots is of great impor-
tance for manufacturing medium to high-volume
products with significant setups. In traditional pro-
duction, a lot is indivisible, and individual pieces
must wait for the completion of all the pieces within
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the lot before moving on to the next stage of opera-
tion. This often results in long lead times, low
machine utilization, and high work-in-process (WIP)
inventory.' In recent years, lot-splitting techniques
have been used to divide a production lot (briefly a
‘lot”) into multiple smaller sublots so that each sublot
can be individually “transferred” from one stage of
operation to the next as soon as that sublot has been
completed. Lot splitting techniques thus allow indi-
vidual “transfer lots” to be concurrently processed at
several production stages, which reduces manufac-
turing lead times, lowers WIP inventory levels, and
improves product delivery times.?™

Most lot splitting techniques in the literature are
based on heuristics. For example, in Vickson and
Alfredsson® two and three-machine flow shop prob-
lems with equal-sized transfer lots and a makespan
objective function were solved by using a modified
Johnson’s algorithm where each transfer lot was
treated as an independent unit. Heuristics for flow
shop problems with three or more machines were
presented in Trietsch and Baker."! A heuristic method
for the integrated determination of transfer lot sizes
and production schedules for a two-stage flow shop
with a maximum flow time objective function was
presented in Cetinkaya.® A simulation model for
scheduling job shops with lot splitting using dis-
patching rules and a mean flow time objective func-
tion was presented in Jacobs and Bragg.” A heuristic
algorithm is developed to minimize the makespan for
a three-stage production process in Glass, Gupta, and
Potts.® These heuristic approaches usually generate
feasible schedules quickly and demonstrate the ben-
efits of transfer lots toward reducing lead times and
lowering WIP inventory. However, it is difficult to
evaluate the quality of the schedules generated, and
these heuristics do not provide a systematic way for
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iterative improvement of the schedules. Recently, an
optimization-based method has shown promise in
scheduling transfer lots on standard machines with-
out setups.” The method, however, cannot handle
problems with long planning horizons or machine
setups. There are also situations where all transfer
lots within a production lot are required to be
processed simultaneously. An example is the out-
sourcing of the entire lot, say, for heat treatment.
Extension of the method is therefore needed to solve
practical problems involving transfer lots.

Building on the above results of Liu and Luh,’ a
novel integer programming formulation with separa-
ble structure for scheduling job shops with fixed-
size transfer lots is presented in Section 2. In the
formulation, transfer lots are handled on standard
machines, machines with setups, and machines
requiring all transfer lots within a production lot to
be processed simultaneously. The formulation is
“separable” in the sense that the objective function
and all “coupling” machine capacity constraints are
additive in terms of the basic decision variables at
the lot level. A solution methodology based on a
synergistic combination of Lagrangian relaxation
(LR), backward dynamic programming (BDP), and
heuristics is developed in Section 3. Through the
explicit modeling of lot dynamics, the introduction
of “substates,” and the derivation of dynamic pro-
gramming equations considering transfer lot dynam-
ics, the standard BDP is extended to solve lot-level
subproblems within the Lagrangian relaxation
framework. The recently developed ‘“‘time step
reduction technique” is also incorporated. It implic-
itly establishes two time scales to reduce computa-
tional requirements without much loss of modeling
accuracy and scheduling performance, which
enables the resolution of long-horizon problems
within reasonable computational requirements.
Numerical testing results presented in Section 4
show that high-quality schedules with transfer lots
are generated in a timely fashion for on-time deliv-
ery with low WIP inventory.

2. Problem Formulation

The following formulation for scheduling job
shops with transfer lots is built on the previous work
presented in Luh and Hoitomt' and Liu and Luh.’
Instead of treating individual transfer lots as inde-
pendent scheduling units as in Vickson and
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Alfredsson,’ only each production lot is treated as a
scheduling unit, with operation beginning and com-
pletion times as decision variables. The key is to
properly describe transfer lot dynamics using pro-
duction lot variables only. The preliminaries that
lead to the formulation are presented first, using the
symbols given in Appendix C.

Notation and General Description

Time Step Reduction. In view of the long plan-
ning horizon under consideration relative to the time
resolution required (for example, six months vs. six
minutes), the “time step reduction technique” origi-
nally developed in Luh et al."" is extended for sched-
uling transfer lots. The time horizon is divided into
T “resolution increments” indexed by t, 0 <t =T—1,
and R consecutive resolution increments are aggre-
gated into an “enumeration step” indexed by k, 0 =
k = K, with T = R X K. For example, a 500-hour
horizon can be divided into 500 one-hour resolution
increments, and 50 10-hour enumeration steps by
aggregating 10 one-hour resolution increments in an
enumeration step. Then an operation requiring, say,
16 hours on a machine is represented as occupying a
full 10-hour enumeration step and 60% of the next
enumeration step. Thus, by using fractional but
quantitized machine utilization, multiple “short”
operations are allowed to “share” a machine within
an enumeration step, and a part with several short
operations is allowed to flow through the machines
within a single enumeration step. Most input data
are specified in terms of resolution increments
except when stated otherwise. Since the complexity
of the method depends significantly on the number
of enumeration steps, this technique reduces compu-
tational effort in solving the “dual problem” through
appropriate selection of the number of resolution
increments R within an enumeration step.

Machines. In a job shop, machines may have dif-
ferent processing capabilities, for example, process-
ing speed or setup requirements. Machines with
identical processing capability from the scheduling
point of view are grouped as a “machine type,” and
all the machine types form a set denoted by H.

Lots and Transfer Lots. Suppose there are L pro-
duction lots, indexed by /=0, 1, ...,L — 1, each con-
sisting of a number of products of the same type. For
simplicity of presentation, a production lot will be
referred to as a /ot hereafter when there is no confu-
sion. Different lots may have different product types,
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due dates, or arrival dates. For feasibility, a long-
enough planning horizon T is selected that is suffi-
cient for the completion of all L lots.

