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Abstract—Optimizing HVAC operation becomes increasingly
important because of the rising energy cost and comfort re-
quirements. In this paper, an innovative event-based approach
is developed within the Lagrangian relaxation framework to
minimize an HVAC's day-ahead energy cost. To solve the HVAC
optimization problem based on events is challenging since with
time-dependent uncertainties in weather, cooling load, etc., the
optimal policy is not stationary. The nonstationary policy space
is extremely large, and it is time consuming to find the optimal
policy. To overcome the challenge, we develop an event-based
approach to make the nonstationary optimal policy stationary in
the planning horizon. The key idea is to augment state variables to
include the time-dependent variables that make the optimal policy
nonstationary and then define events based on the extended state
variables. In addition, we develop within the Lagrangian relax-
ation framework a Q-learning method where Q-factors are used
to evaluate event-action pairs and to obtain the optimal policy.
Numerical results demonstrate that, as compared with time-based
approaches, the event-based approach maintains similar levels
of energy costs and human comfort, but reduces computational
efforts significantly and has a much faster response to events.

Note to Practitioners—Traditionally, the HVAC operation
problem is solved by using time-based approaches where decisions
are calculated and executed at each discrete time instant. These
approaches usually have large computational requirements and
slow responses to events. In this paper, an innovative event-based
approach is developed so that decisions are calculated and executed
only on an “as needed” basis to reduce computational requirements
and have a fast response to events. The key of the approach is to
aggregate the future information that affects day-ahead HVAC
energy costs and augment the state to include the aggregated
information. The events are then defined based on the augmented
state and make the non-stationary optimal policy stationary in
the planning horizon. Numerical results demonstrate significant
computational time reduction and fast responses to events.
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Fig. 1. HVAC system.
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mization, Lagrangian relaxation, Q-learning.

I. INTRODUCTION

O PTIMIZING HVAC operations to minimize energy costs
while satisfying human comfort requirements becomes

increasingly important because of the rising energy cost and
human comfort requirements [2]. As presented in Fig. 1, an
HVAC usually includes four major parts: 1) fan coil units
(FCUs), one for each room to cool and dehumidify indoor
air; 2) a fresh air unit (FAU) shared by all rooms to cool,
dehumidify, and provide fresh air; 3) chillers to produce chilled
water to FCUs and the FAU; and 4) pumps and cooling towers
that are not shown in the figure since this paper focuses on the
control of terminal devices, i.e., FCUs and FAU.
There are a number of approaches to solve HVAC energy op-

timization problems in the literature, including model predic-
tive control [18], [22] , fuzzy control [6], [21], and genetic algo-
rithms [7] for small buildings and dynamic programming within
the Lagrangian relaxation framework [2] for large buildings.
In these approaches, time is discretized, and the optimal deci-
sion is found for each state at each discrete time instant. In our
recent paper [3], HVACs, lights, shading blinds, and windows
were jointly controlled to minimize daily energy cost subject to
time-of-day electricity prices. Rooms were coupled by sharing
chillers with limited capacities. Because of the coupling, com-
putational requirements increase exponentially as the number
of rooms increases. To reduce computational requirements, La-
grangian relaxation (LR) was used to relax the chiller capacity
constraints. Subproblems, each related to one room, were solved
by using dynamic programming and the dual problem by a sub-
gradient method.
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In contrast to the above-mentioned “time-based” approaches,
there is another type of approach which is based on events but
has not been used for HVACs. In event-based approaches [10],
[25], an action, i.e., control of HVAC devices, is triggered by
an event which is defined as a set of state transitions. The
objective is to find the optimal action for each event. There
are two major advantages of event-based approaches. One is
that, as compared with time-based approaches, event-based
approaches generally have a much faster response to events.
The other is that, for problems whose underlying process and
optimal policy are stationary, the computational requirements
can be reduced significantly since the number of events re-
quiring actions is usually much smaller than that of states. For
other problems whose underlying process is not stationary, the
optimal event-based policy is nonstationary. The size of the
non-stationary policy space is usually extremely large, and it
is time consuming to obtain the optimal policy in the nonsta-
tionary policy space.
As for our HVAC problem, the optimal policy is nonsta-

tionary because the underlying process is nonstationary due
to the nonstationary uncertainties in outside temperature and
numbers of occupants, and also because the objective is a
function of time-varying electricity prices. In this paper, an
innovative event-based approach is developed to augment the
states to make the nonstationary optimal policy stationary
in the planning horizon. In this way, we only need to search
for the optimal policy in the stationary policy space whose
size is usually much smaller than that of nonstationary policy
space. The computational requirements to solve the HVAC
optimization problem can then be significantly reduced.
After reviewing detailed building and HVAC models in

