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Abstract—Grid integration of wind generation is challenging in
view of wind uncertainties and possible transmission congestions.
Without considering transmission, a stochastic unit commitment
problem was solved in our previous work by modeling aggregated
wind as a Markov chain instead of scenarios for reduced com-
plexity. With congestion, wind generation at different locations
cannot be aggregated and is modeled as a Markov chain per wind
node, and the resulting global states are a large number of com-
binations of nodal states. To avoid explicitly considering all such
global states, interval optimization is synergistically integrated
with the Markovian approach in this paper. The key is to divide
the generation level of a conventional unit into a Markovian
component that depends on the local state, and an interval com-
ponent that manages extreme nonlocal states. With appropriate
transformations, the problem is converted to a linear form and is
solved by using branch-and-cut. Numerical results demonstrate
that the over conservativeness of pure interval optimization is
much alleviated, and the new approach is effective in terms
of computational efficiency, simulation cost, and solution fea-
sibility. In addition, solar generation shares a similar uncertain
nature as wind generation, and can thus be modeled and solved
similarly.

Index Terms—Interval optimization, Markov decision process,
unit commitment (UC), wind generation.

I. INTRODUCTION

W IND ENERGY can help to reduce the dependence
on fossil fuels and greenhouse gas emissions, and the

global wind industry has been growing rapidly. In 2012, nearly
45 GM of wind capacity was brought online, and the global
wind capacity was increased by 19% to almost 283 GW [2].
The U.S. Department of Energy sets the target to increase
wind energy’s contribution to 20% of electricity by 2030 [3].
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Wind integration involves wind turbine technologies,
power electronics, power systems, and market design issues.
Related fundamentals of power systems include long-term
planning, improved forecasting, operational processes and
tools, and smart grid technologies [4].

A critical operational process is day-ahead unit commit-
ment (UC) in which the independent system operator (ISO)
commits conventional units to meet the forecasted demand of
the following day while satisfying individual unit and trans-
mission constraints. UC with high levels of wind generation,
however, is challenging in light of the fact that wind gener-
ation is uncertain by nature and transmission congestions are
possible. A straight-forward way to address uncertainty in this
process is the deterministic approach that meets the expected
system demand and adjusts reserve levels based on hourly
standard deviations (STDs) of wind generation [5], [6]. Since
wind uncertainties are not explicitly captured, solutions may
be infeasible for certain wind generation realizations [7].

Besides the deterministic approach, several other approaches
have been presented in the literature, including stochastic
programming, robust optimization, and interval optimization.
Stochastic programming optimizes the expected cost over the
probability distribution of uncertainties, with wind uncertain-
ties commonly modeled by representative scenarios [8]–[15].
A scenario contains a trajectory of realizations over all hours
in the time horizon, and the number of scenarios increases
exponentially with the number of hours. It is difficult to select
an appropriate number of scenarios to balance modeling accu-
racy, solution feasibility, and computational efficiency. Robust
optimization finds the optimal solution of the worst-case real-
ization in a given uncertainty set to ensure solution feasibility
against all possible realizations, and may lead to conserva-
tive solutions [7], [16], [17]. In addition, the two-stage robust
model in [7] is nonlinear and computationally challenging.
Interval optimization is another approach for linear prob-
lems with uncertainties modeled by intervals [14], [18]. The
approach captures bounds of uncertain wind generation in
system demand and transmission capacity constraints. Other
realizations within these bounds will be guaranteed to be
feasible. The effective use of interval arithmetic makes this
approach computationally efficient. However, its results remain
conservative. The literature is reviewed in Section II.

To overcome the difficulties of existing approaches, a pure
Markovian approach was developed in our previous work to
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solve the day-ahead stochastic UC problem without transmis-
sion constraints [19]. Wind generation from all wind farms
was aggregated and modeled as a Markov chain with state
transition matrices established based on historical data. The
UC problem was then formulated as a stochastic optimiza-
tion problem based on states instead of scenarios. A state
represents the wind generation value at a particular hour and
captures past information probabilistically. Because the num-
ber of states increases linearly with the number of hours, the
complexity of the problem is significantly reduced when com-
pared to scenario-based formulations. With state transitions
linearly formulated, the problem was effectively solved by
using the branch-and-cut method [20], [21].

In this paper, the pure Markovian approach in [19] is
extended to consider transmission constraints. Since possible
congestions imply that wind generation at different locations
needs to be treated separately, wind generation is modeled
as a Markov chain for each wind node.1 There are multi-
ple Markov chains in a transmission network. These chains
are assumed independent for simplicity. The resulting global
states are a large number of combinations of local/nodal states.
Dispatch decisions of pure Markov-based optimization [19]
should explicitly depend on the global states. To reduce this
complexity, an approach that synergistically incorporates both
Markov-based optimization and interval optimization is devel-
oped. The new hybrid Markovian and interval approach has
the following three main contributions.

1) To make use of information from local states with-
out considering all possible global states, the generation
level (dispatch decision) of a conventional unit is divided
into two components: the Markovian component that
depends on the local state and the interval component
that manages extreme nonlocal states.

2) Constraints are innovatively formulated to guarantee
solution feasibility for all possible realizations without
much complexity. Especially, the effective use of local
wind states alleviates the over conservativeness of inter-
val optimization in transmission capacity and ramp rate
constraints.

3) By analyzing the monotonicity of Markovian nodal
injections, the problem is transformed into a linear form
and is efficiently solved by using branch-and-cut.

Section III models distributed wind generation, presents
pure Markov-based optimization, formulates the new hybrid
Markovian and interval approach, and discusses two meth-
ods to reduce the wind uncertainty by considering wind
power forecasts or incorporating spatial correlations of wind
farms. Section IV develops the solution methodology, and
compares the complexity and conservativeness of the new
approach with those of pure Markov-based optimization and
pure interval optimization. Section V tests a simple prob-
lem, the IEEE 30-bus system, and the IEEE 118-bus system.
Numerical results demonstrate that our approach alleviates the
over conservativeness of interval optimization and is effective

1The Markovian model was validated in [22] for day-ahead and real-time
wind generation series.

in terms of computational efficiency, simulation cost, and
solution feasibility.