A production lot, say lot /, consists of N, fixed and
equal-sized transfer lots. It has to go through a
sequence of operations, indexed by j=0, 1, ..., J, — 1,
according to a specified process plan. Operation j of
lot /, denoted as (/, j), has to be performed by a
machine belonging to an eligible machine type h €
H;, h=0,1, .., [H; — 1. Once started, the entire lot
(that is, all the transfer lots of the production lot)
must be finished on the machine before anything else
can be processed by the machine. This assumption
applies to various situations, for example, when
setup costs are significant or when mixed transfer
lots at a machine are difficult to manage because of
operator or shop-floor tracking system requirements.
Let t;, denote the processing time in resolution incre-
ments per transfer lot for operation (/, j) on a machine
type h. Let s, represent the required “time-out” in
resolution increments between (/, j) and (/, j+1), rep-
resenting processes not explicitly modeled in the
problem formulation, such as transfer time, cooling
down time, or curing time. It is assumed that the
number of transfer lots, N,, the transfer lot processing
time, t;,, and the time out, s;;, are given.

Setups. If operation (/, j) has a setup requirement
on a machine, it cannot be started until the machine
has been set up. Assume that the setup time tj, in
resolution increments for operation (/, j) on machine
type h is known and is sequence independent (that
is, ty, does not depend on what was processed earli-
er on that machine). Then, once the machine is set
up for operation (/, j), a transfer lot can be started on
the machine as soon as it has arrived from its prede-
cessor operation (/, j—1) and the machine has fin-
ished the predecessor transfer lot if it exists. Also, as
stated earlier, the machine cannot process anything
else until all the transfer lots in lot / are finished.

Decision Variables. The beginning and comple-
tion times of operation (/, j) in resolution increments
are denoted by by and c;, respectively, and are the
major decision variables. To ensure schedule accept-
ability, b, is constrained by its given earliest begin-
ning time b§; and the latest beginning time bj;, that is,
bf; =< by = b; similarly, ¢; satisfies ¢ = ¢; = cjj.
These earliest and latest beginning and completion
times are determined based on factors such as the
arrivals of raw materials, the desire to minimize WIP
inventory, and due dates promised to customers.
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Machine Capacity Constraints and
Lot Dynamics

Machine Capacity Constraints. The number of
machines available per type at each resolution incre-
ment is a given integer. The average number of type
h machines available at enumeration step k, denoted
as My, is thus a quantitized fraction. The machine
capacity constraints state that the total number of
lots being processed should not exceed the number
of machines available at each time period:

L-1J,-1

261'kh S Mkh
i

=0 j=(

(1)

—

In the above, &, is the fraction of time that opera-
tion (/, j) of production lot / is assigned to machine
type h at enumeration step k. It is also assumed that
the capacity of machine types where all transfer lots
of a lot must be simultaneously processed is large
enough to accommodate the entire lot.

The dynamics of transfer lots is described
through operation precedence constraints, process-
ing time requirements, and the setup requirements
as follows.

Operation Precedence Constraints. Assume that
a machine of type h has been set up for (/, j+1) of lot
[ so that this operation can be started. The operation
precedence constraints require that operation (/, j+1)
cannot be started until the predecessor operation
(1, j) of the first transfer lot has been completed,
that 1s,

by + tyn + 85= byjn (2)
where s;; is any required “time out.” If the operation
(1, 3) 1s performed on machines that require simulta-
neous processing of all transfer lots within a lot,
then the constraints become that (/, j+1) cannot be
started until the /asf transfer lot has completed oper-
ation (/, j), that is,

Cit syt 1=Dbym (3)
The presence of “1”” in (3) is due to the convention
that when an operation begins in a period, it starts at
the beginning of that period; however, when it ends
in a period, it finishes at the end of that period, thus
occupying the entire period in both cases. This con-
vention is often followed in practice.
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Operation Processing Time Requirements. Each
operation beginning time b; may be associated with
multiple completion times c; since the completion
time depends not only on the operation beginning
time and the transfer lot processing time, tj,, but
also on the lengths of intermittent idling times.
Despite the availability of a machine, intermittent
idling between two transfer lots may exist because
the next transfer lot may still be in processing at the
previous stage if the processing time there is longer
than the current one.® The lengths of intermittent
idling times depend on several factors; nevertheless,
it is clear that if there is no intermittent idling
between b, and ¢, then ¢; = by + N; X t, — 1; oth-
erwise, ¢; = C;51 + 5.1 + tyn. Consequently, the oper-
ation completion time, cj;, is given by the following:

¢y =max(bs + Ny X tyn — 1, ¢pj 850 Htgn)  (4)
The significance of (4) is that, although the move-
ment of individual transfer lots is not explicitly mod-
eled, production lot beginning and completion times
can be accurately described by (2) and (4).

If operation (/, j) is performed on a machine that
processes all transfer lots within a lot simultaneous-
ly, then all the transfer lots have the same beginning
and completion times. The completion time thus
depends only on the beginning time, by, and the
transfer lot processing time, ty, that is,

Cyj = blj Tty — 1 (5)

Setup Requirements. For an operation (I, j)
requiring setups, although the first transfer lot has to
wait for the completion of its predecessor operation
(/, j— 1), the machine’s setup can be started earlier.
The actual setup beginning time for operation (/, j),
denoted by b’y is

b’y =by — tin (6)
assuming that the machine is available for setup at
b’;. Therefore, once operation beginning time by; is
known, the setup beginning time can be readily com-
puted, and setups can be embedded within lot
dynamics without introducing additional variables.

Objective Function
The objective of scheduling is to ensure on-time
product delivery with low WIP inventory. This is
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represented by minimizing the sum of weighted qua-
dratic penalties for violating lot due dates and for
releasing raw materials too early:

J= EI,(WITf +B,E7) )

In the above, T, is the tardiness of lot / defined as the
time the lot completion time, ¢, (completion time of
the /ast operation of the /ast transfer lot), exceeds the
given lot due date, d,, in enumeration steps, that is,

d
T, = max(o, [iJ—[—’D
R R
The lot earliness, E, is similarly defined as the
excess of the lot’s earliest beginning time, b, over

the lot’s scheduled beginning time, b, (the beginning
time of the first operation of the first transfer lot),

that is,
max[O, {—b[ J - [——bl D
R R

The parameters w, and 3, are weights associated
with the earliness and tardiness penalties of lot /.
The above penalties define a time window in which
the lot can be scheduled without penalty.