simulation software and optimization approaches in Section II,
the problem formulation with simplified building and HVAC
models is presented in Section III. The simplified models are
the same as those in [3]. In [3], the problem focused on the in-
tegrated control of HVAC, lights, shading blinds, and windows.
In this paper, only HVAC is considered in order to focus on the
development of the event-based approach. The objective is to
minimize HVAC energy costs of (e.g., 24) hours ahead. Tra-
ditionally, an event is defined as a set of state transitions. Since
rooms are coupled by sharing chillers with limited capacities,
the definition of an event in one room needs to consider states
of other rooms, causing large computational complexity. In
addition, the nonstationarity of the optimal policy is another
source that causes large computational complexity.
To reduce the computational requirement caused by the cou-

plings among rooms, LR [2], [3] is introduced in Section III to
relax the chiller capacity constraints. Similar to [3], the relaxed
problem is then decomposed into subproblems, each related to
one room. The objective of a subproblem is to find the optimal
action for each event to minimize energy cost of a room. An
event of a room no longer needs to be defined based on states
of other rooms. A high-level dual problem is also formulated as
in [3] to iteratively coordinate subproblem solutions so that the
relaxed constraints can be satisfied. Since chiller capacity con-
straints are for each discrete time instant in the next hours,
Lagrangian multipliers should also be introduced for each dis-
crete time instant. The dual problem therefore is still based on

time, and the multipliers need to be updated for all discrete time
instants in the next hours.
In Section IV, an event-based approach is developed to solve

subproblems. If an event is defined as a set of state transitions in
the traditional way, the optimal policy would be non-stationary
due to the non-stationary underlying process. The nonstation-
arity of the optimal policy would cause large computational re-
quirements. For the easy computation, our key idea is to aug-
ment the state to include these time-varying variables such as
the multipliers and cooling load in the future and then define an
event based on the augmented state. In the LR framework, these
future variables are updated iteratively, causing the augmented
state and the optimal action to be updated iteratively until con-
verge. The optimal policy is assumed to be stationary in the
planning horizon of the next hours, i.e., the optimal action
for an event is the same no matter when it happens in the plan-
ning horizon. The stationarity of the optimal policy then makes
it easy for computation and the optimal policy in the planning
horizon is obtained by iteratively updating a stationary policy.
In Section V, the dual problem is solved by the very recent

surrogate LR method [23], [24]. In the method, the surrogate
subgradient directions for updating multipliers are functions of
cooling load of all discrete time instants in the next hours.
However, the subproblem solutions provide only the cooling
load for the first event in the next hours but not the rest of
the cooling load. To overcome this challenge, the sample av-
erage approximation method is combined with the event-based
approach to approximate the rest cooling load.
In Section VI, three examples are considered for buildings

with different sizes. The testing results show that: 1) as com-
pared with time-based approaches, the new approach maintains
similar levels of energy costs and human comfort but reduces
the computational time significantly and is scalable as the size
of buildings increases and 2) the new approach also has a much
faster response to events, because it acts immediately upon an
event while the time-based approach waits till the next time in-
stant and then acts.
Our approach opens up a new way to solve event-based prob-

lems with non-stationary optimal policies. In addition, if these
problems are solved within the LR framework, our approach is
also applicable by using the event-based method to solve sub-
problems and the surrogate Lagrangian relaxation method as
well as sample average approximation to solve a dual problem.

II. LITERATURE REVIEW
There are many studies on the HVAC energy optimization.

In Section II-A, building and HVAC models and HVAC energy
cost-optimization approaches are presented. In Section II-B,
the event-based optimization approach is presented. Our recent
work on the time-based optimization of building energy cost is
presented in Section II-C.

A. Building and HVAC Models and HVAC Energy
Cost-Optimization Approaches
A typical approach for HVAC energy optimization is first to

establish building and HVAC models to describe building be-
havior and calculate energy costs. An energy cost-optimization
problem is then formulated, and optimization methods [2]–[8]
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are developed to solve the problem to obtain the optimized
policy.
Building and HVAC models that are commonly used are the

simulation models developed in building simulation software,
such as DeST and EnergyPlus. Although simulation models are
reasonably accurate, they are usually complicated to establish
since they have a large number of parameters and require a great
deal of effort for model calibration. Also, they tend to have large
computational requirements. Simulation models are therefore
usually not suitable for searching for the optimal policy, but they
are useful for evaluating optimized policies obtained by using
some simplified models [17]–[20].
Black box models of buildings and HVACs are much more

simplified than simulation models. They are usually established
by using data mining techniques to find the relationships be-
tween inputs and outputs of buildings and HVACs. They are de-
veloped based on measured data without using physical knowl-
edge of buildings and HVACs. Common techniques to estab-
lish black-box models [19], [20] include artificial neural net-
work (ANN), linear regression, and Principal Component Anal-
ysis (PCA). The establishment of black-box models is usually
easy and the prediction based on black-box models does not
require large computational time, but black-box models might
cause large prediction errors for working conditions that have
not been included in the training data.
Based on building and HVAC models, optimization ap-