Although the problem solved in this paper is day-ahead
UC, the new formulation is general and can model real-time
UC as well. In addition, solar generation can be modeled and
solved in ways similar to those for wind generation. The rea-
son is that even though wind and solar have different diurnal
patterns—peak wind generation usually occurs in the morning
and evening while that of solar usually occurs in the middle
of a day [23], they share the similar uncertain nature.

II. LITERATURE REVIEW

This section reviews stochastic programming, robust opti-
mization, pure interval optimization, and hybrid approaches.

A. Stochastic Programming

It optimizes the expected cost over the probability dis-
tribution of uncertainties, with wind uncertainties com-
monly modeled by using representative scenarios [8]–[15].
A single set of UC decisions are determined to satisfy
all the selected scenarios, together with multiple sets of
dispatch decisions, one for each scenario. The objective
is to minimize the commitment cost and the expected
dispatch cost. Decomposition methods, such as Benders’
decomposition [9], [14] or Lagrangian relaxation [13], [15],
are used to solve stochastic UC problems.

Typically, wind generation or wind speed at each hour is
assumed to follow a distribution to generate scenarios. Each
scenario represents a sequence of realizations of uncertain-
ties over the optimization horizon (e.g., 24 h). As a result,
the number of scenarios can be extremely large even when
dealing with discrete probability distributions. Therefore,
scenario reduction techniques are commonly used to elim-
inate very low-probability scenarios, to aggregate “close”
scenarios [24], [25], or to measure the impact of each scenario
on the objective function [26]. The reduced number of scenar-
ios is then considered in the stochastic UC problem. In general,
it is difficult to select an appropriate number of scenarios to
balance modeling accuracy, solution feasibility, and compu-
tational efficiency. To refine the number of scenarios while
retaining high-impact rare events, 11 criteria (e.g., the mini-
mum possible wind output throughout the day) are discussed
to select scenarios [13]. These criteria, however, are heuristic
in nature based on daily patterns of wind, so important rare
events of abnormal days may not be captured. Additionally,
it is not clear how to extend this method to networks with
multiarea wind production and transmission constraints [15].
The alternative selection method presented in [15] ignores rare
events with questionable validity.

B. Robust Optimization

It seeks an optimal solution feasible for all possible real-
izations within a predetermined uncertainty set. With uncer-
tainties modeled by the uncertainty set without probabilistic
information, it optimizes against the worst-case realization to
ensure feasibility of all possible realizations [7], [16], [17].
The worst-case design avoids the combinatorial complexity
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caused by nodal uncertainties when all possible realizations are
considered. The robust UC model in [7] has two stages. The
first stage is to determine the optimal UC decisions feasible for
all possible realizations by using Benders decomposition; and
the second is to select dispatch decisions against the worst-case
realization given in UC decisions of the first stage by using
outer approximation. Numerical experiments demonstrate that
this approach is insensitive to different underlying probability
distributions of wind generation. However, optimization of the
worst-case realization leads to a conservative solution, which
is a common concern of the robust optimization approach. In
addition, the two-stage robust model in [7] is nonlinear and
computationally challenging.

C. Pure Interval Optimization

It is another approach for linear problems with uncertain-
ties modeled by closed intervals [14], [18]. Interval arithmetic
captures bounds of uncertain wind generation in system
demand and transmission capacity constraints, and a set of UC
decisions are required to be feasible for all these bounds [18].

Wind generation for node i at hour t is denoted as
p̃W

i (t) (MW), and is assumed to be within an interval
[pW

i
(t), p̄W

i (t)]. System demand constraints require that total
wind generation plus total conventional generation equal sys-
tem demand for each hour. Based on [18, eq. (20)], the lower
bound of total wind generation happens at the minimum real-
ization m (when the outputs of all wind farms are at their lower
limits), while the upper bound occurs at the maximum real-
ization M. UC decisions of conventional units are required to
meet these bounds in system demand constraints, so that any
other realizations within these bounds will be satisfied. For
example, two wind farms are in a transmission network. Wind
farm 1 can generate from 10 to 40 MW, wind farm 2 can gen-
erate from 20 to 50 MW, and system demand is 200 MW. The
total wind generation is from 30 to 90 MW, and the resulting
net system demand (= system demand − wind generation)
is from 110 to 170 MW. If a set of UC decisions can meet
the minimum net system demand at 110 MW and the maxi-
mum net system demand at 170 MW, then it will be able to
meet any net system demand within them. Such minimum and
maximum system demand constraints are

∑

i

∑

k

pi,k,m(t) =
∑

i

pL
i (t) −

∑

i

pW
i

(t), ∀t (1)

∑

i

∑

k

pi,k,M(t) =
∑

i

pL
i (t) −

∑

i

pW
i

(t), ∀t (2)

where pi,k,m(t) is the dispatch decision of conventional unit k
at node i (or uniti,k) at time t under the minimum wind realiza-
tion, pi,k,M(t) under the maximum wind realization, and pL

i (t)
is the demand at node i at time t.

Transmission capacity constraints imply that the power flow
through line l at time t, denoted as fl(t), cannot exceed its
transmission capacity f max

l , that is

− f max
l ≤ fl(t) ≤ f max

l , ∀l,∀t. (3)

In dc power flow, a line flow is a linear combination of
nodal injections weighted by generation shift factors (GSFs).

When the dispatch decision of uniti,k is pi,k(t), the power
flow is

fl(t) =
∑

i

ai
l

(
∑

k

pi,k(t) + p̃W
i (t) − pL

i (t)

)
, ∀l,∀t (4)

where al
i is the GSF representing the sensitivity of fl(t)

with respect to the nodal injection (= nodal generation −
nodal demand) from node i. Similar to system demand con-
straints (1) and (2), the bounds of wind uncertainties through
each line are captured based on [18, eqs. (16) and (19)]

∑

i

(
ai

l

∑

k

pi,k(t)

)

≥ −f max
l − min

[
∑

i

ai
l

(
p̃W

i (t) − pL
i (t)

)
]
, ∀l,∀t (5)

∑

i

(
ai

l

∑

k

pi,k(t)

)

≤ f max
l − max

[
∑

i

ai
l

(
p̃W

i (t) − pL
i (t)

)
]
, ∀l,∀t. (6)

A difference is that GSFs can be positive or negative.
Nevertheless, since only inputs are contained on the right-hand
sides of (5) and (6), interval arithmetic can be used to com-
pute these bounds before optimization. As long as one feasible
solution can be found within bounds, all transmission capac-
ity constraints through line l at time t will be feasible. Since
system demand constraints have to be satisfied at the same
time, two sets of dispatch decisions {pi,k,m(t)} and {pi,k,M(t)}
are considered in (5) and (6).