The key decision variables are operation begin-
ning times {b,} and completion times {c;} for indi-
vidual production lots. Once these variables are
determined, transfer lot beginning times and com-
pletion times can be derived as presented in
Appendix A.

E,

3. Solution Methodology

Lagrangian relaxation (LR) is a mathematical
programming technique for constrained optimiza-
tion. Similar to the pricing concept of a market
economy, the method replaces “hard” coupling
constraints (that is, machine capacity constraints in
this study) by the payment of certain “prices”
(Lagrange multipliers) based on the “demand” for a
machine for the use of that machine at each time
unit. The original problem can thus be decomposed
into many smaller and easier lot-level subproblems.
Backward dynamic programming (BDP) is then
used to solve these lot-level subproblems where
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other constraints are enforced. The multipliers are
then adjusted after these subproblems are solved,
based on the degrees of constraint violation, follow-
ing again the market economy mechanism.
Subproblems are then re-solved based on the new set
of multipliers, and the process repeats. In mathemati-
cal terms, the “dual function” is maximized in this
multiplier updating process, where the values of the
dual function are lower bounds to the optimal feasible
cost. Since coupling constraints have been relaxed by
the multipliers, the solutions of individual subprob-
lems, when put together, may not constitute a feasible
schedule. A simple heuristic is therefore used toward
the end of this multiplier updating process to provide
feasible schedules satisfying all constraints. The qual-
ity of the feasible schedules can be quantitatively
evaluated by comparing their costs with the largest
lower bound provided by the dual function. The devel-
opment of the BDP technique is complicated and will
be one of the major topics covered in this section.

Lagrangian Relaxation Framework
Machine capacity constraints (1) are first
“relaxed” by using Lagrange multipliers {m} in
enumeration steps, and the Lagrangian is formed as:
L-1

= IZ(w,Tf +,B,E,3)+§zh:7rkh
(8)

51th +tmy, —M,,

where my, is a non-negative slack variable satisfying
0 = my = My, With the multipliers given, the
“relaxed problem” is to minimize the Lagrangian J*
subject to operation precedence constraints, process-
ing time requirements, and setup requirements (2) to
(6). After regrouping relevant terms within J*, the
problem is decomposed into individually solvable
lot subproblems as follows:

{;an} L,withL, =w,/T} + B E;
]

1-
+ZL1j(bIJ

=0

Cy ) and
)

CI_]

Loy} 2

t= b,J Iijh

To simplify the derivation, Ty, is introduced to rep-
resent the multiplier for machine type h at resolution
increment t, that is,

i, s% with k EEJ

The subproblems {L,} are subject to (2) to (6). The
decision variables are operation beginning times
{b;} and completion times {c;} of lot /.

Since L; (by, c4) is the cost for using a type h
machine between times b, and ¢, the lot subproblem
thus reflects the balance between the machine utiliza-
tion cost and tardiness as well as earliness penalties.

Backward Dynamic Programming (BDP) for
Lot Subproblems: Preliminaries

In view of the complications caused by the exis-
tence of multiple completion times associated with a
given beginning time, the BDP algorithm developed
in Luh et al."" must be extended to solve lot sub-
problems. In the following, the generic DP equations
are first presented. Several key parameters are then
determined, including the number of multiple oper-
ation completion times associated with each begin-
ning time, the earliest beginning and completion
times, and the latest beginning and completion
times. These parameters help reduce BDP computa-
tional requirements. In addition, “substates” are
introduced to efficiently carry out the DP procedure.

Backward Dynamic Programming Equations

Each lot subproblem has a number of DP stages,
where each stage corresponds to an operation. The
BDP algorithm starts with the last stage and moves
backward in time. The states for a stage correspond
to possible beginning times in Luh et al.'! In view of
the multiple completion times associated with a
given beginning time, a state in this study is repre-
sented by a pair of operation beginning and comple-
tion times (by, ¢4). The cumulative cost at (b, cj),
denoted by V;; (by, c;), is obtained as the sum of the
stagewise cost L;; (by, c;) (plus tardiness penalty for
the last stage and earliness penalty for the first
stage) and the minimum cumulative cost of a reach-
able state (by.1, ¢1j+1) at the successor stage.

To be more specific, the BDP procedure starts
with the last stage having the following terminal cost:

= 2
VI,JI—I (b1,J1—1, Cl,J|—1)=W1T1 + LI,JI—I
(bl,Jl—l’ C],Jl—l)

(10)
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The cumulative cost when moving backward to the
predecessor stage is then obtained recursively
according to the following BDP equation subject to
constraints (2) to (6):

V,(b,,c,)= min {L,(b,,c,)+
peaT {[b;prC/,ol}esl.;+|[h:,-%‘} R
Vl.j+l(bl‘1+l’cl,j+l)}
(11)
=L, (b,,c,)+ min Vo b uob
[t L] {(bl.jal‘CI.J/'[)ESLJH(h/j‘CIJ)}{ Ll N M }
I<j<], -1

In the above, S, (by, c;) 1s the set containing all
allowable {( b1, ¢;j+1)} satisfying (2) to (6) for the
given (by, ¢;) and is determined based on possible
state transitions.

The equation for the first stage is given by the fol-
lowing:

Vio (bzo’ CIO) = ﬁzEl2 +L, (bm' CIO) +

{Vll(bll’cll)} (12)

~ min
{[«b/l' C11)5511(t’/()~°1())}

Let L; represent the minimal lot subproblem cost for
lot /. The minimum L; can then be obtained as the
minimal cumulative cost at the first stage, that is,

}{Vzo (bm’ €0 )}

Finally, the optimal beginning times and completion
times can be obtained by tracing forward along the
stages.