proaches are developed to solve energy cost optimization
problem. An approach commonly used is the model predictive
control (MPC) [18], [22] . It has been extensively studied
to minimize building energy costs by taking advantages of
building thermal mass, a variable energy price, and a water tank
for storing chilled water, and so on. Fuzzy logic controllers are
also in common use. They have been demonstrated by a large
number of studies that fuzzy logic controllers are able to save
significant energy costs [6], [21] . Another approach is to use
genetic algorithms (GA) [7]. For example, a GA was applied
in [7] to optimize indoor temperature set points in individual
rooms and the fresh air flow rate shared by all rooms to save
energy costs.

B. Event-Based Optimization and State Aggregation

In some practical problems, actions are triggered by events.
For example, take a problem in finance. A trader decides to buy
or sell an assent when its price falls below or above a threshold.
To solve this type of problems, the event-based optimization
approach is developed and has been widely used in the field of
finance, queue system, and networks [10]–[12] but not HVACs
yet. The event-based approach first needs to define events. An
event is a set of state transitions in two successive discrete time
instants, and all state transitions in an event should share some
common characteristics [16].
A performance potential or Q-factor is then used to evaluate

the performance of each pair of event and action by how the
problem cost is affected when an action is taken upon an event.
These performance potentials or Q-factors are estimated from
a sample path of the underlying system or historical data. For
the sample-path-based method, the key idea is to estimate the

performance potentials of Q-factors for all states on a given
sample path under a policy [16]. Based on performance poten-
tials or Q-factors, the policy iteration or gradient-based methods
are used to obtain the optimal policy.
The event-based optimization is usually developed for prob-

lems whose optimal policies are stationary, such as problems
with steady-state distribution in infinite time. For finite-time
problems whose optimal policies are not stationary, although
some event-based methods have been developed, they need to
run a large number of simulations to estimate the nonstationary
potentials or Q-factors [11], [12]. The simulations usually re-
quire large computational efforts and take a long time.
In the HVAC energy cost optimization problem, the optimal

policy is nonstationary because the underlying process and the
objective are non-stationary due to the time-dependent variables
such as cooling load and electricity prices. The potentials or
Q-factors are nonstationary and difficult to obtain. The size of
the nonstationary policy space is extremely large, and it is time
consuming to find the optimal policy.
The event-based approach developed in this paper is based

on our preliminary results in a conference paper [13]. Based
on [13], the event-based approach is further improved with rig-
orous derivations to solve subproblems based on Q-factors. Nu-
merical testing is strengthened with a more detailed comparison
of the performance between the event-based approach and time-
based approaches, and also with more insights on the results, in-
cluding reduced computational time and a faster response time.
An event is a set of state transitions. For an event, if the state

that is transitioned to can take any feasible value, then the event
is equivalent to a state aggregation [25]. To solve Markov de-
cision process (MDP) problems with state aggregations, a typ-
ical approach is to approximate the optimal value function by
simple functions [28]. The challenge is that as the number of
the aggregated states reduces, the computational requirements
to MDP problems is reduced but the approximation errors in-
crease. To have a good tradeoff between the computational time
and the approximation errors, an ordinal optimization method
[29] is developed to find good simple state aggregations with
high probabilities.

C. Our Recent Paper on Building Energy Cost Optimization

Rooms are coupled by sharing an HVAC system with
limited capacities. The coupling makes it time consuming to
search for the optimal policy. Decomposition and coordination
methodologies, such as LR [2], [3], are effective in solving the
building energy cost optimization problem with the coupling,
especially for a building with a large number of rooms. In
our recent paper [3], which focused on the integrated control
of HVACs, lights, shading blinds, and natural ventilation, the
chiller capacity constraints were relaxed by LR to obtain a dual
problem and subproblems. Each subproblem was related to one
room. A subproblem was to find the optimal decision variable
of a room to minimize its energy cost. The dual problem was
to coordinate subproblem solutions to satisfy the relaxed con-
straints. To obtain a near-optimal policy, the subproblems and
the dual problem were solved iteratively by stochastic dynamic
programming and surrogate subgradient method, respectively.
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In the above-mentioned method as well as some other time-
based methods, a day is discretized with a fixed time step and
the problem is formulated and solved in each discretized time
instant. One limitation of these time-based methods is that they
will have large computational requirements if a finer time step
is required to have a more accurate calculation and a faster re-
sponse to the changes of occupancy, the changes of comfort re-
quirements, etc.