Ramp rate constraints imply the change of generation level
cannot exceed the unit’s ramp rate between two consecutive
hours. These constraints [18, eqs. (21) and (22)] are required
to be feasible for the transitions of wind outputs between
any pairs among the minimum, maximum, and the expected
realization that is considered in the objective function. The
objective function in [27] uses the cost of the worst-case real-
ization as that considered in robust optimization. The resulting
optimization solutions may be conservative. Alternatively, the
expected cost of all realizations could be considered. Due to
the lack of probabilistic information, the cost of the expected
realization is considered for simplicity as the objective func-
tion in [18, eq. (1)]. In this case, the impacts of extreme
realizations are not explicitly captured. The effective use of
interval arithmetic makes this approach computationally effi-
cient. However, results are still conservative. For the rest of
this paper, pure interval optimization refers to that in [18].

In addition to the approaches reviewed above, there are
also hybrid stochastic and robust/interval approaches. A hybrid
stochastic and robust approach [28] considers dispatch deci-
sions and constraints from both stochastic programming and
robust optimization at the same time, and the objective func-
tion is a weighted sum of the costs from both approaches. This
approach provides more robust UC decisions than stochas-
tic programming and a lower simulation cost than robust
optimization. Its robust optimization part remains nonlinear.
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A hybrid stochastic/interval approach [29] considers decision
variables, constraints and the cost from stochastic program-
ming at the first few hours, and then switch to pure interval
optimization at the remaining hours. This approach pro-
vides a lower simulation cost than stochastic programming or
pure interval optimization. Its pure interval optimization part
remains conservative.

III. PROBLEM FORMULATION

Section III-A models distributed wind generation as
a Markov chain per wind node, and describes the UC problem.
Section III-B presents pure Markov-based optimization with
a few main formulas, and discusses its complexity. To reduce
this complexity, Section III-C formulates the new hybrid
Markovian and interval approach. Section III-D discusses two
methods to reduce the wind uncertainty by considering wind
power forecasts or by incorporating spatial correlations of
wind farms.

A. Wind Model and the UC Problem

1) Markovian Model of Nodal Wind Generation and Global
State: When transmission constraints are considered, wind
generation at different locations cannot be aggregated and must
be treated separately. For simplicity, wind generation at differ-
ent network nodes is assumed to be modeled as independent
Markov chains. Let i denotes a node in the network with I
being the total number of nodes. Based on [19], wind gener-
ation at node i is discretized into Ni states. These states are
arranged in the ascending order of wind generation values. The
transition probability from state ni’ to ni is based on historical
data

πn′
ini

= observed transitions from state n′
i to ni

occurrences of state n′
i

. (7)

Denote wind generation of state ni at time t as pW
i,ni

(t) (MW).
Its probability, denoted as ϕni(t), can be computed by using
probabilities of previous states and transition probabilities

ϕni(t) =
Ni∑

n′
i=1

πn′
ini

ϕn′
i
(t − 1). (8)

A global state at time t, denoted as g, is a combination of
wind generation states at all nodes, that is

g ≡ [n1, n2, . . . , nI]
T . (9)

Its probability at time t is denoted as ϕg(t) and can be com-
puted as the product of probabilities of all nodal states. Given
that each node has up to N possible states at time t, the num-
ber of possible global states can be NI , which is extremely
large for practical problems.

2) UC Problem Setup: Building on [19] and [30], let Ki

units at node i be indexed by (i, k) (1 ≤ k ≤ Ki) and L trans-
mission lines be indexed by l(1 ≤ l ≤ L) in a day-ahead
energy market over 24 (T) hours indexed by t(1 ≤ t ≤ T).
Unit k at node i has an increasing convex piecewise linear
generation cost function Ci,k( pi,k(t)) ($) for multiple genera-
tion blocks, a start-up cost Si,k ($/Start), a no-load cost SNL

i,k ($),

minimum and maximum generation levels pmin
i,k (MW) and

pmin
i,k (MW), respectively, a ramp rate Ri,k (MW/h), and min-

imum up and down times (h). The demand is assumed to be
given and is denoted by pL

i (t) (MW) for node i at hour t. Line
l has a transmission capacity f max

l (MW). The stochastic UC
problem is to minimize the total cost by selecting a single set
of UC decisions and multiple sets of dispatch decisions of con-
ventional generators over a 24-h horizon. For the conventional
uniti,k, the UC decision at time t is denoted by the binary vari-
able xi,k(t), with “1” representing online and “0” offline. The
start-up decision is denoted by the binary decision variable
ui,k(t), with 1 representing start-up and 0 otherwise. Different
sets of dispatch decisions will be made in pure Markov-based
optimization to be presented in Section III-B and in the hybrid
Markovian and interval approach in Section III-C.

B. Pure Markov-Based Optimization and Its Complexity

Dispatch decisions of the pure Markovian approach [19],
denoted as pi,k,g(t) for uniti,k at time t at global state g, explic-
itly depend on the global states. The objective is to minimize
the commitment cost plus the expected dispatch cost, that is

min
T∑

t=1

I∑

i=1

Ki∑

k=1

⎧
⎨

⎩

M∑

g=m

[
ϕg(t)Ci,k

(
pi,k,g(t)

)]

+ ui,k(t)Si,k + xi,k(t)S
NL
i,k

⎫
⎬

⎭ (10)

where m represents the minimum global state where all wind
farms are at their minimum possible state, and M the maximum
global state. System demand constraints (11) and transmission
capacity constraints (12) are satisfied for all possible global
states
∑

i

∑

k

pi,k,g(t) +
∑

i

pW
i,g(t) =

∑

i

pL
i,g(t), ∀t,∀g (11)

−f max
l ≤ fl,g(t) ≤ f max

l , ∀l,∀t,∀g. (12)

In the above equation, fl,g(t) denotes the power flow though
line l at time t at global state g and is represented based on
GSFs as

fl,g(t) =
∑

i

[
ai

l ·
(
∑

k

pi,k,g(t) + pW
i,g(t) − pL

i,g(t)

)]
, ∀l,∀t,∀g.