* .
L, = min
b;g.19

(13)

Multiple Completion Times Associated
with a Beginning Time

For a given operation beginning time, the opera-
tion completion time depends on the lengths of
intermittent idling times between transfer lots. As a
result, there maybe multiple completion times asso-
ciated with a given beginning time. A detailed
analysis of this complicated phenomenon can be
found in Liu and Luh.® To deal with transfer lots
effectively, a forward procedure is introduced here
to determine these multiple completion times. For
operation (/, j), the number of multiple completion
times associated with a beginning time, denoted by
Nj+1, is determined by considering the machine
type being used, its processing time, and the pro-
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cessing times of its previous operations, as given in
Appendix B.

Earliest and Latest Operation Beginning
and Completion Times

For a given planning horizon, in view of con-
straints (2) to (6), the beginning time as well as the
completion time of each operation must have the
earliest (least) value and the latest (largest) value,
respectively. Moreover, these parameters, the earli-
est and latest operation beginning and completion
times, are helpful in effectively limiting the compu-
tational effort in BDP. Thus, the earliest beginning
and completion times are determined to ensure that
every operation can be started and completed as
early as possible and that these earliest times satisfy
constraints (2) to (6) within the given time horizon.
The earliest beginning and completion times of the
current operation can be obtained recursively by
proceeding forward from its predecessor operation
while enforcing constraints (2) to (6).

Similarly, computed values of the /afest beginning
and completion times ensure that the latest comple-
tion times of their successor operations are still
within the planning horizon T and they satisfy con-
straints (2) to (6). The latest beginning and comple-
tion time of the current operation can be calculated
recursively by proceeding backward from its succes-
sor operation while enforcing constraints (2) to (6).

Backward Dynamic Programming Structure

Similar to Luh et al.,"! the DP srages correspond
to operations and DP states to the possible operation
beginning times. The numbers of DP states are
determined by the earliest and latest beginning
times. Since transfer lots lead to multiple comple-
tion times for a beginning time , DP substates are
introduced to consider these multiple values.

Let Nj;+1 denote to the number of multiple com-
pletion times associated with a beginning time for a
stage (/, j) and a DP substate be a pair of the feasible
operation beginning time and one of its associated
completion times. The substate in a state is indexed
by 0, 1, ..., N§;; substate 0, substate 1, ..., and sub-
state N§; correspond to the pairs of the beginning
time and the completion time between which there is
zero unit, one unit, ..., and N§ units intermittent
idling time, respectively. For simplicity (without
loss of generality), substate O in a state is consid-
ered to coincide with that state itself; that is, it is
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> The Other Possible Transitions
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Figure 1
DP Stages, States, Substates, and Transitions

not necessary to give the corresponding comple-
tion time explicitly because there is no (zero)
intermittent idling.

Figure 1 shows a sample of stages, states, sub-
states, and state transitions, where a substate in a
state is represented in the format: (stage index, state
index, substate index) and state transitions follow
constraints (2) to (6). For example, (1, 0, 2) repre-
sents the second substate in state 0 at stage 1. Based
on this structure, the BDP procedure for solving a
subproblem is now presented.

Backward Dynamic Programming (BDP) for
Lot Subproblems

Unlike FDP, which moves from the first to last
stage, in BDP the cumulative cost, given by (11), is
computed from the last state bj; to the first state bj;
(indexed by N% —1 to 0), and for each state, from the
last substate to the first substate (indexed by Nj to
0). For efficiency, determining the set S, (b, ¢5) of
feasible successor states is critical.

Set of All Feasible States at Successor
Stage S;j.1 (by, ;)

Let parameters t,, and t. denote the earliest possi-
ble beginning and completion times of (b1, cj511) €
Sy (by, ¢5), respectively. In view of the constraints
(2) to (6), the times t;, and t, can be calculated as fol-
lows. If the operation (/, j+1) is processed on stan-
dard machines and machines with setup, then

tb:blj + tljh + S/j, tc = max(tb + NI X tl,j+1,h - 1, (14)

¢t S5t tijern)
however, if all transfer lots are required to be
processed simultaneously, then

tb:C1j+slj +19tC:tb+tl,j+1,h_] (15)
For the given (b;, c;), considering the operation
processing time requirements (4) and (5), the com-

pletion time c;;,, can be uniquely determined from
each possible beginning time by Since (b,
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Cj+1) € Sy (by, ¢y) may have intermittent idling
times, the set S;;.; (by, ¢4) can be decomposed into
two disjoint subsets—with and without idling
times—as follows:

S/,j+1(b/j’cu) = S},j+l(bij’clj) W Slz,j+l<b1j) (16)
where
S}y, €)= {(byjur,Cjr): th = by =ty 7
+ Nijﬂ, Crj+1= te} (17)
and
S%,j+1(blj)E {b[yjﬂi tb + Nij+1 (18)

1 = by = bl

In the first set defined by (17), every element has
intermittent idling times, and there are a total of
Ni;+1 elements with the same ¢4, (equal to t.). In the
second set defined by (18), each element is a sub-
state with index 0 because of no intermittent idling
time and is represented by the state itself. For exam-
ple, as shown in Figure I, for the substate (1, 0, 2),
its (ty, t.) is represented by the substate (2, 0, 3); the
transition of the substate (1, 0, 2) is represented by
8;2(0’2) = {(29 1> 2)7 (27 2’ 1)} and S%Z (O) :{ (2’ 25
0),(2,3,0),...,(2,N —1, 0)}, where N}, represents
the number of total states in stage 2.