III. PROBLEM FORMULATION AND LR FRAMEWORK

The problem formulation for daily building energy cost op-
timization and the LR framework are presented in this section.
The formulation is the same as that in [3], except that the con-
trol of lights, blinds, and natural ventilation is no longer consid-
ered. Device and room models are presented in Section III-A.
The objective function and human comfort requirements are
presented in Section III-B. The LR framework is presented in
Section III-C.

A. HVAC and Room Models
The models of HVAC devices are established in [3] and

briefly presented below. Assume there are rooms in a building
and a day is divided into discrete time intervals of equal
duration (e.g., 10 min), with time index ranging from 1
to . The FAU fresh air flow rate equals the sum of fresh air
flow rates to all rooms, , where is the fresh
air flow rate to room at time . The electric power of the FAU
fan, , is nonlinear to the FAU air flow rate as

(1)

where and are the rated FAU fan
power and air flow rate, respectively [3].
The chiller shared by FAU and FCUs has a limited capacity

, and rooms are thus coupled by the chiller capacity con-
straints as

(2)

where and can be calculated by [3, eq. (3)].
According to [3], decision variable at time is

(3)
with

(4)

where and are outlet air temperatures of FAU
and FCU in room , respectively, is the fresh air flow
rate to room provided by the FAU, and is the air
flow rate of the FCU in room .
Energy consumption of fans in FAU and FCUs is calculated

by (1). Energy consumption of chillers, pumps, and cooling
towers is calculated for simplicity based on a coefficient of per-
formance (COP) which is defined as the ratio of cooling load of
the FAU and FCUs to the electric power of chillers, pumps, and
cooling towers [3].

Indoor air temperature, wall temperature, indoor humidity,
and indoor CO concentration are chosen as elements of the
state variable. The state variable for room at time is

CO (5)

Dynamic equations of the state are developed in our recent paper
[3] based on the energy and mass conservations (See [3, eqs,
(8)–(11)]). The major uncertainties that affect energy cost are
outside temperatures and numbers of occupants which are mod-
eled in [3].

B. Objective Function

An energy cost optimization problem is formulated when an
event occurs. For example, an event could be the rising of indoor
temperature above a threshold. Traditionally, an event is defined
as a set of state transitions. Rigorous definition of events is pre-
sented later in Section IV-A. The objective of the problem is to
find the current time's optimal decision tominimize the expected
total costs of the HVAC for hours ahead. Upon an event, the
energy cost optimization problem is formulated as

with

(6)

where is the time interval, the number of time intervals
in hours ahead, the electricity price at time , and the ex-
pectation is over uncertain outside temperatures and numbers of
occupants. The problem is subject to the chiller capacity con-
straints (2) and the human comfort requirements during occu-
pied periods [3]

CO 900 ppm (7)

In unoccupied periods, there are no comfort requirements.

C. LR Framework

In the problem formulated in (6), all rooms share chillers with
limited capacities. To find the optimal action for an event in a
room, the cooling load of other rooms needs to be considered.
An event would therefore need to be defined as transitions of the
combined states of all rooms. In that case, the number of events
would increase exponentially as the number of rooms increases.
In addition, the problem has a two-level structure. The low level
focuses the control of devices in individual rooms and the high
level coordinates all of the rooms to satisfy the chiller capacity
constraints. In order to overcome the computational difficulty
caused by the coupling in rooms, a possible method is to use an
LR-based method [23], [24], [26] which is a decomposition and
coordination approach.
For problems which are separable, the surrogate LR method

can be directly used. The problem (6), however, is not separable
[3] because: 1) the FAU is shared by all rooms and therefore its
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decision variable the outlet air temperature cannot be de-
termined by any individual room; and 2) the FAU fan power

is nonlinear to the sum of fresh air flow rates to all
rooms as in (1). As in [3], the first inseparability is overcome
by introducing new decision variables, , , , ,
representing fresh air temperatures supplied by the FAU to in-
dividual rooms at time . At time , the following requirements
are induced as in [3]:

(8)

The decision variable is therefore changed from (3) and (4) to

(9)
with

(10)

By using multipliers and to relax the chiller capacity con-
straints (2) and the introduced constraints (8), respectively, the
relaxed problem is to minimize the Lagrangian as

with

(11)

The first term in the last line of (10) can then be separated to
subproblems of individual rooms.
The second inseparability related to is overcome by

the surrogate optimization framework [9] and the subproblem
for room is obtained as

with

(12)

When solving the subproblem, only the decision variables be-
long to room are optimized while those such as fresh air tem-
peratures belong to other rooms are kept at their latest available
values.
To coordinate the subproblems to satisfy the constraints re-

laxed, the Lagrangian multipliers are updated in a high-level
dual problem as

(13)

where is the optimal cost for the subproblem of room
in (12). The updated multipliers are then used to solve

subproblems iteratively until certain stopping criteria [3] are
satisfied.

