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Fault Diagnosis of HVAC Air-Handling Systems
Considering Fault Propagation Impacts

Among Components
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Abstract— In a heating, ventilation, and air conditioning
system, an air-handling system is a key module. Its components
(e.g., air handling unit, air-mixing box, and fans), linked through
airflows, condition air to a desired temperature and/or humidity
based on comfort or controlled environment requirements. Iden-
tifying failure modes and estimating their severities allow mainte-
nance crews to know which faults have occurred, how critical they
are, and be guided in the repair process to improve the system
availability. The problem of fault detection and diagnosis in
air-handling systems is complex because of fault propagation
across components, and high false alarm rates caused by uncer-
tainties in system and measurement dynamics. In this paper,
to capture fault propagation impacts in an efficient manner,
dynamic hidden Markov models are developed to identify failure
modes, since they contain state transition matrices depending
on other components and do not generate joint states. To filter
out false alarms, “coupled statistical process control” techniques
are developed by using state transitions matrices representing
coupling among components. Experimental results show that
the method can effectively diagnose faults with high-diagnosis
accuracy.

Note to Practitioners—Faults in heating, ventilation, and air
conditioning air handling units (AHU) may cause high energy
consumption and discomfort to occupants. Fault diagnosis in
AHU is challenging since: 1) effects of faults propagate across
components connected by airflows and 2) measurement noises
may cause high false alarm rates. In this paper, a novel fault
diagnosis method is established to identify failure modes and fault
severities. This method explicitly considers the fault coupling
among components. To reduce false alarm rates, new statistical
process control techniques are developed to filter out false alarms.
Experimental results show that our method can effectively
diagnose faults with high diagnosis accuracy.

Index Terms— Air handling system, air handling unit (AHU),
cooling coil, coupled statistical process control (SPC), damper,
dynamic hidden Markov model (HMM), failure modes, fan, fault
diagnosis, fault propagation, fault severities, variable air volume.

I. INTRODUCTION

APPROXIMATELY 50% energy consumption of a com-
mercial building is associated with heating, ventilation,
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Fig. 1. Structure of a specific air-handling system considered.

and air conditioning system (HVAC) [1]. In HVAC systems,
faults may cause high-energy consumption and make occu-
pants feel uncomfortable. Thus, accurate diagnosis of faults
in HVAC systems is critical. As a key module of an HVAC
system, air-handling systems are used to condition and circu-
late air in rooms. These systems can be generally classified
into two types, including constant air volume (CAV) and
variable air volume (VAV). Unlike a CAV system that supplies
a constant airflow at a variable temperature, a VAV system
provides a varied airflow at a constant temperature. Various
air-handling systems may contain different components, e.g.,
a mixing box, spray humidifiers and thermal wheels. To bound
the scope of the problem, a simple VAV air-handling system
consisting of an air-mixing box, an air handling unit (AHU),
fans and ducts is considered, as shown in Fig. 1. In the mixing
box, the recirculation air damper and the outdoor air (OA)
damper are used to mix air in a desired proportion. The mixed
air is then delivered to the AHU consisting of filters, a heating
coil and a cooling coil. The coils are used to condition the air
via heat exchange. The supply fan delivers the air to VAV
boxes. The return fan delivers air to exhaust air (EA) damper
and the air-mixing box. Before repairing faults, it is important
to identify: 1) failure modes and 2) fault severities or failure
conditions. The former allows maintenance crews to know
which faults occurred and their locations. The latter helps
guide maintenance crews to recognize how severe faults are
or conditions of faults, e.g., damper stuck positions.

To diagnose faults, component health conditions
(e.g., normal and faulty conditions) are required to identify
failure modes and fault severities, but they cannot be directly
measured. Given models, health conditions of components
can be estimated based on measurements with noise, which
may cause high false alarm rates. In existing works, to filter
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out false alarms, prior models of noise were established based
on physical knowledge that may not be available. Moreover,
components are linked through airflows, and may need to
satisfy set points. A fault in a component may cause increase
of load in others to ensure that set points are still satisfied.
Thus, these components are more likely to break down,
leading to fault propagation. Capturing the impacts improves
diagnosis performance as discussed in our numerical results,
e.g., F-measure representing diagnosis accuracy is increased
by 2.83%–4.79%. However, they are rarely considered in
existing works. Additionally, identification of fault severities
is important but is rarely investigated in existing work.
Addressing these issues is difficult since: 1) modeling failure
modes and fault severities as well as their fault propagation
impacts is complex, and requires high-computational efforts
and 2) measurement noises may cause high false alarm rates.

In this paper, faults in an air-handling system under the
cooling mode are considered. Based on accepted practice in
HVAC systems [2], [3], 16 faults are considered in this paper.
For the EA damper, stuck closed/open are considered. For
the OA damper, stuck closed and leakage are considered.
For the cooling coil, four faults including: 1) tube foul-
ing; 2) dust on fins; 3) stuck closed valve; and 4) stuck
open valve are considered. For ducts, leaking before/after
the supply fan are considered. For supply/return fans, three
faults, including: 1) complete failure; 2) running at a fixed
speed; and 3) decrease in fan efficiency, are considered. Some
of these faults, e.g., damper stuck closed, occurs suddenly,
are considered as sudden faults; others, e.g., tube fouling,
become worse gradually, are considered as gradual faults.
Each failure mode has fault severities representing how severe
they are. Some faults, including: 1) tube fouling; 2) dust
on fins; 3) decrease of fan efficiency; and 4) duct leakage,
are reflected by multiple parameters. Thus, fault severities
are identified based on decrease/increase percentages of these
parameters. Other faults do not have severities thus their failure
conditions, e.g., damper stuck angle, are identified based on
measurements. In Section II, typical fault diagnosis methods
are classified and reviewed.

To identify failure modes, models are required to estimate
health conditions. These models need to capture behaviors of
components as well as coupling among components. Physics-
based models capture component behaviors, but they are
developed for individual components, and the coupling is
rarely considered. Hidden Markov model (HMM) is a statistic
Markov model, which represents relationships between hidden
states and observations statistically. To capture the coupling,
coupled HMMs are usually used [4], but they generate many
joint states, leading to high-computational requirement. Since
the fault propagation takes a long time, it is not necessary to
capture it precisely by coupled HMMs. To capture the coupling
in an efficient way, in Section IV, dynamic HMMs are devel-
oped to capture the impacts since they: 1) contain different
state transition matrices depending on other components and
2) do not generate joint states. Additionally, capturing fault
severities in dynamic HMMs generates many discrete states
with low resolution. To address this issue, given identified
failure modes, model parameters are estimated using a Kalman

filter (KF) or an unscented particle filter (UPF). Fault severities
are represented in terms of increase/decrease percentages of
the estimates with high resolution.