Stagewise Minimum Cumulative Cost of the
Successor Stage

In computing the cost V;; (by, ¢;) by (11), the
major computational work is to find the minimum
cumulative cost among all elements in S, (by, c4).
The following computation-critical equations are
developed to obtain the minimum with the least
amount of computation. Let F;,; (tp, t.) denote the
minimum cumulative cost of the successor stage (/,
j+1) within time (t,, t.) among all possible (b,
Cijr1) ( Sj+r (by, ), that is,

[ min ;
]bl.j+1 2 tb,C[‘jH:max(tc,b,_H +N[t1.j+l‘h_l)}

(19)
VI.j+1(b/,J+|rCz.J+|)

Fl.j+l([b' tc) =

In view of (15) and (16), F .1 (ts, tc) can be recur-
sively obtained by comparing the cost V4 (t,, t.) at
time t, and the minimum of the costs (F . (t, + 1,
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to), Fijer (by, c4), Frjer (6 + 1, tc + 1) at time t, + 1.
This can be expressed as follows. If the operation (/,
J+t1) 1s processed on the standard machines or
machines with setups, then

Frier (thte)=min [V (tp,te), Frjar(ts + 1, )],
if t> ty + N, Xtgy—1;

?

(20)

Frirr (t,te)=min [Vj(ty,te), Frja(ty, + 1, te+ 1)1,
lftc:tb+N, Xt[]h_l (21)

if all transfer lots are required to be processed simul-
taneously, then

Fijrt (tote)=min [V (ty,to),Frya(ty + 1, te+ 1)](22)

The significance of (20) to (22) is that in most situ-
ations only one step comparison is needed to obtain
F i1 (ty, to). As a result, the cumulative cost in (11)
can be rewritten as follows:

Vii(by, c4)= Ly(by, ¢4) + Frja(tyte) (23)
The computational complexity of the above BDP is,
ONi™ the same as that of FDP analyzed in Liu and Luh.”

Required Setups and Simultaneous Processing of
All Transfer Lots

The setup times tj, for transfer lots are not explic-
itly expressed in the above BDP equations; they are
considered in the computation of stagewise-state
cost L;; (by, c4) by (9). Thus, setup requirements
have little effect on BDP computational efficiency.

However, as given by (20) to (22), BDP equations
are affected by the machines requiring simultaneous
processing of all transfer lots in a lot. Simultaneous
processing is required, for example, in a heat treatment
operation that is subcontracted out. Here all produc-
tion lot units—that is, all transfer lots—are sent to the
subcontractor together for the heat treatment opera-
tion. But for operations processed on these machines,
substates are only with index 0, not adding much
computational burden in the BDP procedure.

Slack Variable Subproblems and
the Dual Problem

Slack Variable Subproblems
Little effort is needed to solve the slack vari-
able subproblems because these subproblem solu-
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tions only require summations of the multipliers,
as follows:

m:rrllkhLS, with L = kz,r:lnkhmkh 24)
The Dual Problem

With the optimal costs of lot subproblems and
slack variable subproblems given by {L;} and Lj,
respectively, the high-level dual problem, denoted by
D, is obtained as follows:

max ?, withD=Y L1 +L - Y 7, M,,
kh

Tkh 1

(25)

Since the dual function D is concave, piecewise lin-
ear, and consists of many facets, the subgradient
method is commonly used to solve it; however, this
method suffers from slow convergence. To overcome
this, instead of solving a// subproblems for multipli-
ers updates, the Interleaved Sub-Gradient (ISG)
method was suggested that updates multipliers after
solving each subproblem. Furthermore, since the dual
function approaches a smooth function as the prob-
lem size increases, the Conjugate Gradient (CG)
methods have more attractive convergence properties
for such problems. Therefore, the newly developed
Interleaved Conjugate Gradient (ICG) method that
incorporates the “interleave” concept with the CG
method can provide faster convergence.'? It is used to
update the multipliers in this study.

As presented in Luh et al.,'" a rough estimate of
the number of multipliers when there are K enumer-
ation steps 1s m,: K X |H|. With the “time step reduc-
tion” technique, there is no need to have a multipli-
er for each of the resolution steps T, thus reducing
the computational complexity for solving the high-
level dual problems significantly.

Heuristics

The computation of subproblem solutions and mul-
tiplier updates is stopped after a fixed amount of com-
putation time or a fixed number of iterations, where an
iteration consists of solving all the subproblems once.
Since machine capacity constraints have been relaxed,
solutions of subproblems, when put together, generally
do not constitute a feasible schedule. A simple heuris-
tic procedure is usually used to adjust subproblem
solutions to form a feasible schedule. The heuristics
developed for transfer lots are based on the version
developed by Luh and Hoitomt'® and Luh et al."
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The heuristics start with the solutions of the DP
subproblems that give the actual operation begin-
ning times and completion times. Since the setup for
an operation is always immediately followed by the
start of that operation on the first transfer lot, this
setup is scheduled based on the availability of the
desired machine and the start time of the current
operation of the first transfer lot. For the first trans-
fer lot in a production lot, its current operation can
be started after the completion of its predecessor
operation. For other individual transfer lots in the
same lot, the current operation for a transfer lot can
be processed as soon as the predecessor operation of
this transfer lot and the current operation of the pre-
decessor transfer lot are complete, together with the
consideration of machine availability. For the opera-
tion processed on the machine requiring simultane-
ous processing of all transfer lots in the same lot,
since such machine capacity is treated as large, this
operation can begin after the completion of the pre-
decessor operation of the last transfer lot.

For simplicity of presentation, details of the situa-
tion are not given where multiple machine types can
do a given operation; the BDP can be easily extend-
ed to this situation by considering multiple stages for
an operation, one for each applicable machine type.
The quality of a schedule obtained is quantitatively
evaluated by its relative duality gap, which is the rel-
ative difference between the feasible schedule cost, J,
and its lower bound, the dual value D; that is, Duality
Gap = (J — D)/D X 100%. The stopping criterion
for the solution procedure may be to obtain a given
duality gap within an acceptable range.