(13)

Individual unit constraints related to dispatch decisions include
generator capacity constraints and ramp rate constraints.
Generator capacity constraints are satisfied for possible global
states. Ramp rate constraints are satisfied for possible state
transitions from hour t − 1 to t, that is

pi,k,g′(t − 1) − Ri,k ≤ pi,k,g(t) ≤ pi,k,g′(t − 1) + Ri,k

∀(g′, g
) ∈ {(g′, g

)∣∣ϕg′(t) > 0, πg′g > 0
}

(14)

where g’ denotes the global state at hour t − 1. Since its dis-
patch decisions explicitly depend on a large number of possible
global states, the pure Markov-based approach is very complex
and thus not practical.
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C. Hybrid Markovian and Interval UC Formulation

To reduce the dimension of the pure Markov-based stochas-
tic UC problem, a synergistic combination of Markov-based
optimization and interval optimization is developed.

1) Local and Nonlocal States and Dispatch Decisions: To
avoid making dispatch decisions explicitly dependent on all
possible realizations, our key idea is to divide the generation
level (dispatch decision) of conventional uniti,k at time t into
two components: pM

i,k,ni
(t) denotes the Markovian generation

depending on local wind state ni, and pI
i,k,n̄i

(t) denotes the
interval generation depending on extreme nonlocal states n̄i.
For node i, its local state is the nodal wind state ni. Its min-
imum possible local state is represented as min ni, and its
maximum as max ni. Note that, min ni may not be 1 at time t,
since state 1 at node i may have zero probability. Its extreme
nonlocal states n̄i are the minimum nonlocal state mi and the
maximum nonlocal state Mi, i.e., n̄i ∈ {mi, Mi}. The minimum
nonlocal state is a combination of possible minimum states of
other nodes, that is

mi ≡ [
min n1, . . . , min ni−1, min ni+1, . . . , min nI

]T
. (15)

The maximum nonlocal state Mi is a combination of maximum
possible states of other nodes, that is

Mi ≡ [
max n1, . . . , max ni−1, max ni+1, . . . , max nI

]T
. (16)

In simulation, where only one global state is realized at an
hour in each scenario, one level of conventional generation will
be obtained. This generation level will be within the ranges
delineated by sums of corresponding Markovian generation
and interval generation levels.

In addition, the dispatch decisions corresponding to the
expected realization E (where all wind farms are at their
expected outputs), denoted as pi,k,E(t), will also be considered
in the objective function to be discussed later. The constraints
for the expected realization can be easily included as one
set of deterministic constraints with the same set of com-
mitment decisions {xi,k(t)} and one set of dispatch decisions
{pi,k,E(t)}. These constraints are not presented for concise-
ness. Constraints corresponding to the Markovian and interval
dispatch decisions are formulated as follows.

2) Nodal Level Analysis: As a result of dividing the gener-
ation level, each nodal or unit-level constraint considers these
two components. In particular, we have the following.

a) Generator capacity constraints: If the unit is commit-
ted, its generation level is within the minimum and maximum
values; otherwise, its generation level should be zero

xi,k(t)p
min
i,k ≤ pM

i,k,ni
(t) + pI

i,k,n̄i
(t)

≤ xi,k(t)p
max
i,k ∀i,∀k,∀t,∀ni ∈ �i(t),∀n̄i (17)

where �i(t) is the set of possible wind states at node i at
hour t (�i(t) ≡ {ni|ϕni(t) > 0}). For the rest of this paper, the
expression, ni ∈ �i(t), is omitted.

b) Nodal injections: The nodal injection at node i is wind
generation plus conventional generation minus demand, that is

Pi,ni,n̄i(t) = pW
i,ni

(t) +
∑

k

(
pM

i,k,ni
(t) + pI

i,k,n̄i
(t)
)

− pL
i (t), ∀i,∀t,∀ni,∀n̄i. (18)

3) System Demand Constraints: Based on (1) and (2)
[18, eq. (20)] as reviewed in the pure interval optimization part
of Section II, as long as the minimum and maximum global
states are satisfied, all other realizations will satisfy system
demand at time t. In the minimum global state m, we have

∑

i

∑

k

pI
i,k,mi

(t)

=
∑

i

(
pL

i (t) − pW
i,min ni

−
∑

k

pM
i,k,min ni

(t)

)
, ∀t. (19)

Similarly, system demand constraints at the maximum global
state M are

∑

i

∑

k

pI
i,Mi

(t)

=
∑

i

(
pL

i (t) − pW
i,max ni

−
∑

k

pM
i,k,max ni

(t)

)
, ∀t. (20)

4) Transmission Capacity Constraints: DC power flow is
used since it is sufficient for the UC purpose, and a line
flow is a linear combination of nodal injections weighted by
GSFs. Since GSFs can be positive or negative, the selec-
tion of extreme flow levels is more complicated than system
demand. Therefore, the terms in the nodal injection in (18) are
regrouped to a Markovian nodal injection consisting of those
related to local states

PM
i,ni

(t) ≡ pW
i,ni

(t) +
∑

k

pM
i,k,ni

(t) − pL
i (t), ∀i,∀t,∀ni (21)

and an interval nodal injection related to nonlocal states

PI
i,n̄i

(t) ≡
∑

k

pI
i,k,n̄i

(t), ∀i,∀t,∀n̄i. (22)

For line l at time t, the flow has two parts corresponding to
the two components of nodal injections from (21) and (22).