In Section V, to estimate parameters and states of dynamic
HMMs, EM algorithm is commonly used [5]. However,
it computes log-likelihood functions with associated sin-
gular problems. Gibbs sampler is a Markov chain Monte
Carlo (MCMC) algorithm that does not calculate the functions,
and hence singular problems are avoided. A Gibbs sampler is
developed for dynamic HMMs, while considering fault depen-
dencies among components. Statistical process control (SPC)
is a method to monitor and control a process. To filter out
false alarms, SPC can be used to check whether components
are faulty or estimated as a failure falsely by comparing
estimates with their control limits. However, it was usually
developed for individual components and fault propagations
were not captured [6]. To address this issue, different state
transition matrices representing fault propagation are used to
derive control limits.

In Section VI, data from a simulated small building and
ASHRAE project 1312-RP are used to test our fault diagno-
sis method. Experimental results show that this method can
diagnose faults with high F-measure scores.

II. LITERATURE REVIEW

To diagnose faults in HVAC systems, many methods have
been developed, and are generally categorized into three
groups, including: 1) quantitative model-based; 2) qualitative
model-based; and 3) process history based [7].

A. Quantitative Model-Based Methods

These methods use explicit mathematical models, including
physics-based and gray-box models, to represent behaviors
of components. Physics-based models express systems in
terms of mathematical functions based on physical knowledge.
Gray-box models are usually simplified forms of physics-
based models, and part of physical knowledge is retained in
these models. Given input measurements, outputs are esti-
mated and compared with measured outputs to identify failure
modes. Variables (e.g., temperatures or the static air pressure)
may be considered as outputs [8]. Control signals under faulty
conditions can also be considered as outputs, since they are
different from those under normal operation to compensate
for effects of faults [9]. Additionally, parameters related to
faults, e.g., leakage rate and UA value, can be considered
as outputs [6], [10], [11]. To estimate these parameters,
multiple methods were developed. In [10], a normalized least
mean-square metric was used to estimate model parameters.
In [6] and [11], KF and extended KF were used to esti-
mate parameters of physics-based models to identify sudden
and gradual faults. Several papers related residuals to fault
severities, but they did find appropriate measures to identify
the severities [12], [13]. Quantitative models are accurate
and capture system behaviors under both normal and faulty
conditions. However, they are hard to develop and may require
variables which are not available. Additionally, these models
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are usually developed for individual components, and fault
propagation among components are rarely captured.

B. Qualitative Model-Based Methods

Qualitative models are also developed based on physical
principles. Unlike quantitative models, they represent qual-
itative cause-effect relationships among faults and observed
effects to infer faults. For example, rule-based methods employ
physical knowledge and individual experience to generate
multiple if-then-else rules for fault diagnosis, and are widely
used in HVAC systems [15]–[17]. In [15], rules were devel-
oped and implemented in a decision tree to diagnose sudden
and gradual faults in outdoor-air ventilation and economizer
operation. Based on this method, a tool known as the out-
door-air economizer diagnostician was implemented. In [16],
a rule set was developed to diagnose faults in AHUs under
different operating modes, and was implemented in a software
called AHU performance assessment rules [17]. Based on
physical knowledge, a decision tree was developed to diagnose
sudden and gradual faults of an AHU using data from the
ASHRAE project 1312-RP [18]. Failure modes and failure
conditions, e.g., the fan fixed speed, were considered together
and identified simultaneously. These methods have the virtue
of explanatory capability for fault inference. However, it is
difficult to ensure that all rules are applicable for different
systems and for all operating conditions. Developing rules
requires expertise and knowledge. Additionally, qualitative
methods do not model fault behaviors using mathematical
functions, thus cannot identify fault severities with high
resolution.

C. Process History Methods

In these data-driven methods, relationships between
measured inputs and outputs are represented by black-box
models. Unlike physics-based models, black-box models are
established based only on data without regard to physical
principles. Multiple methods, e.g., principal component analy-
sis (PCA), artificial neural networks (ANNs), support vector
machine (SVM) and HMMs, have been developed to diagnose
faults in HVAC systems. For instance, two PCA models were
developed based on AHU measurements related to heat bal-
ance and pressure-flow balance to diagnose sensor faults [19].
In [20], a wavelet-PCA method was developed to diagnose
sudden and gradual faults of an AHU by removing the
influence of weather conditions. As black-box models, ANNs
are good at classifying conditions of components by learning
from training data. This method is widely used for HVAC
systems [21]–[23]. In [24], SVM techniques were applied to
model parameters representing AHU states to classify faults.
This method was compared with others based on F-measure
that measure the quality of diagnosis.

HMMs are black-box models, and represent state evolution
and relationships between states and measurements statisti-
cally. To diagnose faults, HMMs are trained based on normal
and faulty data. Log-likelihood values obtained from these
models will be compared with each other, and the HMM with
the largest value is the most likely model [25]. By using this

method, HMMs for all failure modes are required, leading to
high-computational requirements. To avoid establishing many
HMMs, multiple methods treated component health conditions
as HMM states and then use HMM inference techniques
to identify faults. For instance, to diagnose faults of power
distribution systems, engines, etc., coupled factorial HMM
was used to estimate system states based on measurements
to infer faults [4]. To estimate parameters of HMMs, multiple
methods were developed, e.g., EM algorithm [5] and Gibbs
sampler [26]. In the EM algorithm, log-likelihood function
log( f ) is calculated and will diverge to minus infinity if
f approximates to 0, leading to singularities [27]. Gibbs
sampling is an MCMC algorithm. Unlike the EM algorithm,
Gibbs sampler does not calculate the log-likelihood function,
thus convergence to singularities is avoided [26]. To estimate
HMM states, measurement noise may cause high false alarm
rates. To filter out false alarms, a priori model of measurement
uncertainties in HMMs was established based on physical
knowledge [28]. However, the prior information of uncer-
tainties may not be available. Additionally, SPC rules, e.g.,
X-chart, were widely used to filter out false alarms [6], [29].
They are applicable to individual components, but not for
coupled ones. Process history methods do not require an
understanding of physical systems, and are thus well suited
to problems where data are plentiful. However, the models
are specific to the system for which data are available and
may not carry over to other ones. Moreover, fault severities
are represented by discrete states which have low resolution.