Numerical Testing Results

The current algorithm that combines BDP and
ICG within the LR framework has been implement-
ed using the object-oriented programming language
C++, and extensive initial testing has been per-
formed on a Sun Sparc 10 workstation. Four test
cases are presented below to evaluate the perfor-
mance of the method developed. The first case
shows that using transfer lots improves the schedul-
ing performance greatly. Case 2 illustrates that the
transfer lots can be scheduled effectively on various
types of machines: standard machines, machines
with setups, and machines requiring all transfer lots
in the same lot to be processed simultaneously. This
increases the applicability of the model to a substan-
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Table 1a
Data and Results for Case 1: Transfer Lots

Lot/ Operation j Machine h tin d, \/ Schedule 1.1 Schedule 1.2
(Np (blj-. er) (b/j, Clj)
0(5) 0 MO 2 (12,21) (6, 15)

1 Ml l (14, 22) (16, 20)

2 M2 2 1 1 (15, 24) (21, 30)
1(2) 0 MO 3 (0,5) 0,5)

1 M1 1 3,6) (6,7)

2 M2 2 0 1 (5. 8) (8, 11)
2(2) 0 Ml 1 0, 1) 0, 1)

1 M2 2 (1,4) 2,95)

2 MO 3 1 1 (6, 11) (16, 21)

Table 15
Scheduling Performance for Case 1: Transfer Lots
Schedule Makespan Avg. Lead Time Avg. Avg. Avg.
WIP Inventory Machine Utilization Tardiness

Schedule 1.1: 25 6.4 0.26 65.3% 15
With Transfer Lots
Schedule 1.2: 31 16 0.52 52.7% 21

Without Transfer Lots

tially larger set of realistic environments. Case 3 and
Case 4 demonstrate the capability of the method
developed for scheduling real problems with differ-
ent sizes (number of lots, parts, transfer lots, and
time horizon). All cases assume that all machines
are available throughout the planning horizon, start-
ing from period zero. Using heuristics, feasible plan-
ning horizons are initially generated based on
machine availability and lot processing time require-
ments. For the first three cases, the enumeration step
is equal to the resolution time unit (that is, R = 1). In
addition to the duality gap, the following practical
metrics, used by various industries, are also applied
to evaluate the scheduling performance.

The metrics are as follows:

Makespan = max c;, , —min b;, +1
I,n i In

Lead time of the nth transfer lot in lot [ = Cla1 —
by + 1;

WIP inventory of the nth transfer lot in lot L =
(lead time of the nth transfer lot in lot /) / makespan;

Machine utilization of machine h
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= [ZZ(G L jlz)J / available time in makespan
i

and Tardiness (delivery delay) of the nth transfer lot
in lot / = max (0, ¢};,,+1—d; ). In the above, b}; and
cj; are the beginning time and completion time of the
operation (/, j) of the nth transfer lot, respectively.

In addition, a comparison of the current algo-
rithm with the common dispatching rules used in
practice has been suggested by the journal editor.
The resulting schedules are being computed and
will be presented for examination by the readers via
the Internet at http://www.sme.org.

Case 1 (Schedules With and Without
Transfer Lots)

This case is to show by a small example that, as
expected, scheduling with transfer lots can indeed
improve the scheduling performance greatly. There
are three lots to be scheduled on three machine
types, with one machine of each type. There are five
parts in lot 0 and two in lots 1 and 2. The data are
given in Zable la. The planning horizon is 40 time
units (T = 40).
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I
MO 1.0 0,0
M1 :] 11 D 0,{:
M2 1.2 0,2
. ' L Time
10 20 30
Figure 2a
Gantt Chart of Schedule 1.1: Scheduling with Transfer Lots
Machine
A
MO 1.0 0,0
M1 1 0.1
M2 12 0,2
' ‘ L Time
10 20 30
Figure 2b

Gantt Chart of Schedule 1.2: Scheduling Without Transfer Lots

The problem is first solved with transfer lots of
size one. Each part is, thus, treated as a transfer lot.
The feasible schedule, Schedule 1.1, is generated
with a cost of 693 and a lower bound of 693 in CPU
time of less than one second. Thus, the solution
found is the optimal solution. The operation begin-
ning times and completion times of Schedule 1.1 are
also shown in Table 1a, with the Gantt chart given in
Figure 2a.

Then the same problem is solved assuming all
lots are indivisible (that is, without using transfer
lots). The feasible schedule, Schedule 1.2, has a cost
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of 1362 with a lower bound of 1361.87 and is
obtained in less than one second CPU time. The
resulting operation beginning times and completion
times are also presented in 7able la. The Gantt chart
of Schedule 1.2 is shown in Figure 2b.

Table 1b gives the metrics for the scheduling per-
formance of both Schedule 1.1 and 1.2. Comparing
with the schedule obtained without considering
transfer lots (Schedule 1.2), transfer lots have signif-
icantly improved the average lead time, average WIP
inventory, average machine utilization, and average
delivery delay time. These imply that the use of
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Table 2
Data and Results for Case 2: Various Machine Types

Lot 7 (N;) Machine h

Operation j tin tin 8y a; d; W, Schedule 2 (b, cj)
0(4) 0 MO 3 - 1 0 6, 17)
1 M2 2 4 - (12, 20)
2 M4 2 - - (21, 22)
3 M1 1 - - 0 3 (23, 26)
1(2) 0 M1 2 - - 0 (0, 3)
1 M2 3 - 1 2,7
2 MO 2 2 - 1 1 (20, 23)
3 M4 2 - - (24, 25)
2(3) 0 MO 1 3 1 0 3.5
1 M1 2 - - (5. 10)
2 M4 2 - 1 (11, 12)
3 M3 5 - - 2 2 (14, 28)
3(3) 0 M3 2 - - 2 2.7
1 M4 2 - - (8.9)
2 M2 1 2 - (23, 25)
3 Ml 3 - 1 8 1 (27, 35)

sublots of smaller size and the overlapping of con-
secutive operations results in less work in process
and less product delivery delay.

Case 2 (Scheduling Transfer Lots with Various
Machine Categories)

This case is to show that the method presented
here can effectively schedule transfer lots on three
key machine categories: standard machines,
machines with setups, and machines where all trans-
fer lots in a lot must be processed simultaneously.
There are four lots to be scheduled on five machine
types, each machine type with one machine. Each
lot has a different due date, and lot 0 has the highest
priority (weight = 3) among the four lots, while lot 2
has a higher priority (weight = 2) than the other two.
Lot 3 has an arrival time of 2 units, and each lot has
four operations. Some operations processed on M0
and M2 need setups. For the operation processed on
M4, all transfer lots in a lot must be processed
simultaneously. The detailed data about lots and
operations are given in Table 2. “Time outs” are also
considered in this case.