Wind uncertainties are contained in Markovian nodal injec-
tions, and bounds of Markovian flow levels are selected based
on signs of GSFs and corresponding extreme Markovian nodal
injections, that is

∑

i:ai
l>0

[
ai

l · min
ni

PM
i,ni

(t)

]
+
∑

i:ai
l<0

[
ai

l · max
ni

PM
i,ni

(t)

]

≤ f M
l,n1,...,nI

(t) =
∑

i

[
ai

l · PM
i,ni

(t)
]

≤
∑

i:ai
l>0

[
ai

l · max
ni

PM
i,ni

(t)

]

+
∑

i:ai
l<0

[
ai

l · min
ni

PM
i,ni

(t)

]
, ∀l,∀t. (23)

The min/max operations to select extreme Markovian nodal
injections are nonlinear and will be transformed to linear forms
in Section IV-A.
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The two sets of interval nodal injections from (19) and (20)
can be directly translated to two interval flow levels, that is

f I
l,m(t) =

∑

i

[
ai

l · PI
i,mi

(t)
]
, ∀l,∀t (24)

f I
l,M(t) =

∑

i

[
ai

l · PI
i,Mi

(t)
]
, ∀l,∀t. (25)

These two interval flow levels are required to satisfy the
two bounds of Markovian flow levels in transmission capac-
ity constraints as formulated in (26) and (27), so that other
realizations will satisfy transmission capacity constraints

f I
l,g(t) ≥ −f max

l (t) −
∑

i:ai
l>0

[
ai

l · min
ni

PM
i,ni

(t)

]

−
∑

i:ai
l<0

[
ai

l · max
ni

PM
i,ni

(t)

]
, ∀l,∀t,∀g ∈ {m, M} (26)

f I
l,g(t) ≤ f max

l (t) −
∑

i:ai
l>0

[
ai

l · max
ni

PM
i,ni

(t)

]

−
∑

i:ai
l<0

[
ai

l · min
ni

PM
i,ni

(t)

]
, ∀l,∀t,∀g ∈ {m, M}. (27)

Constraints (26) and (27) are different from those in pure
interval optimization (5) and (6) [18, eqs. (16) and (19)].
Pure interval optimization selects extreme combinations of
wind generation (uncertain parameters), while (23) selects
extreme combinations of Markovian nodal injections,
which involve wind generation, the Markovian generation
(decision variables), and nodal demand.

It is interesting to note that the bounds of Markovian
flows in (23) are correlated with bounds of system demand,
since nodal wind generation appears in both types of bounds.
Thus, not all bounds will happen at the same realization, and
interval generation feasible for all bounds are conservative.
Nevertheless, Markovian generation in (21) can accommodate
local uncertainties that appear in flows in (23), and exam-
ple 1 in Section V will illustrate that the conservativeness in
transmission of pure interval optimization is much alleviated.

An issue that also exists in pure interval optimization is
that results are sensitive to the selection of the slack bus, and
the reason will be explained in Appendix A. To alleviate this
sensitivity, the distributed slack bus [31], which distributes the
impacts of the slack bus into multiple buses, is adopted.

5) Ramp Rate Constraints: If uniti,k is online at hours t−1
and t, then for all possible state transitions and the two extreme
nonlocal states, the change of generation level cannot exceed
the unit’s ramp rate, that is

pM
i,k,n′

i
(t − 1) + pI

i,k,n̄′
i
(t − 1) − Ri,k

≤ pM
i,k,ni

(t) + pI
i,k,n̄i

(t)

≤ pM
i,k,n′

i
(t − 1) + pI

i,k,n̄′
i
(t − 1) + Ri,k, ∀ i, ∀ k, ∀t

∀(n′
i, ni

) ∈
{(

n′
i, ni

)∣∣ϕn′
i
(t) > 0, πn′

ini
> 0

}

∀n̄i ∈ {mi, Mi},∀n̄′
i ∈ {mi, Mi} (28)

where n̄′
i denotes the nonlocal state of node i at hour t − 1.

The changes in wind generation at possible state transitions

(except for transitions between extreme states) are smaller
than those between the min and max realizations in pure
interval optimization. Thus, the conservativeness in ramp
rate constraints of pure interval optimization is also allevi-
ated. In addition, generation limits at start-up and shut-down
hours [32, eq. (11)] are also considered and merged with (28),
based on [19, eqs. (9) and (10)].

6) Commitment Constraints of Individual Units:
a) Start-up constraints: The start-up decision is coupled

with commitment decisions

ui,k(t) ≥ xi,k(t) − xi,k(t − 1), ∀i,∀k,∀t. (29)

b) Minimum up/down time: The unit must remain online
or offline for its minimum up or down time, respectively. The
convex hull formulas in [33, eqs. (3) and (5)] are employed.

7) Objective Function: The goal of the optimization prob-
lem is to minimize the commitment cost plus the expected
dispatch cost of all possible realizations rather than that of the
worst-case realization to reduce conservativeness. Since the
generation cost function Ci,k( pM

i,k,ni
(t)+pI

i,k,n̄i
(t)) is piecewise

linear, the cost cannot be separated into a Markovian genera-
tion cost and an interval generation cost. Given that only two
extreme realizations are considered in interval generation, their
costs may not reflect the costs of other possible realizations.
To approximate the expected cost without much complexity,
the cost of the expected realization E is included in addition to
the costs of the few extreme realizations. The resulting objec-
tive function is to minimize the total weighted generation cost,
plus the commitment cost, that is

min
T∑

t=1

I∑

i=1

Ki∑

k=1

⎧
⎨

⎩

Ni∑

ni=1

[
wni,mi(t)Ci,k

(
pM

i,k,ni
(t) + pI

i,k,mi
(t)
)

+ wni,Mi(t)Ci,k
(

pM
i,k,ni

(t) + pI
i,k,Mi

(t)
)]

+ wE(t)Ci,k
(

pi,k,E(t)
)+ ui,k(t)Si,k

+ xi,k(t)S
NL
i,k

⎫
⎬

⎭ (30)

where wni,mi(t) is the weight of the conventional generation
when local state is at ni and nonlocal at mi at time t, wni,Mi(t)
when nonlocal at Mi, and wE(t) the expected realization. The
weights among realizations are not directly selected based on
corresponding probabilities. The reason is that the expected
realization corresponds to no particular state and probabil-
ity. Since the cost of the expected realization represents the
expected cost of the vast majority of realizations, its weight
should be larger than those of others. The weights wni,mi(t)
and wni,Mi(t) can further consider local probabilities. The sum
of all weights at time t equals one.

The above stochastic UC problem (17)–(22), (24)–(30), and
minimum up/down time constraints is a nonlinear mixed-
integer optimization problem with binary decision variables
{ui,k(t)} and {xi,k(t)}, and continuous variables {pM

i,k,ni
(t)},

{pI
i,k,n̄i

(t)} and {pi,k,E(t)}. The nonlinearity lies in the min/max
operations of selecting extreme Markovian nodal injections
in (26) and (27).
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D. Discussion on Reducing the Wind Uncertainty

Two methods to reduce the wind uncertainty by considering
wind power forecasts or by incorporating spatial correlations
of wind farms are discussed. Testing them, however, is out of
the scope of this paper.