IV. SOLVING THE SUBPROBLEMS

Here, subproblems are solved by using an event-based opti-
mization approach. In Section IV-A, a novel definition of events
is introduced to make the non-stationary optimal policy sta-
tionary in the planning horizon through state augmentation. In
Section IV-B, a Q-learning algorithm for obtaining the optimal
policy is presented.

A. Definitions of Events

In an event-based approach, the control of HVAC devices,
i.e., the actions, is needed only when certain events occur. For
example, an event could be the rising of the indoor temperature
from a value between 24 and 25 degrees to a value between 25
and 26 degrees. For an event, actions include the decision of the
fresh air flow rate to the room, the FAU outlet air temperature,
and the FCU supply air flow rate and temperature. Each feasible
value of the decision variable in (10) corresponds to an action.
Traditionally, an event is defined as a set of state transitions. A

state transition is the change of the state. To observe a change of
the state, two measurements of the state in two successive time
instants are needed. To have a faster response to an event, the
time step between two time instants should be as low as possible.
For our problem, the time step is selected as the sampling period
, i.e., the time interval for measuring the state by sensors. This
is the minimal time step which is available.
Since a policy is a mapping from events to actions, all state

transitions in an event have the same action. Therefore, state
transitions should be aggregated to an event in a way that all
state transitions in an event share some common characteristics.
For our problem, the state variable in (5) has four elements, in-
cluding indoor temperature, humidity, and level, and wall
temperature. One way of defining events is first to divide the
domain of each element into several intervals. For the th el-
ement of the state in room , its domain is divided into
intervals, , , , , which have no over-
laps. It is assumed that, in a time step , at most one element
changes from one of its intervals to another. Since the sampling
period could be several seconds which is relatively smaller
as compared to the time constants of a room, the assumption is
reasonable. Based on the transitions of each element, a type of
events can be defined according to the start interval and the end
interval in a time step. For example, an event with the ele-
ment crossing from to at time and the other
elements remaining within , and is de-
fined as

(14)

Events of other elements can be defined similarly. If in one time
step, more than one element across their intervals, then we as-
sume that several events occur sequentially. They are stored in
a stack and optimal actions are found for them in sequence.
If events are defined in the traditional way as in (14), an event,

however, would be time dependent and the optimal policy of a
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subproblem would not be stationary. That is because the under-
lying process and the subproblem objective are non-stationary
due to the following time-varying variables.

Energy price.

Cooling load of FAU and FCU for room at
time and affected by the non-stationary outside
temperatures and number of occupants.

Coefficient of performance affected by outside
temperatures and ; and calculated by using
the model of chillers, cooling tower, and pumps
[27].

Lagrangian multiplier.

If the optimal policy is nonstationary, we would need to
search for the optimal policy within the non-stationary policy
space whose size increases exponentially as the number of

increases [11]. In addition, the Q-factors or performance
potentials used to evaluate the event-action pairs would be
non-stationary and a lot of simulations would be needed to ob-
tain the Q-factors or performance potentials. This simulations
could be too time consuming.
Our idea to overcome the difficulty is to define events in a

new way that makes the optimal policy stationary in the plan-
ning horizon, i.e., the next hours. In the new way, the state
variable is first augmented to include the above-mentioned time
varying variables in the next hours, and events are then de-
fined based on state transitions of the augmented state. Since all
the time varying variables that cause the underlying process and
the object function non-stationary have already been included in
the augmented state, all of the information needed to determine
the optimal action for an event is included in the event itself.
Therefore for easy computational, it is reasonable to assume
that the optimal policy in the planning horizon of the next
hours is stationary, although the optimal policy may change over
time when the problem is solved in a moving window manner.
The stationary optimal policy in the planning horizon can be
searched within the stationary policy space whose size is sig-
nificantly smaller than that of non-stationary policy space.
Considering those time-varying variables in the next

hours are so many and they are mainly used to define events to
trigger pre-cooling, their average values in the future are used
as approximation to trigger the pre-cooling. The augmented
state variable then is

(15)

where , and are indoor temperature, humidity,
and CO concentration in room at time , respectively, and

and are the average values of , ,
and in the next hours, respectively. The value of is
required be larger than the length of common pre-cooling time
period and can be set to six for example.
The wall temperature in the state (5) is not included in the

augmented state because the wall temperatures affect the in-
door temperature through the heat transfer between the wall and
indoor air [3], and the amount of heat transferred has already

been reflected in the indoor air cooling load [3]. Although
taking the wall temperature out of the augmented state is not
crucial to make the optimal policy stationary, it does reduce the
number of events.
An event is then defined as a set of state transitions of the

augmented state in the same way as in (14). The domain of each
element of the augmented state is divided into several intervals.
Based on the transitions of each element, a type of event can
be defined according to the start interval and the end interval
in a time step. For an event with the first element crossing from

to , it is no longer time-dependent and is defined
as

(16)