In existing works, there are two voids, which are planned
to fill. These include: 1) identifications of fault severities were
rarely investigated and 2) fault propagation effects among
components were rarely considered.

III. METHOD FRAMEWORK AND

MODELS OF COMPONENTS

In Section III-A, the framework of our fault diagnosis
method is presented. In Section III-B, HMMs of EA/OA
dampers are established. In Section III-C, a physics-based
model and a HMM of a cooling coil are described.
In Section III-D, the HMM of a duct is established.
In Section III-E, physics-based models and HMMs of supply/
return fans are presented. In Section III-F, fault propagation
impacts among components are analyzed. Based on the analy-
sis, Section III-G shows how to establish dynamic HMMs.

A. Framework of the Fault Diagnosis Method

To diagnose faults, models capturing transitions among
different conditions and fault impacts among components
are required. Future states of components depend solely on
present states, and thus state sequences possess the Markov
property. To capture the property, filtering techniques (e.g.,
KF and UPF) and HMMs can be used. Usually, filtering
methods are built on physics-based models, which may require
input variables that cannot be measured. Additionally, a fault
in a component may increase load in other components, which
are more likely to break down. However, most physics-based
models are developed for individual components, and thus
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Fig. 2. Framework of our fault diagnosis method.

rarely capture fault impacts. Compared to them, HMMs have
no strict requirements and can still be used even if multiple
measurements are not available. To capture fault propagation,
coupled HMM is used [4], but they generate many joint
states and require high-computational effort. Since the fault
propagation takes long time, it is not necessary to capture it
precisely by coupled HMMs. Dynamic HMMs are used since
they have different state transition matrices depending on other
components to capture fault propagation, and do generate joint
states. As shown in Fig. 2, dynamic HMMs are used to identify
failure modes.

If dynamic HMMs are also used to identify fault severities,
modeling both failure modes and fault severities together
could generate many states, resulting in high-computational
requirements. Additionally, estimates of dynamic HMMs are
discrete, thus have low resolution. To overcome these diffi-
culties, KF/UPF are used to estimate parameters of physics-
based models to identify fault severities as shown in Fig. 2.
Failure modes and fault severities are identified in succes-
sion, thus fewer states are generated and high-computational
requirements are avoided. Additionally, estimates obtained by
filters are continuous, and thus have high resolution. Failure
conditions are identified by measuring corresponding variables
directly. In the next set of sections, dynamic HMMs are
established for identification of failure modes. Since faults
including: 1) tube fouling; 2) dust on fins; 3) decrease in fan
efficiency; and 4) duct leakage have fault-related parameters
that represent fault severities, the physics-based models con-
taining these parameters will be formalized for estimating fault
severities.

B. HMMs of EA/OA Dampers

A damper is used to stop or regulate airflow inside a duct or
air-handling equipment by adjusting the damper blade angle.
EA damper could be stuck open or stuck closed suddenly.
For the open case, exhaust air increases, thus recirculating
air ṁa,rn decreases, leading to an increase of outdoor airflow
rate ṁa,oa to maintain the supply airflow rate ṁa,sup. Supply
fan speed ϕsf and return fan speed ϕrf are forced to increase
to raise the pressure to suck in more air. On the contrary, for
the closed case, exhaust air decreases, leading to a decrease of
these variables. Damper blade angles are measured to identify
failure conditions.

1) HMMs of Dampers: For the EA damper, two sudden
failure modes are considered. Thus, the HMM has 22 = 4
states denoted by sea_dmp = 0, 1, 2, and 3 as shown in Fig. 3.

Fig. 3. HMM of the EA damper.

In this figure, the stuck closed damper fault is denoted
by fea_dmp,sc and the damper stuck open is denoted by
fea_dmp,so, where ( fea_dmp,sc, fea_dmp,so) = ‘01’ means that
the damper is stuck closed. The state evolution is determined
by a 4 × 4 state transition matrix. The HMM observations
at time t is denoted by Oea_dmp(t), which are extracted from
fault indicators to capture distinguishable faulty information.
Usually, measured variables related to faults are considered
as fault indicators. However, they may significantly change
with loads even though no faults occur. Compared to them:
1) residuals between model outputs and measurements or
those between outputs of different models and 2) differences
between measurements and their set-points change a little
bit under the normal condition, but significantly under faulty
conditions. Thus, they are also considered as fault indicators.
Thus, the fault indicator matrix is

Xea_dmp =
⎡
⎣

ṁ1
a,sup ṁ1

a,oa ṁ1
a,rn ϕ1

sf ϕ1
rf

· · · · ·
ṁK

a,sup ṁK
a,oa ṁK

a,rn ϕK
sf ϕK

rf

⎤
⎦ (1)

where K is the length of the state sequence. These fault
indicators contain measurement noises. Denote Xea_dmp by y
and their true values by u, then

yt = ut + wt (2)

wherewt is the measurement noise at time t . The measurement
noise is assumed to follow a multivariate normal distribution
N(ut ,�). To judge this statement, the Chi-square goodness
of fit test is used to test the hypothesis that data comes
from a normal distribution [30]. Thus, the emission probability
function that represents the probability density of observations
given its true values is

bt (yt , ut ) = |2π�|−1/2 exp[−(yt − ut )
′�−1(yt − ut )]. (3)

These fault indicators have different units, and differences
between them are large. To avoid Xea_dmp becoming a singular
matrix, they are normalized. These indicators are correlated,
and contain redundant information. To remove redundancy,
PCA is used to project this variable matrix into a reduced
space. If m vectors represent more than 95% correlated
information, they are regarded as adequate set of “principal
components” to reflect original spaces, and regarded as obser-
vations [17]. For Xea_dmp, the first three principal components
capture 97.831% of variation in the observed data, and thus are
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selected as observation Oea_dmp. EA damper has four obser-
vation distributions corresponding to its states. The HMM of
the OA damper is developed in a similar manner.