1) Considering Wind Power Forecasts: With historical
data only, solutions may be conservative due to the large
uncertainty of day-ahead wind generation. Wind power fore-
casts consider weather conditions, terrain characteristics, and
historical forecast errors to reduce the uncertainty [34]. Our
previous work [35] converted wind power forecasts into state
probabilities, instead of only using historical data based
on (8), to fit in the Markovian approach. Considering wind
power forecasts is expected to reduce the conservativeness of
solutions.

2) Incorporating Spatial Correlations of Wind Farms: The
outputs of nearby wind farms are likely to be correlated.
Although the outputs of the wind farms are assumed to be
independent for simplicity in Section III-A, incorporating the
spatial correlations can help to reduce the uncertainty and
thus reduce the conservativeness of solutions. A method is
to aggregate the generation of nearby wind farms through
aggregating buses that are connected by transmission lines
with sufficient capacities. In this way, their correlations are
contained in the aggregated wind generation to smooth out
the uncertainty of each wind farm. An issue is to identify if
transmission lines have sufficient capacities in the presence of
wind uncertainty. For deterministic transmission-constrained
UC problems, necessary and sufficient conditions for a trans-
mission capacity constraint to be redundant were derived by
solving an mixed-integer linear programming problem that
maximizes or minimizes the flow through that line [36]. To
significantly simplify the process, an analytical sufficient con-
dition was obtained from an linear programming problem after
dropping transmission constraints of other lines and integral-
ity constraints associated with UC decisions, and were able
to quickly identify most of the redundant constraints [36].
This identification method can be extended to UC with
uncertain wind generation by using interval models. Buses
connected by lines with sufficient capacities can then be
aggregated through network reduction based on GSF matrix
reduction [37], and corresponding wind generation can be
aggregated. Transmission capacities of lines in the reduced
network can be calculated based on QR-factorization of the
reduced GSF matrix [38]. States of the aggregated wind gener-
ation will be considered with corresponding state probabilities
and state transition matrices. Local and extreme nonlocal states
will be based on states of aggregated wind generation at
different areas.

IV. SOLUTION METHODOLOGY

The above problem is transformed into a linear form and is
solved by using branch-and-cut in Section IV-A. Its complex-
ity and conservativeness are analyzed, and are compared with
those of pure Markov-based optimization and pure interval
optimization in Section IV-B.

TABLE I
COMPARISON OF THE COMPLEXITY OF THE THREE APPROACHES

A. Transformation of the Min/Max Operations

To transform the min/max operations in (23), (26), and (27)
into linear forms, the conjecture below describes the mono-
tonicity of Markovian nodal injections with respect to nodal
wind states. Based on this monotonicity, extreme Markovian
nodal injections are selected based on indices of nodal wind
states without optimization. Consider two possible local states
at node i time t: state ni and ni − 1 which has less wind
generation than state ni.

1) Monotonicity Conjecture: The local state with lower
wind generation provides less or equal to Markovian nodal
injection at the optimum, that is

PM
i,ni−1(t) ≤ PM

i,ni
(t), ∀i,∀t,∀ni

∀(ni − 1) ∈ {
ni − 1|ϕni−1(t) > 0

}
. (31)

Generalized monotonicity analysis [39] will be used to sup-
port this conjecture in Appendix B. Based on the above con-
jecture, the minimum (maximum) Markovian nodal injection
happens at the minimum (maximum) local wind generation
state at the optimum, that is

min
ni

PM
i,ni

(t) = PM
i,min ni

(t), ∀i,∀t (32)

max
ni

PM
i,ni

(t) = PM
i,max ni

(t), ∀i,∀t. (33)

The overall problem is thus linear after including (31) as
constraints and substituting the min/max operations with corre-
sponding states of nodal injections as (32) and (33). Moreover,
with state transition matrices given and state probabilities pre-
computed as discussed in [19], the linearized problem can be
effectively solved by using branch-and-cut.

B. Comparison of Approaches

1) Complexity: The complexity of the new approach is
compared with those of pure Markov-based optimization and
pure interval optimization in terms of the number of dispatch
decisions and flow levels, because the same number of UC
decisions is made. Considering I wind farms located at dif-
ferent buses and N states for each wind farm at each hour,
Table I summarizes the comparison.

The pure Markov-based formulation is very complicated as
discussed in Section III-B. The pure interval formulation is
much simpler, since each unit/line at each hour has only three
dispatch/flow levels corresponding to the two extreme realiza-
tions and the expected realization. Although the Markovian
and interval formulation has N more dispatch decisions and
two more flow levels than the pure interval formulation, the
complexity is significantly reduced when compared to the pure
Markov-based formulation. Furthermore, the complexity of the
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new formulation does not increase as the number of distributed
wind farms increases.

2) Conservativeness: Pure Markov-based optimization
makes use of information provided by global states and state
transitions. Its UC formulation is not conservative. Pure inter-
val optimization precomputes bounds of wind uncertainty in
transmission constraints without making use of local flexibil-
ity, and considers all extreme state transitions in ramp rate
constraints. As a result, pure interval optimization is over
conservative.

In the hybrid Markovian and interval approach, the
Markovian generation makes use of information provided by
local states and their transitions. The interval generation does
not depend on all possible nonlocal states but extreme ones.
This makes our approach more conservative than pure Markov-
based optimization in transmission capacity and ramp rate
constraints, and leads to more conservative UC decisions. This
set of UC decisions will result in a higher simulation cost.
However, our approach is still less conservative than pure
interval optimization.