Events of other elements can be defined similarly.
In the new definition of events, there are seven types of

events, each corresponding to one element of the augmented
state. The first three types are defined based on the transitions
of the current indoor environment, i.e., and .
They are used to trigger actions of HVAC devices to maintain
the indoor temperature, humidity and CO level in the comfort
range with minimal energy costs. The other four types are
defined based on the transition of future information of ,

, and . They are used to trigger actions of HVAC
devices for precooling, so that the cheap electricity can be taken
advantage of to save energy costs and the cooling load can be
shifted to satisfy the chiller capacity constraints.
Based on the new definition of events, the optimal policy be-

come stationary in the planning horizon of the next hours.
The stationarity can reduce the computational requirements sig-
nificantly since we can iteratively update a stationary policy
until it converges. As time moves forward, the optimal policy,
however, could be different due to the change of time-of-day
prices, COP, cooling load, and multipliers.
Note that the event in (16) corresponds to the observable

event in Xiren Cao's event-based optimization framework [10],
[16]. From the view of event-based method, an event is defined
as a set of state transitions. From the view of the state aggrega-
tion method, if we define a new state , then an
event is equivalent to a state aggregation. Therefore, the state
aggregation is a special event
where is a subset of the complete set of [25].

B. Solving Subproblems Based on Q-Factors

To solve the subproblems, we need to find the event-based
optimal policy, i.e., to find the optimal action for each event
to minimize the subproblem cost. For an event , a common
method to find its optimal action is to evaluate each feasible
event-action pair by how it affects the subproblem cost.
Similar to dynamic programming, an event-action pair
can be evaluated by using the summation of the current cost and
the optimal cost-to-go as

(17)
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where is the current cost from the time of the current
event to the time the next event occurs, the second term
on the right hand is the optimal cost-to-go from the
time of to the end of the next hours, is the time length
from the current event to the next event , and is a
feasible action for .
In the dynamic programming, can be estimated back-

ward based on the models of rooms and HVAC. Since in the
backward process, Q-factors in all discrete time instants are
needed to be estimated, it is time consuming. Our subproblem,
however, has the stationary optimal policy, and there is no need
to estimate based on models. Rather, it can be esti-
mated from historical data by using the Q-learning algorithm
[4], which is a model-free reinforcement learning technique.
The advantage of Q-learning is that the computational time can
be saved since no calculation of state dynamics for all the time
instants in the next hours is needed. A common disadvan-
tage of Q-learning is that Q-factors are hard to converge if they
are non-stationary [4]. However in our problem, Q-factors are
stationary.
In the Q-learning algorithm, all Q-factors are first initialized.

After an action is taken upon an event and the next event
occurs, the current cost is first calculated based on

the energy costs measured in the real HVAC. The “old” Q-factor
is then updated by the “new information” to

obtain the new as [4]

(18)

where is the learning rate. In (18), the second term in the
second square brackets is the optimal cost-to-go for
the next event and is calculated based on old Q-factors
of . The learning rate determines to what extent the

should be updated by the new information .
Q-factors can converge when diminishes to zero over time
at a proper rate [4]. To ensure the satisfaction of the comfort
requirements, any actions dissatisfying the requirements will
be assigned an extreme large current cost .
Based on Q-factors estimated by Q-learning, the optimal ac-

tion for the event is then the one that has the minimal
Q-factor as [4]

(19)

The Q-learning method can solve the sub problems optimally as
long as the optimal policy is stationary.
To guarantee the convergence of Q-factors, each Q-factor

should have a positive probability to be updated. Therefore,
when event e occurs, each feasible action should have a pos-
itive probability to be taken to control devices. As in [4], the
optimal action obtained by (19) is taken with the probability
of , with and . Each of the other feasible
actions is taken with the probability of , where
is the number of feasible actions for the event e.

V. SOLVING THE DUAL PROBLEM
Here, the dual problem is solved. In Section V-A, the very re-

cent surrogate LR method [23], [24] is briefly introduced. The
method as well as other LR-based methods requires the cooling
load for all stages in the next hours, while only the cooling
load for the first event in the next hours is provided by the
subproblem solutions. In Section V-B, the sample average ap-
proximation is combined with the event-based method to ap-
proximate the rest of the cooling load. In Section V-C, the itera-
tion of solving the dual problem and subproblems are presented.