C. Physics-Based Model and HMM of a Cooling Coil

A cooling coil is a coiled arrangement of tubes for
heat transfer between chilled water and air. Chilled water
flows through tubes, and air passes through fins. For the
cooling coil, two sudden faults, including: 1) valve stuck
fully/partially closed fcc,vlv_sc and 2) valve stuck fully/partially
open fcc,vlv_so, and two gradual faults: 1) tube fouling fcc,tube
and 2) dust on fins fcc,fin are considered.

1) Physics-Based Model of a Cooling Coil: The heat trans-
fer coefficient Ucc of the cooling coil is the reciprocal of the
thermal resistance representing how the cooling coil resists
a heat flow. The thermal resistance consists of four parts,
including: 1) air-side thermal resistance 1/αa,eτ ; 2) thermal
resistance caused by dust 1/R f ; 3) thermal resistance of the
tube wall; and 4) water-side thermal resistance 1/αw [31]

UAcc =
[

1

αa,eτ
+ R f + δtube

λtube
+ 1

αw

]−1

(Atube,out+ Afin) (4)

with

αa,e = αa[1− Afin(1− ηfin)/(Atube,out+ Afin)], [32] (5)

and αw = A · v̇0.4
chw · ψ0.4/d0.6

tube,in (6)

where Afin and Atube,out are the fin surface area and the tube
outside surface area, respectively; parameter τ = (Afin +
Atube,out)/Atube,in, and Atube,in is the tube inside surface area;
parameter δtube is the tube thickness; parameter λtube is the
tube thermal conductivity; parameter ηfin is the fin efficiency;
variable v̇chw, is the chilled water volumetric flow rate; variable
ψ is the heat flux; and dtube,in is the inside tube diameter.
Additionally, the heat transfer coefficient can be calculated
based on air mass flow rate and logarithmic average of the
temperature difference (LMTD)

UAcc = ṁa,sup · (Ea,mix − Ea,dis)/LMTD (7)

with LMTD = (�Tsup −�Trn)/(ln�Tsup − ln�Trn) (8)

where �Tsup = Ta,dis − Tchw,sup, �Trn = Ta,mix − Tchw,rn.
Variables Ta,mix and Ta,dis are mixed air and discharge air
temperatures; variables Tchw,sup and Tchw,rn are supply and
return chilled water temperatures. Given (4) and(7), the gray-
box model of a cooling coil is obtained as

ṁa,mix · (Ea,mix − Ea,dis)

LMTD
=

[
1

αa,eτ
+ δtube

λtube
+ R f + 1

αw

]−1

× (Atube,out+ Afin). (9)

The right-side of (9) depends on geometrical parameters,
e.g., dtube,in and Afin. Parameter dtube,in gradually decreases

with tube fouling. A certain decrease in the tube diameter
represents the degree of fault severity. Similarly, parameter
Afin decreases with dust accumulation on fins, and its decrease
by a certain percentage represents the fault severity. If these
parameters are set to normal values, (9) will be violated under
faulty conditions. Thus, the residual between the left-side and
the right-side is considered as a fault indicator. Based on
discussion in [3], chilled water flow rate ṁchw, the difference
between the enthalpy of mixed air Ea,mix and the enthalpy of
supply air Ea,sup, ṁa,sup, and ϕsf are related to faults and are
selected as fault indicators. Valve openings are measured to
identify failure conditions of valve faults. Additionally, faults
could result in: 1) the supply air temperature cannot follow
its set-point and 2) the zone temperature cannot satisfy its
set-point. Therefore, these differences are also considered.

2) HMM of a Cooling Coil: Four failure modes are
considered. Thus, the HMM has 24 = 16 states denoted
by scc = 0, . . . , 15, and has a 16 × 16 state transition
matrix. As discussed above, the fault indicator matrix is
shown in (10) shown at the bottom of this page, where
variable RKcc is the residual between the left-side and
the right-side of (9); variable �Tspt,sup is the difference
between the supply air temperature and its set-point; variable
�Tspt,zone is the difference between the zone temperature
and its set-point. The first five principal components cap-
ture 96.349% of variability in data, and thus are used as
observations.

D. HMM of a Duct

Ducts are used to deliver and remove air. In ducts, air may
leak gradually before the supply fan and is denoted by fduct,lb.
It may cause a decrease in the outdoor airflow rate as well as
the supply fan speed. On the contrary, the leakage after the
supply fan fduct,la may cause an increase in the outdoor airflow
rate and an increase in the supply fan speed to compensate this
situation. As two faults are considered, the duct has 22 = 4
states denoted by sduct = 0, 1, 2, and 3, and a 4 × 4 state
transition matrix. Impacts of these faults were analyzed in [3].
Based on the analysis, the fault indicator matrix is

Xduct =
⎡
⎣
ϕ1

sf ϕ1
rf ṁ1

a,sup ṁ1
a,oa ṁ1

a,rn
· · · · ·
ϕK

sf ϕK
rf ṁK

a,sup ṁK
a,oa ṁK

a,rn

⎤
⎦. (11)

The first four principal components capture 95.867% of vari-
ation in data, and are thus used as observations.

E. Physics-Based Models and HMMs of Supply/Return Fans

In an air-handling system, fans deliver conditioned air to
rooms or remove air to outside. In the fan, the rotating blades
increase the pressure of air by consuming electricity, and move
air against resistances. Usually, the supply fan and the return

Xcc =
⎡
⎣

T 1
chw,rn − T 1

chw,sup E1
a,mix − E1

a,dis m1
a,sup ṁ1

chw R1
Kcc �T 1

spt,sup �T 1
spt,zone

· · · · · · ·
T K

chw,rn − T K
chw,sup E K

a,mix − E K
a,dis mK

a,sup ṁK
chw RK

Kcc �T K
spt,sup �T K

spt,zone

⎤
⎦ (10)
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fan are the same type, thus the former is used as an example.
Two sudden faults, including: 1) complete failure fsf,cf and
2) running at a fixed speed fsf,fs, and a gradually decrease in
supply fan efficiency fsf,eff are considered.

1) Physics-Based Model of a Fan: Decrease in fan
efficiency esf may cause an increase in fan power Qsf to
maintain the supply air mass flow rate ṁa,sup. Additionally,
the fan pressure rise �Pr,sf can be increased by consuming
more electricity. Thus, a physics-based model of a fan was
developed as in [33]. The model is

Qsf = ṁa,sup ·�Pr,sf/(ρaesf) (12)

where ρa is the air density. Fan faults, such as wear in a
bearing, cause decrease in fan efficiency esf , which is treated
as a fault severity parameter. To compensate for a decrease in
esf , more electricity is consumed to maintain the supply airflow
rate. Complete failure and running at a fixed speed cause a
decrease in supply airflow, where fan speed is measured to
identify failure conditions.