V. NUMERICAL RESULTS

Testing is conducted using CPLEX 12.5.1.0 [21] on a PC
laptop with an Intel Core i7-2820QM 2.30 GHz CPU and
8 GB memory. Three examples of different-size problems
are provided. In example 1, a simple problem is used to
demonstrate that our approach is less conservative than pure
interval optimization, and to illustrate dispatch decisions of
our approach. In example 2, the IEEE 30-bus system is tested
to demonstrate modeling accuracy and solution feasibility
of our approach at different levels of wind penetration by
comparing with the deterministic approach and pure interval
optimization [18]. In example 3, the IEEE 118-bus system
is tested to demonstrate the computational efficiency of our
approach. In examples 2 and 3 where infeasibility is possi-
ble, wind curtailment and load shedding are considered. Wind
curtailment is assumed to depend on local wind states for sim-
plicity and to incur no cost. Load shedding is modeled in
a manner similar to conventional generation with Markovian
and interval components with a penalty of $5000/MWh. The
stopping criterion for all approaches in examples 2 and 3 is
a relative mixed-integer programming gap tolerance of 0.1%.

A. Example 1

Consider a three-bus 1-h problem with two wind farms as
shown in Fig. 1. This figure also shows the values and prob-
abilities of the wind generation states, and the capacity and
reactance values of the transmission lines. Table II provides
the parameters of the two conventional units. For the single
hour problem, time-coupling constraints such as ramp rate and
minimum up/down time constraints are ignored, and the time
index t is dropped.

To compare the conservativeness in transmission of the dif-
ferent approaches, we use the minimum transmission capacity
required on the line connecting nodes 1 and 3, f max

1−3 , to provide
feasible solutions as the criterion for illustrative purposes. For
pure interval optimization, the required transmission capacity

Fig. 1. Three-bus transmission network for Example 1.

TABLE II
UNIT PARAMETERS FOR EXAMPLE 1

TABLE III
OPTIMIZATION RESULTS FOR EXAMPLE 1 USING THE MARKOVIAN AND

INTERVAL APPROACH

is 16.667 MW. For our approach, the required transmission
capacity is 14 MW. Thus, our approach is less conservative in
transmission.

For wind farm 1, its output pW
1,n1

has two nodal states:
10 MW when n1 = 1, and 30 MW when n1 = 2. With
another two possible nodal states at wind farm 2, there are
four possible global states [n1, n2]T : [1, 1]T , [1, 2]T , [2, 1]T ,
and [2, 2]T .

To illustrate the Markovian generation and interval gen-
eration of conventional units, results of our approach when
f max
1−2 = 14 MW are provided in Table III. Since unit2,1 is

located at the same node as wind farm 2, its Markovian gen-
eration depends on the local state n2. Unit3,1 is not located
with any local wind farm, so it does not have Markovian gen-
eration (or it equals 0). The nonlocal state of unit2,1 and that
of unit3,1 are the same n1 in this small system.

To illustrate how conventional generation realizes, simu-
lation is conducted by fixing UC decisions at the optimal
solution and solving the deterministic dispatch problem for
each global state. Results are summarized in Table IV. Each
unit’s generation level under each global state turns out to
be within the ranges delineated by sums of corresponding
Markovian generation and interval generation levels.

B. Example 2

The IEEE 30-bus system is tested over a 24-h horizon with
parameters adjusted as in [1]. There is a wind farm located at
node 1 with a capacity of 42.5 MW. An additional wind farm
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TABLE IV
SIMULATION RESULTS FOR EXAMPLE 1

TABLE V
RESULTS FOR CASE 1 OF EXAMPLE 2

with a capacity of 28.3 MW is added to node 2. Two different
levels of wind penetration are tested.

In each case, our approach is compared with the determinis-
tic approach and pure interval optimization. For our approach,
ten states are used for each wind farm based on [19], and the
expected realization is calculated based on 50-state transition
matrices. Based on the discussion after (30), the weights in
the objective function, wE(t), wni,mi(t), and wni,Mi(t), are set to
be 0.8, 0.1ϕni(t), and 0.1ϕni(t), respectively. For pure interval
optimization [18], extreme states from ten-state matrices and
the expected realization from 50-state matrices are used for fair
comparison. For the same purpose, the costs of the minimum
and maximum realizations are also considered in the objec-
tive function, both with the same weight 0.1. The deterministic
approach sets the spinning reserve levels at 3.5 STDs of hourly
wind generation based on [5]. To evaluate the UC decisions
obtained by different approaches, 10 000 Monte Carlo simula-
tion runs are performed with scenarios sampled based on the
50-state transition matrices. In the simulations, UC decisions
are fixed at the optimal solution, and the deterministic dis-
patch problem is solved repeatedly for the sampled scenarios
following [7] and [11]. The simulation cost is the average cost
of all sampled scenarios. Modeling accuracy of each approach
is measured by the absolute percentage error (APE)

APE ≡ |optimization cost − simulation cost|
simulation cost

× 100%.

(34)

The STD of costs of sampled scenarios reflects the variation
of costs.

1) Case 1: State transition matrices of the two wind farms
are established based on measured hourly generation data of
two wind sites from April to September in 2006 (the non-
winter season) from National Renewable Energy Laboratory’s
Eastern Wind Dataset [40], one site per wind farm. The wind
penetration level, calculated as the total expected wind gener-
ation divided by the total demand without considering wind
curtailment and load shedding, is 13.9%.

Results are summarized in Table V. It takes more time for
our approach to reach the stopping criterion than the other
two approaches. Optimization costs of the three approaches

TABLE VI
RESULTS FOR CASE 2 OF EXAMPLE 2

TABLE VII
RESULTS FOR EXAMPLE 3

are very similar. However, the deterministic approach has the
highest simulation cost and incurs the highest penalty cost of
load shedding. This indicates that even with reserve, the deter-
ministic approach cannot guarantee solution feasibility against
all possible realizations. Both pure interval optimization and
our approach are accurate in sense of their small APEs.

2) Case 2: To create 40% wind penetration, capacities of
the two wind farms are scaled with demand unchanged. The
results are summarized in Table VI. Our approach only spends
about twice as much time as pure interval optimization. Our
approach has a simulation cost 5.23% lower than that of pure
interval optimization without incurring much penalty, indicat-
ing that our approach is less conservative. In addition, our
approach is the most accurate, as it has the smallest APE.

C. Example 3

The IEEE 118-bus system [41] is tested. There are three
wind farms, 54 conventional generators, 186 transmission
lines, and 91 load centers with peak system demand
3733.07 MW. The wind farms use the capacities in [41],
and their state transition matrices are based on measured
hourly data of three wind sites from April to September
in 2006 from [40]. The hourly system demand values in
percent of peak system demand are calculated based on
corresponding factors for summer weekdays of the IEEE
Reliability Test System [42]. The wind penetration level is
7.2%. The quadratic cost curves of conventional generators
are approximated by piecewise linear cost curves with three
blocks.