A. Surrogate LR Method
The dual problem is solved by using the surrogate LRmethod

developed in [23], [24]. The method obtains a surrogate sub-
gradient direction for multipliers by solving only one or several
subproblems as long as the surrogate optimization condition is
satisfied [9]. Unlike the Surrogate Subgradient (SSG) method
[25] which may not converge due to the lack of the optimal dual
value, the surrogate LR method does not require the optimal
dual value. It guarantees the convergence of multipliers by se-
lecting the step sizes for updating multipliers in a way that the
distance betweenmultipliers decreases at consecutive iterations.
Based on the chiller capacity constraints (2), the SSG direc-

tion related to at time and iteration is calculated as [3]

(20)
where is the number of stages in the next hours. Sub-
problem solutions only provide the FAU cooling load and
FCU cooling load for the first event in the next hours.
The way to obtain the rest of the cooling load is presented in the
next subsection.
The multiplier is then updated in the surrogate subgra-

dient direction as

(21)

where is the step size at iteration and is updated by [24]

(22)

with

(23)
The above way of updating the step size guarantees that the mul-
tiplier converges to a unique limit. At convergence, the surro-
gate dual value provides a lower bound to the primal cost.

B. Using Sample Average Approximation to Obtain Cooling
Load
As shown in (20), to obtain the SSG direction, the FAU and

FCU cooling load for all stages in the next hours are
needed. If optimal actions for stages are available, then the
cooling load in these stages can be calculated by using FAU and
FCU models [3]. In the time-based method in [3], optimal ac-
tions have to be obtained in each stage to minimize the total cost
of all stages. However, in the event-based method in Section IV,
to solve the subproblem which has stationary optimal policy,
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only the optimal action for the first event in the next hours is
needed. Based on this optimal action, only the cooling load for
the first event can be calculated.
To obtain the rest of the cooling load, our method is to use

simulation to estimate all of the possible subsequent events as
well as their optimal actions. In the simulation, the optimal ac-
tion for the first event is applied to room and HVACmodels, and
the subsequent events and optimal actions are estimated with the
consideration of uncertainties in outside temperatures and num-
bers of occupants. The difficulty is that as the simulation moves
forward to the end of the hours, the tree of possible events
grows and the number of possible events increases exponen-
tially. To overcome this difficulty, the sample average approx-
imation [14], [15] is combined with the event-based method to
approximate the cooling load.
The key idea is first to generate scenarios of uncertain outside

temperatures and numbers of occupants in the next hours. For
each scenario, events are triggered based on the sampled random
variables, optimal actions are taken based on Q-factors, and
cooling load is calculated iteratively until the end of the hours.
In this process, the optimal action for an event is determined only
basedon the informationknownat the time the event occurs.That
means no future information of the realization of uncertainties
is used in determining the optimal action. The averaged cooling
load of all sampled scenarios is regarded as an approximation of
its mean value. As for the number of scenarios, it is increased by
one at a time until the change in averaged cooling load is below
a given threshold (e.g., 1% of the average cooling load).

C. Solving the Dual Problem and Subproblems Iteratively
After the multipliers are updated in the dual problem, the sub-

problems are solved iteratively until some stopping criteria are
satisfied. When the algorithm stops, the relaxed constraints may
still not be satisfied.Twoheuristics developed in [3] are then used
to obtain feasible solution for the planning horizon of hours,
and the feasible solution is applied to control the HVAC devices.
As time passes, the HVAC energy cost optimization problem in
(6) is solved in a moving window manner, i.e., it is solved by
looking ahead of hours every time an event occurs. Themulti-
pliers, cooling load, etc., which are updated in a movingwindow
manner, would be different over time. Although this may cause
the optimal policy changing overtime, the optimal policy for a
planning horizon of hours can still be assumed to be stationary
and therefore the event-based approach can be used to solve the
optimization for the purpose of easy computation.

VI. NUMERICAL SIMULATION RESULTS AND DISCUSSION

Our approach is implemented in MATLAB and runs on a PC
with 2.67-GHz Intel Core i7 processor and 4 GB of RAM. Three
examples taken from reference [3] are considered. In Example
1, a building with two rooms is used to examine the new def-
inition of events. The event-based method with events defined
based on augmented states is compared with the one with events
defined based on original states. In Example 2, a building with
15 rooms is examined to illustrate how the actions are triggered
by events defined based on future information. To see how en-
ergy cost is saved and human comfort is improved, the greedy
algorithm is used as a comparison with our event-based method.

In Example 3, a building with 144 rooms is considered for the
comparison of the event-based approach with the time-based
approaches which use stochastic dynamic programming. Three
aspects include computational time, response time, and energy
cost are compared.
Buildings are occupied from 7:00 am to 10:00 pm, and the

time-of-day electricity price is 0.81 RMB/KWh from 7 am to
10 pm and 0.35 RMB/KWh during other hours. The number of
hours looking ahead, , is selected to 24. The optimal policies
of the three examples are obtained from June 1 to August 31
of a typical meteorological year in Beijing. These policies are
then applied to detailed building and HVAC models (developed
in the building simulation software DeST [5]) for evaluation.
The time interval for the event-based approaches of the three
examples is 10 s.
Example 1: Building With Two Rooms to Examine the Defini-