2) HMMs of Fans: Three failure modes of the supply fan
are considered. Thus, the HMM has 23 = 8 states, which are
denoted by ssf = 0, . . . , 7. The fault indicator matrix is

Xsf =
⎡
⎣
ϕ1

sf ϕ1
rf ṁ1

a,sup ṁ1
a,rn �T 1

spt,sup
· · · · ·
ϕK

sf ϕK
rf ṁK

a,sup ṁK
a,rn �T K

spt,sup

⎤
⎦ (13)

where variable �Tspt,sup is the difference between the supply
air temperature and its set-point. The first three components
capture 98.052% of variation in data, and are used as observed
features. Similarly, the HMM of the return fan is established.

F. Fault Impacts Among Components

Components of an air-handling system are linked through
airflows and may need to satisfy certain set-points. If a
component has a fault, loads in other components may increase
to ensure that set-points are still satisfied. Thus, these com-
ponents are more likely to break down. For instance, suppose
the cooling coil valve is stuck at fully closed. To compensate
for this situation, the supply fan should increase its speed
and causing the bearing to wear, leading to a decrease in fan
efficiency. Because of increase in supply airflow rate, duct
leakage may become worse. To establish accurate models,
it is important to capture these fault propagation effects.
Additionally, fault propagation effects between two adjacent
components are usually larger than those between nonadjacent
ones, and such spatial dependencies are considered in our
models.

G. Dynamic HMMs of Components

To capture fault impacts among adjacent components, cou-
pled HMMs are usually used. However, they generate many
joint states, which grow rapidly with increase in the number
of failure modes. To address this issue, dynamic HMMs are
developed, since they have different state transition matrices
conditioned on other components to capture fault impacts
among components without generating joint states. Here, duct
is used as an example to show how to establish a dynamic

Fig. 4. Dynamic HMM of the duct.

HMM. The duct is linked with the cooling coil. The set of
HMM parameters associated with duct is denoted by λduct.
The dynamic HMM associated with the duct has 16 state
transition matrices corresponding to the 16 states of the
cooling coil, and are denoted by Pduct,i , i = 1, . . . , 16.
It has 64 = 16 × 4 observation distributions corresponding
to states of the duct and of the cooling coil, and are denoted
by N(μduct,k,�duct,k), k = 1, . . . , 64. To judge whether
parameters and states estimated match observations, the joint
probability P(Oduct, sduct|λduct, scc) is calculated using for-
ward recursions of the HMM inference algorithms. The duct
observation at time t , Oduct(t), depends on both scc and sduct
at time t − 1. The probability of the observation sequence,
Oduct,1, Oduct, 2, . . . Oduct,t (t ≤ T ) and sduct = k given the
model parameter λduct and scc = j can be derived from [25]

αduct,1|scc= j (k) = πduct,k|scc= j Lduct,k(Oduct,1|scc= j )

1 ≤ k ≤ M (14)

and

αduct,t+1|scc= j (k) =
[

M∑
i=1

αduct,t |scc= j (i)aik|scc= j

]

× Lduct,k(Oduct,t+1|scc= j )

1≤ t ≤ T − 1, 1 ≤ k ≤ M (15)

where Lduct,k = P(Oduct |μduct,k,�duct,k) is the probability of
observation Oduct given the mean vector μduct,k and covariance
matrix �duct,k for state k; the parameter aik|scc= j is the
probability of transiting from state i to state k given that the
cooling coil is in state j ; and M is the observation dimension
of the duct.

Valve getting stuck closed (scc = 2) causes an increase in
the supply airflow rate, and duct leakage (sduct = 2) before the
supply fan is likely to become worse. In other words, the duct
is more likely to transit to the faulty condition if the cooling
coil is under the faulty condition, as shown in Fig. 4.

To represent this relationship, an equation is shown as

a02,duct|scc=0 < a02,duct|scc=2 (16)

where the probability of transiting from sduct = 0 to sduct = 2
given scc = 0 is denoted by a02,duct|scc=0. Similarly, the duct
is more likely to be normal given scc = 0 than scc = 2, so that

a00,duct|scc=0 > a00,duct|scc=2. (17)

Similarly, dynamic HMMs of other components are
established.
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IV. FAULT DIAGNOSIS METHOD

In Section IV-A, a Gibbs sampling algorithm is developed
for dynamic HMMs to estimate parameters and states to
identify failure modes. In Section IV-B, a new coupled-SPC
method is developed to filter out false estimates, while con-
sidering fault propagation impacts. In Section IV-C, KF/UPF
are used to estimate parameters of physics-based models to
identify fault severities.

A. Gibbs Sampler to Estimate Parameters
and States of Dynamic HMMs

A Gibbs sampler is developed for dynamic HMMs.
To estimate parameters, prior distributions are assumed, and
posterior distributions are derived based on prior ones by
using maximum-a posteriori probability estimation. The Gibbs
sampler amounts to alternating between updating parameters
given observations and the hidden Markov state sequence, and
updating the state sequence conditional on observations and
parameters interactively until the iteration is converged [34].
For the sake of convenience, a cooling coil is used as an
example to show this process.

1) Update Parameters Given States and Observations: To
obtain the multivariate distribution of parameters, the prior
distributions are required [34]. For the initial state vector,
each element represents the probability of starting from a
certain state and their summation is one. Dirichlet distribution
represents the probabilities of K events, and the summation
of these probabilities is also one. Therefore, the initial vector
is assumed to follow a Dirichlet distribution:

πcc ∼ Dir(αcc,1, . . . , αcc,N ) (18)

where αcc,i , i = 1, . . . , N (N = 16) are distribution parame-
ters and are usually assumed to be one [34]. Based on the prior
distributions, posterior conditional distributions of parameters
are updated via Bayes’ rule

p(πcc|Occ) ∝
[

N∏
i=1

f (Oi,cc|πcc)

]
p(πcc) (19)

where p(πcc) is the prior distribution of parameter πcc; and f
(Oi,cc|πcc) is the probability of an observation of the cooling
coil Oi,cc when the parameter is πcc. The posterior distribution
p(πcc|Occ) is