The results of our approach are summarized in Table VII.
The CPU time is 49 s, demonstrating that our approach
is computational efficient. Based on the statistics provided
by CPLEX, there are 150 308 constraints, 2592 binary vari-
ables, and 52 489 continuous variables (including additional
decision variables for the three-block piecewise linear costs)
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in optimization. The main reason why the CPU time of solv-
ing this system by using the Markovian and interval approach
is even less than those in example 2 may be that the wind
penetration level is lower. With relatively smaller ranges of
uncertainty, it is easier to find feasible solutions.

The APE of our approach is 0.253%, demonstrating its
modeling accuracy. Under this relatively low level of wind
penetration, no load is shed and no wind is curtailed in any
of the 10 000 simulation runs.

VI. CONCLUSION

This paper develops a synergistic combination of Markov-
based optimization and interval optimization to solve the
transmission-constrained UC problem with uncertain wind
generation. Ideas from interval optimization are used to cap-
ture bounds of constraints to ensure solution feasibility, while
Markov-based optimization uses information of local states
for reduced conservativeness. Numerical results demonstrate
that the new approach is effective in terms of computational
efficiency, simulation cost, and solution feasibility. This paper
opens a new and effective way to address stochastic problems
without scenario analysis and to avoid over conservativeness.
In addition, solar generation shares a similar uncertain nature
as wind generation, and can thus be modeled and solved
similarly.

APPENDIX A

This appendix discusses the sensitivity of results with
respect to the selection of the slack bus. DC power flows can
be represented by using voltage phase angles with nodal power
balance constraints (that require the nodal injection to equal
the sum of out flows from this node) or by using GSFs with
system demand constraints (that require system-level power
balance) [30]. In the deterministic approach, there is no differ-
ence between them. The reason is that when computing GSFs,
one row and one column corresponding to the slack bus are
taken out, assuming that system demand is satisfied. In this
case, although GSF values change when the slack bus changes,
power flow levels do not change. However, if the system-level
power balance assumption for GSFs is not strictly satisfied as
in pure interval optimization, power flow levels will change
when the slack bus changes.

In pure interval optimization, on the one hand, power flow
equations based on voltage phase angles cannot be used
because of the following complexity. These power flow equa-
tions go hand-in-hand with nodal power balance constraints.
Each nodal power balance constraint is an interval equal-
ity and will result in two constraints based on [27], similar
to system demand constraints (1) and (2). When there are
I nodes in a network, there will be 2I possible combina-
tions of these constraints to be considered at each hour. On
the other hand, power flow equations with GSFs can be used
to bypass this complexity, since power flows (from uncertain
wind generation) can be directly substituted by a weighted
sum of nodal injections. In this case, GSFs have to be com-
puted. However, the system-level power balance assumption

for GSFs is not strictly satisfied since only bounds of sys-
tem demand are considered. Consequently, when slack bus
changes, GSF values change, and power flow levels change.
Results are therefore sensitive to the selection of the slack bus.
Results of the Markovian and interval approach have the same
sensitivity issue.

APPENDIX B

This appendix is to support the monotonicity conjec-
ture (31). Since the monotonicity is on nodal injections or
dispatch decisions, we focus on the corresponding dispatch
problem with UC decisions fixed. The deterministic dispatch
problem, which considers a special case where the probability
distribution at each hour is a singleton, will first be analyzed
based on generalized monotonicity analysis [39]. When wind
generation decreases, the corresponding nodal injection will
decrease or remain the same. The result will then be extended
to the Markovian and interval dispatch problem.

For the deterministic dispatch problem, the procedure is
similar to [39, Example 4.1.2]. Lagrangian relaxation is first
used to relax all constraints, namely system demand, transmis-
sion capacity, generator capacity, and ramp rate constraints.
The Karush-Kuhn-Tucker (KKT) conditions [43] are used to
establish a set of equalities among variables and parameters at
the optimum. By taking total derivatives on both sides of the
KKT conditions based on [39, eq. (2)], the directional deriva-
tive of the nodal injection will be contained in another set
of equations. After solving all the above equations together,
an explicit form of the directional derivative can be obtained.
With the change direction of parameters imposed along the
direction of wind generation, the monotonicity of the nodal
injection can be observed.

Solving for this directional derivative is difficult and
requires symbolic solvers. Symbolic solvers, such as
Maple [44] and Symbolic Math Toolbox in MATLAB [45],
do not support a general form of equations with an arbi-
trary size. Therefore, problems with known sizes have to be
solved case by case. Moreover, the memory requirement and
CPU time increase drastically as the problem size increases.
Nevertheless, we solve a small case with two buses, two
lines, two hours, and linear generation cost functions by using
Symbolic Math Toolbox [45] in MATLAB R2013b. Due to
computational limits, we first impose the change direction of
parameters, v, along the direction of wind generation at node 1
at hour 2, i.e., the element in v corresponding to this wind
generation, vpW

1 (2), is considered and other elements are set
to zero. Then, we solve for the directional derivative of the
corresponding nodal injection, wP1(2), and the result is that

wP1(2) = vpW
1 (2) or 0. (35)

This result demonstrates that the nodal injection will decrease
or remain the same when wind generation decreases. The
result of this small case is believed to hold in general, since
all types of constraints are considered.

The above result is then extended to the Markovian and
interval dispatch problem. The monotonicity can be easily
applied to two deterministic cases, where the only difference
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is that wind generation at node i at hour t in case 1 is less
than that in case 2. Obviously, the corresponding nodal injec-
tion in case 1 will be less than or equal to that in case 2.
For the pure Markov-based dispatch problem, wind genera-
tion values at states ni −1 and ni fit into the situation of these
two deterministic cases. Therefore, the nodal injection at state
ni − 1 will be less than or equal to that at state ni. As for the
Markovian and interval dispatch problem, since the interval
nodal injection depends on extreme nonlocal states, it will not
be changed by local states. Therefore, the Markovian nodal
injection at state ni − 1 will be less than or equal to that at
state ni.
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