The feasible schedule, Schedule 2, has a cost of
4740 with a relative duality gap 3.53% and is
obtained in two seconds. In Table 2, the resulting
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operation beginning times and completion times (by;,
c;) are also presented. The Gantt chart of the feasi-
ble schedule is shown in Figure 3. The makespan,
average lead time, average WIP inventory, average
machine utilization, and average tardiness are 36,
21.4, 0.59, 55%, and 19.7, respectively. This once
again shows that the schedules generated involving
transfer lots on all three kinds of machines are of
high quality.

The following two observations on the solution
presented in Figure 3 are made to illustrate how
transfer lots are scheduled effectively on the
machines with setups and machines requiring simul-
taneous processing of all transfer lots. First: the
setup for operation (0,1) is started at time 8 on M2
while the first transfer lot of lot 0 is still in process
for its operation (0, 0) on MO. Thus, once the first
transfer lot completes its operation (0,0) and is
transferred to M2, operation (0,1) of the first trans-
fer lot is started immediately without any delay for
machine setup. The requirement of one time unit
“time out” (transportation time, for example)
between operation (0,0) and (0,1) can also be easily
observed. Second: operation (3,1) is started on M4
after operation (3,0) of all transfer lots in lot 0 is fin-
ished. Once operation (3,1) is completed, the first
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Machine

Setup 20

] I

20

Figure 3
Gantt Chart of Schedule 2: Scheduling Transfer Lots with Various Machine Types

transfer lot of lot 3 is moved to M2 and operation
(3,2) is started as soon as M2 is available. These two
examples confirm the validity of lot dynamic mod-
eling for different machine categories.

Cases 3 and 4 draw data from a manufacturer pro-
ducing aircraft/turbine-generator parts. According to
the production requirements, the parts to be sched-
uled are grouped into a number of lots with various
due dates and weights. Table 3 summarizes the test
data for Cases 3 and 4.

Case 3 (A Real Problem Using Different
Transfer-Lot Sizes)

This case is to demonstrate the capability of the
method developed for scheduling real problems
using different transfer lot sizes. As given in Table
3, the planning horizon in this case is 780 hours,
and therefore the number of total multipliers is
17940. First, each part is treated as a transfer lot
(transfer lot size = 1). Then the total number of
transfer lots is 144, and the average number of
transfer lots in a lot is 5.78. The parts include those
that have operations requiring setups and can be
done on alternative machines; however, these are
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less than about 5% of the parts. The testing results
are shown in Table 4. 1t can be seen that the algo-
rithm does not require long computational time to
get high-quality schedules for real problems of this
size. To see the impact of transfer lot size on sched-
uling, every two parts are grouped into a transfer
lot (transfer lot size = 2). The total number of trans-
fer lots is 72, and the average number of transfer
lots in a lot is 2.88. The testing results are also
given in Table 4. It can be seen that the larger the
transfer lots size, the larger the tardiness (feasible
cost), but its solution is closer to the optimum. This
implies that smaller transfer lot size usually pro-
vides a better solution, as expected, but it requires
more computations.

Case 4 (A Larger Real Problem With and
Without Time Step Reduction)

A larger problem is tested in this case to further
illustrate the capability of the method developed for
scheduling large-sized practical problems. The
planning horizon is 1170 hours for scheduling a
total of 61 lots. First, without using time step reduc-
tion (R=1), the number of total multipliers is 29150,
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Table 3
Description of Data for Cases 3 and 4: Larger Problems

Case No. No. of Lots No. of Parts No. of Avg. No. of No. of Machines/ Planning
Part Types Operations/Lot Machine Types Horizon (hour)
25 144 17 8.48 39725 780
4 61 339 17 10.8 44 /27 1170

Table 4
Results for Case 3: Different Transfer Lot Sizes

Transfer lot size = 1, no. of transfer lots = 144

Transfer lot size = 2, no. of transfer lots = 72

No. of

Feasible Duality CPU Time No. of Feasible Duality CPU Time
Iterations Cost Gap (sec.) Tterations Cost Gap (sec.)
25 86301 21.9% 302 25 98620 17.1% 305
50 86301 18.2% 593 50 96470 12.2% 602
Table 5
Results for Case 4: Time Step Reduction Technique
R = 1 (without time step reduction) R = 10 (with time step reduction)
No. of Avg. Avg. Avg. CPU No. of Avg. Avg. Avg. CPU
Iterations Lead Time WIP Delay (sec.) [terations Lead Time WIP Delay (sec.)
6 226 0.28 38 560 6 241 0.28 41 384
24 204 0.27 344 2052 24 212 0.27 38.8 1364
36 199 0.266 28.5 3161 36 203 0.272 30.9 2021
48 192 0.255 28 4154 48 203 0.263 29.5 2781
and the results are summarized in Table 5. To show Conclusions

the effect of “time step reduction” on scheduling
large problems, R=10 is used, decreasing the num-
ber of total multipliers to 2915. These results are
also summarized in 7able 5. For comparison, the
performance of schedules is measured at several
iteration counts: 6, 24, 36, and 48. It is obvious that,
at a given iteration number, R=10 needs much less
CPU time than R=1 to get a good schedule because
of the smaller number of multipliers required by
R=10. It can be also seen that R=1 gives a better
schedule than R=10 in view of the modeling
approximation caused by larger values of R.
Measured by practical metrics, these schedules
obtained in about 20 minutes for R=10 and in 35
minutes for R=1 look quite reasonable. The duality
gap (not included in the table) in this case is signif-
icantly larger than previous cases and is still under
study. This case implies that for large problems,
good schedules can be obtained within a reasonable
time by using the time step reduction technique.
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The extended lot dynamics model and the back-
ward dynamic programming (BDP) technique have
been developed for scheduling with fixed-size trans-
fer lots. The effective handling of transfer lots on
machines with setups and machines where all transfer
lots in a lot are required to be processed simultane-
ously is of practical significance. To apply BDP to
solve lot subproblems efficiently, the number of
multiple completion times associated with each oper-
ation beginning time for a lot and the earliest and
latest beginning times and completion times for all
operations have been be determined. With substates
introduced, state transitions determined, and compu-
tation-critical DP equations derived for computing
stagewise minimum cumulative costs at successor
stages, the BDP algorithm is developed to efficiently
solve the lot subproblems that contributes to the
state-of-the-art scheduling practice. Numerical results
indicate that the method can generate high-quality
schedules with reasonable computational effort.
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Appendix A