πcc| . . . ∼ Dir(n1 + αcc,1, . . . , nN + αcc,N ) (20)

where parameter ni is the number of visits to state i at
time 1. Similarly, given prior distribution in [34], the posterior
distributions of state transition matrices are

(acc,i1, . . . , acc,iN)|ssf= j

∼ Dir(ncc,i1|ssf,= j + βcc,1, . . . , ncc,iN|ssf= j + βcc,N ) (21)

where ncc,mn|ssf,= j is the number of transitions from state m
to n in the state sequence, while the supply fan is in state j .
The observation mean corresponding to scc = i and ssf = j is
given as

μi |ssf= j . . . ∼ N

(
μ̄i |ssf= j ,

∑
i
|ssf= j

)
(22)

Algorithm 1: Backwards Messages of Dynamic HMMs
Input: transition potentials P , emission potentials L
Output: HMM backwards message F

for t = 1, 2, . . . , T do
Lt,i ← exp(−(ot − μi,ssf,t )�

−1
i,ssf,t

(ot − μi,ssf,t ))
return L
BT, :← 1
for t = T − 1, T − 2, . . . , 1 do

Bt,i ←∑N
j=1 Pi,ssf,t Bt+1, j Lt+1, j

return B

with

μ̄i |ssf= j =
∑̄

i

(
ni

−1∑
i

ōi +
−1∑
μ

ξ

)
|ssf= j (23)

ōi |ssf= j = 1

ni

ni∑
k=1

ok|ssf= j (24)

∑−1

i
|ssf= j =

( −1∑
μ

+ni

−1∑
i

)−1

|ssf= j . (25)

Based on the prior distribution [34], the posterior distribution
of the observation covariance matrix corresponding to scc = i
and ssf = j is the inverse Wishart distribution

∑
i

|ssf= j , . . . ∼ IW
(
V−1

i j + Qij ,mij + ni j
)

with (26)

Qij =
∑

k:sk=i

(Ok |ssf= j − μi |ssf= j )

× (Ok |ssf= j − μi |ssf= j )
′. (27)

The posterior distribution of the scale matrix V is

Vij | · · · ∼ IW

⎛
⎝G−1

i j +
−1∑
i j

,mij + hi j

⎞
⎠. (28)

Samplings are randomly generated from posterior distribu-
tions, and regarded as estimates of parameters. Similarly,
distributions of other components are obtained.

2) Update States Given Parameters and Observations:
Given the posterior distributions and observations, state
sequences of components are simulated. A backward
recursion-forward sampling method was developed to simulate
the state sequence [35]. In this method, the backward mes-
sage corresponding to the probability of observing remaining
observations given the state at each time is calculated by
backward recursion to simulate the state sequence. The method
developed in [35] does not consider fault impacts among
components, and is extended to dynamic HMMs. To compute
the backward message, the emission potential L representing
probabilities that observations belong to different distributions
is required. To capture the impacts, both means of observations
of the two components are used to calculate L. The backward
message of scc = i at time t , Bt,I , is calculated in Algorithm 1.

Given backward messages, probabilities of ending up in any
states are calculated. Based on these probabilities, samples of
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states are generated. Similarly, this Gibbs sampler is used to
estimate states for other components.

B. Identify Fault Severities and Failure Conditions

Some faults, including: 1) tube fouling; 2) dust on fins;
3) decrease in fan efficiency; and 4) duct leakage are related
to parameters that decrease or increase with faults. The fault
severities are expressed in terms of decrease or increase in
percentages of these parameters from their nominal values.
Since they cannot be directly measured, dynamic filtering
methods are used to estimate them based on measurements.
The cooling coil is used here as an example. In the model of
cooling coils, parameters dtube,in and Afin decrease with tube
fouling and dust on fins, and thus are considered as parametric
states. The state evolution is

xcc,t+1 = xcc,t + vcc,t (29)

where xcc,t = [dtube,in,t Afin,t ]T ; process noise
vcc,t = [vtube,tvfin,t ]T is assumed to be normally
distributed, and vtube,t and vfin,t are assumed to be
uncorrelated. To represent the relationship between states and
measurements, the measurement equation is derived from the
physics-based model shown in (9)

zcc,t = hcc(xcc,t )+ wcc,t with (30)

zcc,t = ṁa,mix · (Ea,mix − Ea,dis)/LMTD and (31)

hcc(xcc,t ) =
[

1

αa,eτ
+ R f + δtube

λtube
+ 1

αw(dtube,in)

]−1

× (Atube,out+ Afin) (32)

where wcc,t is the measurement noise that is normally dis-
tributed. To estimate the states of this nonlinear model, UPF
is used, since it is good at dealing with nonlinearities [36].
Since unscented KF adopts heavier tailed distributions, it
is used in UPF to generate new particles around previous
particles. Weights of these particles are calculated based on
their likelihoods. Estimates of parameters are approximated
by these particles per their weights. Similarly, to identify fault
severities of fans, the fan efficiency esf is estimated. Since the
fan model is a linear function with respect to esf , KF is used.
To identify fault severities of duct leakage, estimates of fault-
related parameters, e.g., the size of leaks, are required, but are
not evident in the existing physics-based models. To address
this issue, fault impacts between ducts and the supply fan
are taken advantage of. If the duct leakage occurs before the
supply fan, less electricity is required to maintain the airflow
rate, and thus is equivalent to an increase in esf . Similarly,
duct leakage after the supply fan is equivalent to a decrease
in esf . Thus, the parameter esf is estimated to identify fault
severities of duct leakage.

Other faults including: 1) stuck closed/open damper;
2) stuck closed/open valve; and 3) running at a fixed speed also
have severities. For instance, the stuck closed/damper may be
completely stuck, or move a little by following control with a
lag. The former is more severe than the latter. However, these
fault severities are not implemented in simulation data and
real data that were used to test our method. Thus, only their

failure conditions (but not their fault severities) are identified.
Measurements of damper blade angles, valve openings and fan
speed are used for identifying these failures.

C. Coupled-SPC to Filter False Alarms

A coupled-SPC is developed to filter out false alarms while
capturing fault propagation impacts among components. In this
method, a transition among normal and faulty conditions is
detected if n back-to-back estimates fall outside their control
limits [8]. If less than n points fall outside control limits, they
are regarded as false alarms. The parameter n is set to ensure
that the false alarm rate is below 0.01 while obtaining high
detection rate.

To show the procedure for selecting n, the cooling coil is
used as an example. The event that state estimates fall outside
their control limits at time t is denoted by Bt . The probability
of this event is given by

P(Bt−n+1, . . . , Bt |ssf,t−1)

= P(Bt−n+1)

t∏
j=t−n+2

P(B j |B j−1, ssf,t−1) (33)

where Markovian property is used and where the estimate of
the supply fan state at time t is denoted by ssf,t . The required
probability P(Bt−n+1|ssf,t−1) is calculated via

P(Bt−n+1|ssf,t−1)

= 1−
UCLwt−n+1∑
LCLwt−n+1

P(scc,t−n+1 = intt−n+1|ssf,t−1) (34)

where the state estimate of the cooling coil at time t is denoted
by ssf,t , and lower control limit (LCL) and upper control
limit (UCL) are the lower bound and the upper bound of
control limits, respectively. Integers within the control limits
UCL and LCL at time t are denoted by intt . To derive LCL
and UCL, estimates of component states are assumed to follow
discrete normal distributions [37]. Thus, the upper bound and
low bound of control limits are

[LCL,UCL] = [μ̄t − 2σ̄t , μ̄t + 2σ̄t ] (35)

where μ̄t is the mean of previous estimates, and σ̄t is the aver-
age standard deviation at time t . Given (34) and P(scc,t−1),
the probability P(Bt−n+1) can be calculated as

P(Bt−n+1) =
8∑

i=1

P(Bt−n+1|ssf,t−1) · P(ssf,t−1 = i). (36)

Similarly, the probability P(Bt |Bt−1) is given by

P(Bt |Bt−1, ssf,t−1)

= 1− P(B̄t |Bt−1, ssf,t−1)

= 1−
UCLwt∑
LCLwt

×
[
1−∑UCLwt−1

LCLwt−1

P(scc,t=intt |scc,t−1=intt−1,sfan,t−1)·P(scc,t−1=intt−1)
P(scc,t=intt )

]
[
1−∑UCLwt−1

LCLwt−1
P(scc,t−1 = intt−1)

]
/P(scc,t = intt )

.

(37)
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Fig. 5. State estimates of the cooling coil by using dynamic HMM.

Here, the probability P(scc,t = intt |scc,t−1 = intt−1, ssf,t−1)
represents the relationship between the cooling coil and the
supply fan, and is obtained from the state transition matrices
of dynamic HMMs. Based on (36) and (37), (33) can be
calculated to determine n given the false alarm rate.

V. EXPERIMENTAL RESULTS

Our fault diagnosis method is implemented in MATLAB
and was run on a laptop with Intel Core i7-6920HQ 2.9 GHz
processor and 32 GB of memory. To test our method, both
simulation data and real data are used. In Example 1, a small
building with two rooms and a VAV AHU is simulated via two
simulation packages, including DesignBuilder [38] and Ener-
gyPlus [39]. By using DesignBuilder, the building and HVAC
structures were established visually. The rough simulation
model was then imported in EnergyPlus to select appropriate
component models and change parameters to simulate faults.
Example 1 shows that: 1) failure modes are identified by
dynamic HMMs; 2) dynamic HMMs perform better than
HMMs; and 3) fault severities are identified by estimating
parameters related to faults. In Example 2, the method is
evaluated using data from ASHRAE project 1312-RP [3]. This
example illustrates that: 1) failure modes and failure conditions
are identified; 2) false alarms are filtered out by our coupled-
SPC rule; and 3) our method performs better than existing
methods.

Example 1: The simple building has two 95.517 m3 rooms.
In the building, tube diameter dtube,in is set to be 0.01445 m;
the outside surface area of fins is 43.59555 m2; the fan
efficiency is 0.7. Two gradual faults of cooling coils are
considered, including: 1) tube fouling simulated from 8/20
to 8/26 and 2) dust on fins simulated from 8/26 to 9/1.
Additionally, a decrease in fan efficiency is simulated from
9/2 to 9/7. The data are divided into two groups. The first
group (2/3 of the data) is used for training and the other one
is used for testing.

A. Identify Gradual Failure Modes and Fault
Severities of Cooling Coil

By using the dynamic HMM, states of the cooling coil
are estimated, as shown in Fig. 5. In this figure, actual
states are marked by black dashed lines, and estimates of
states are marked by blue stars. To make the figure clear to
read, control limits obtained by coupled-SPC are not shown.
From 8/20 to 8/26, the state estimates are “8” corresponding
to ( fcc,tube, fcc,fin, fcc_vlv,sc, fcc_vlv,so) = “1000,” which
means that tube fouling occurs but other faults do not occur.

Fig. 6. Estimates of the tube inside diameter.

Fig. 7. Estimates of the fin surface area.

Between 8/27 and 9/1, there are multiple actual states falsely
estimated as “0” (normal), but their actual states are “4”
(Dust on fins). This case is called false positive (FP) for
the normal condition. Additionally, during 9/7, multiple actual
states are “0,” but they are estimated as “4” falsely. This case
is called false negative (FN). These false estimates are caused
by measurement noise. To measure fault diagnosis accuracy
based on them, F-measure is used [22]

F-measure = �Fb/N f with (38)

Fb = 2 · precision · recall/(precision+ recall) (39)

precision = TP/(TP+ FP) and

recall = TP/(TP+ FN) (40)

where N f is the number of failure modes; variable TP is
true positive and TN is true negative, which represent true
classifications. The higher the F-measure is, the better the
diagnosis performance is. If the relationship between the
cooling coil and the fan is considered, F-measures of fcc,tube
and fcc,fin calculated based on (38) are 0.9695 and 0.9595.

To identify fault severities of the cooling coil, UPF is used
to estimate tube inside diameter dtube,in based on (29)–(32),
and estimates are shown in Fig. 6.

In this figure, the actual tube inside diameter is marked
by black dashed lines. Its estimates are represented by blue
stars. The estimates gradually decrease with faults. Similarly,
estimates of the fin surface area Afin are estimated as shown
in Fig. 7, and gradually decrease with faults. Thus, given these
estimates, severities of the two faults are identified.

B. Dynamic HMMs Perform Better Than HMMs

If the HMM is used without considering the fault impacts
among components, states of the cooling coil are estimated,
as shown in Fig. 8. The F-measures of fcc,tube and fcc,fin are
0.9428 and 0.9156, which are smaller than those obtained by
using dynamic HMMs (0.9695 and 0.9595). Thus, dynamic
HMMs perform better than HMMs, since they represent state
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Fig. 8. State estimates of the cooling coil by using HMM.