Derivation of Operation Beginning and
Completion Times of Individual Transfer Lots

Assume that there are N, transfer lots, indexed by
n=0,1, .. N,—1,in lot /. Once operation beginning
{b;} and completion times {c;} of lot / are deter-
mined, these times, {bj}}, {c}}, of individual transfer
lots can be derived as follows.

For all individual transfer lots, if their opera-
tion beginning times are given, the corresponding
completion times can be determined by the fol-
lowing:
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ch=bl+tym —1,n=0,1,..,N~—1,

=0, 1, .., J,—1 (26)
First consider that operation (/, j) is processed on
standard machines or machines with setups. For the
first operation (/, 0), because no intermittent idling
times exist in it, the beginning time of an individual
transfer lot only relies on the completion time of the
predecessor transfer lot, that is,

bl =bp +nX tHp,n=0,1, .., N—1 (27)
For any other operation (/, j), the beginning time of
the first transfer lot is the operation beginning
time of the lot, and the beginning time of any other
transfer lot depends on the completion time of the
predecessor transfer lot as well as the completion
time of its predecessor operation, that is,

bj; = by, b = max(¢f, ¢t si0) t1,

n=1,2,.,N~—1,5=1,2,..,J—1 (28)
Now consider that all transfer lots are required to be
processed together simultaneously at (/, j). Since all
transfer lots have the same beginning time, begin-
ning time of any individual transfer lot is the opera-
tion beginning time of the lot, that is,

b =b;n=0,1,..,N~1,j=0,1,..,J—1  (29)

Appendix B

Determination of Numbers of Multiple
Completion Times

For notational consistency with the number of
substates introduced in Section 3.2, let Nj+I
denote the number of possible completion times
associated with a given beginning time. For the
first operation (/, 0), because all transfer lots are
available to be processed, only one completion
time corresponds to a given beginning time with-
out any intermittent idling between them, that is,

% equals zero. The parameter ty,,, is introduced
to represent the maximum processing time among
a specified set of operations. First set tyj. = ton
For any operation (/, j) after (/, 0), if all transfer
lots in lot / are required to be processed simulta-
neously at operation (/, j), then set N§ = 0 and t;p,,
= 0. For (/, j) processed on standard machines or
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machines with setups, if t;,,, is greater than the
processing time tg, (this implies existing intermit-
tent idling times in (/, j)), then N§ can be calculat-
ed by the following:

5= (N= D *(tmax— tyn)

(30)

otherwise, there is no intermittent idling time in (Z,
J), set N§;= 0 and tjpay = tzn. Then move to the next
operation and repeat the above procedure with the

tIm:«n(

obtained until the last operation is reached.

Using this recursive procedure by proceeding for-
ward, the numbers of possible multiple completion
times associated with each beginning time, {N§+1},
for all operations can be determined. An example is
shown in Figure 4, and it is clear that the number N§;
of operation (/, 0), (/, 2), (/, 3), and (/,4) equals zero.

Appendix C

List of Symbols

4

Arrival date of required material for lot /

b, Desired release time of lot /

b,
b[j
3
4
!
b[j

n
U]

Beginning time of lot /

Beginning time of operation (/, j)

The earliest start time of operation (/, j)

The latest beginning time of operation (/, j)
Beginning time of operation (/, j) for the nth
transfer lot

Actual beginning time of operation (/, j) on a
machine with setup

Journal of Manufacturing Systems
Vol. 18/No. 4
1999

Completion time of lot /

Completion time of operation (/, j)

The earliest completion time of operation (, j)
The latest completion time of operation (/, j)
Completion time of operation (/, j) for the nth
transfer lot

Due date of lot /

Earliness of lot /

Set of all machine types

; Eligible machine types for operation (/, j)

Objective cost

Lagrangian after relaxation of “coupling” con-
straints

Total number of operations for lot /

Total number of enumeration steps

Index of enumeration step, k=0, 1, ..., K-1
Total number of lots to be scheduled

Lot index, /=0, 1, ..., L-1

My, Average number of h type machines available

at enumeration step k

m,, Non-negative slack variable satisfying 0 < m,,

(Y
i
N,

n
R

Sij

= Mu,

Number of multiple completion times associ-
ated with a beginning time of operation (/, j)
Number of transfer lots in lot /

Index of individual transfer lot, n =0, 1, ..., -1
Total number of resolution steps within one
enumeration step

Required “time out” between operation (/, j)
and (/, j+1)

Planning time horizon in resolution incre-
ments

Oper 0 1 2 1 3

1,2,3]

1 -- Transfer Lot 1
2 -- Transfer Lot 2
3 -- Transfer Lot 3

1 2 3

et [ (2 [
oper2 P T T 7 [ 7]
Oper3  Setup l
Oper 4
Oper 5

Setup
h T nfin

> Timet

Figure 4
Example for Determining Numbers of Multiple Completion Times
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T, Tardiness of lot /

t  Time index in resolution increment, 0 < t =
T—1

t;n Processing time of operation (/, j) for each
transfer lot of lot / on machine type h

in  Setup time on machine type h for operation (/, j)

w, Weight of tardiness penalty of lot /

B, Weight of earliness penalty of lot /

Ok Fraction” of the enumeration step k that oper-
ation (!, j) 1s active on machine type h

Ta Lagrange multipliers of machine types h with
enumeration step k
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