Fig. 9. Fan estimates by dynamic HMM (decreases 2.9% per day).

Fig. 10. Fan estimates by dynamic HMM (decreases 7.1% per day).

transitions more accurately than HMMs by considering fault
propagation.

C. Identify Gradual Failure Mode and Fault
Severities of Supply Fan

Decrease in supply fan efficiency is simulated from
9/2 to 9/7. The fan efficiency was reduced by 2.9% per day.
The fan states are estimated using the dynamic HMM, as
shown in Fig. 9. Since the degradation rate is small, there
is insignificant difference between the normal condition and
the faulty condition when the fault just occurs; however, the
fault is detected after 1 day by the presented method. When the
degradation rate is increased to 7.1%, fan states are estimated,
as shown in Fig. 10. The fault is immediately detected with
F-measure = 1 due to moderate decrease in fan efficiency.

As shown in Fig. 11, efficiency esf decreases by 7.1%
per day. The estimate decreases with the fan fault, and it
determines the severity of supply fan fault.

Example 2: In ASHRAE project 1312-RP, AHU-A, and
AHU-B were calibrated to be identical [3]. AHU-B is fault-
free, and multiple faults were implemented in AHU-A during
spring, summer, and winter. This paper focuses on cooling
mode, thus summer data from 8/19 to 9/8 are used, and 2/3
of the data is used for training and the 1/3 of the data is used
for testing. Detailed description of data is in [3].

Fig. 11. Estimates of the supply fan efficiency by KF.

Fig. 12. State estimates of the EA damper.

Fig. 13. State estimates of the OA damper.

Fig. 14. OA damper opening (%).

D. Diagnose Faults of EA Damper

The damper was stuck fully open and closed on 8/20
and 8/21. By using the dynamic HMM, states of the EA
damper are estimated for isolating the two failure modes, as
shown in Fig. 12. F-measures of these two failure modes are
calculated as 0.9981 and 1.

E. Diagnose Faults of OA Damper

Similarly, by using the dynamic HMM, states of the
OA damper are estimated, as shown in Fig. 13. Based on
the estimates, stuck closed damper and leakage are diagnosed
with F-measures equaling 0.9992 and 0.9083. Their failure
conditions are identified based on OA damper opening, as
shown in Fig. 14.
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Fig. 15. State estimates of the cooling coil.

Fig. 16. Estimates of duct states.

Fig. 17. Estimates of supply fan efficiency by KF.

F. Diagnose Faults of Cooling Coil

States of the cooling coil are estimated by using the dynamic
HMM as shown in Fig. 15. F-measures of valve stuck open
and valve stuck closed are both 1. Failure conditions are
identified based on the cooling coil valve opening.

G. Diagnose Faults of Ducts

Duct states are estimated by using the dynamic HMM
to identify leakage before/after the supply fan, as shown in
Fig. 16. F-measures of the two failure modes are 0.9984 and
0.8550, respectively.

As discussed in Section IV-B, supply fan efficiency esf
reflects the degree of duct leakage. As shown in Fig. 17, the fan
efficiency decreases when the leakage occurs after the fan and
increases when the leakage occurs before the fan. Thus, the
decrease/increase percentage of the fan efficiency determines
the fault severities of ducts.

H. Diagnose Faults of Return Fan

Fan states are estimated by using the dynamic HMM, as
shown in Fig. 18.

F-measures of running at a fixed speed and complete failure
are 1 and 0.9997, respectively. Their failure conditions are
identified based on measurements of the fan speed.

Fig. 18. State estimates of the return fan.

Fig. 19. False estimates of EA damper are filtered out.

I. Filter Out False Alarms

By using our coupled-SPC rule, as shown in Fig. 19, LCLs
and UCLs are obtained based on previous estimates, and
are marked by red lines. Most of the time, estimates have
no change, and their standard deviations are 0. Thus, LCL,
UCL, and estimates have the same value and appear as one.
Components transit among normal and faulty conditions, and
the transitions are detected if n back-to-back points fall outside
their control limits. In the figure, there are one and three
estimates that fall outside their control limits in sequence.
Based on (33), the parameter n is calculated as six. Thus,
these estimates are deemed false and are filtered out.

J. Comparison Between Our Method and Others

Many methods, e.g., SVM, decision tree, Bayesian network
and ANN, have been developed to diagnose faults in AHU
systems. To evaluate our method, the F-measure of each
failure mode is compared with those of other methods based
on ASHRAE project 1312-RP data as shown in Table I.

In this table, it can be found that the average F-measure
of our method is better than the SVM [22] and the
decision tree [16]. Additionally, as discussed in [22], the
F-measure of their method is 0.923 that is significantly better
than other methods, e.g., LibSVM, Naïve Bayes, radial basis
function network, Bayesian network, NN and random forest
decision tree. Therefore, the performance of our method is
also better than these methods. Since our problem is not
NP-hard, the computational time is not considered. Our
method performs better because: 1) dynamic HMMs use differ-
ent state transitions matrices depending on other components,
thus more relevant knowledge on dependent fault propagation
is considered; 2) residuals of different physics-based models
are considered as HMM observations, and they are directly
related to faults, thereby reflecting the fault impacts better
than variables; and 3) coupled-SPC is developed to filter
out false alarms. Additionally, compared with other methods,
our method not only identifies failure modes, but also fault
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TABLE I

F -MEASURES OF EACH FAILURE MODE OBTAINED
BY OUR METHOD AND OTHERS

severities. Thus, it helps maintenance crews to know which
faults have occurred, how critical they are, and be guided in
the repair process to improve the HVAC system availability.

VI. CONCLUSION

This paper presented a method for integrating dynamic
HMMs, KF/UPF and coupled-SPC to identify failure modes
and fault severities of air handling systems, while considering
fault propagation impacts among components. Contributions
of our work are: 1) developing a method to capture the fault
propagation impacts across components to identify the failure
modes; 2) opening an effective way to measure and identify
fault severities of devices; and 3) deriving a coupled-SPC to
filter out false alarms, while capturing the cross-component
impacts. For a few coupled components, our method performs
well. However, if the method is concerned with many coupled
components, high-computational effort is required. In the
future, our method will be extended to faults of many coupled
components, e.g., VAV boxes. Additionally, sensor faults will
be investigated.
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