tion of Events Based on the Augmented State: In this example,
a building with two rooms is selected to illustrate that the new
definition of events is more effective than the traditional one.
Traditionally, events are defined based on state variables. In our
approach, events are defined based on the augmented state vari-
able which is a combination of the original state and the time
varying variables including energy price, cooling load, COP and
multipliers.
Two event-based approaches are considered, with events de-

fined based on the augmented state variable in the first approach
and based on the original state variable in the second one. For
the second approach, as presented in Section IV-B, the Q-fac-
tors and the optimal policy are non-stationary. The method de-
veloped in [11], [12] for problems with non-stationary optimal
policies is used. In the method, a large number of simulations
are needed to estimate the non-stationary Q-factors based on the
models of buildings and HVACs. The simulations require large
computational efforts and take a long time.
The average energy cost per day is 23.14 RMB for the first ap-

proach and 22.99 RMB for the second one. The computational
time is 0.17 s for the first one and 38.5 s for the second one. It
can be seen that the energy cost of the stationary optimal policy
is close to that of the nonstationary optimal policy. Their energy
cost are not exactly the same and the small difference is caused
by two reasons. The first is the assumption of the stationarity
of the optimal policy in the planning time horizon of hours.
The second is that when an event occurs, the optimal action by
Q-learning is only applied by a probability slightly less than one,
so that each Q-factor should have a positive probability to be
updated for the convergence. However, to obtain the non-sta-
tionary optimal policy, the computational time of the method in
[11], [12] is so large even for this small problemwith two rooms.
The large computational time causes the event-based approach
no longer having the advantage of fast response to events.
Example 2: Three-Floor Building With 15 Rooms to Illustrate

Energy Savings and Comfort Improvement: In reference [3],
the time-based approach saves energy cost and improves human
comfort by pre-cooling. This example use a three-floor building
with 15 rooms to illustrate our event-based approach can also
achieve that. It also demonstrate how actions are triggered by
the events defined based on future information. Similar to [3],
a greedy approach is considered for comparison. The greedy
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Fig. 2. Energy costs and indoor temperatures under the event-based approach
and the greedy approach.

approach minimizes only the current energy cost and does not
consider the impact of current control on future energy cost. It
is also performed in the LR framework. If the time steps that is
looked ahead in the dynamic programming in [3] is reduced to
one, then we obtain the greedy algorithm.
The average energy cost per day of the event-based approach

is 158.8 RMB with the duality gap of 0.98%. As for the greedy
approach, the average energy cost per day is 165.6 RMB. As
compared to the greedy approach, the event-based approach
saves about 4.3% of energy cost. Considering that the HVAC
energy cost is usually huge and accounts for a major part in
the building operation cost, the savings is meaningful. For the
two approaches, the hourly energy costs and indoor tempera-
tures of a room in a selected day are presented in Fig. 2. In
the event-based approach, the event of the average electric price
rising above its threshold occurs two hours before the office

hour. The optimal action obtained for this event is to precool the
room to take advantage of low-price electricity for energy cost
reduction. In the greedy approach, no precooling is used.
It can also been seen from the figure that the indoor temper-

ature under the event-based approach drops about 0.5 degree
around 2 pm. That is because the event of the average cooling
load rising above the threshold occurs due to the high pre-
dicted cooling load around 3 pm. The optimal action for this
event is precooling. By precooing, the indoor temperature at 3
pm is below 26 degrees, which is the upper limit of comfort
range for indoor temperature. On the contrary, under the greedy
approach the indoor temperature at 3 pm exceeds 26 degrees,
and the comfort requirement for temperature is not satisfied.
Therefore, the events defined based on the augmented state vari-
able save energy costs and improve human comfort.
Example 3: Building With 144 Rooms to Examine Computa-

tional Time, Response Time and Energy Cost: In this example,
the event-based approach is compared with the time-based
approaches which use stochastic dynamic programming. Fol-
lowing [3], our event-based approach is used to solve the energy
cost optimization problem of the same six-floor building with
144 rooms. The results are then used to illustrate that our ap-
proach saves computational time significantly and has a much
faster response to events, as compared with the time-based

TABLE I
PERFORMANCE OF EVENT-BASED APPROACH AND TIME-BASED APPROACH

approach [3] which uses the stochastic dynamic programming
(SDP) within the LR framework.
Since in this paper, the energy cost optimization problem

does not consider the control of lights, blinds, and windows,
the time-based approach used for comparison solves the same
problem without considering the above devices. Also, in the
time-based approach, time needs to be discretized and three time
steps including ten minutes, five minutes and one minute are
considered. The results under the two approaches are presented
in Table I, including energy costs, computational time, and re-
sponse time (i.e., the time length from events to the execution
of decisions in HVAC devices).
As shown in the table, the average computational time of the

event-based approach is 4.1 s, saving approximately 70% of the
computation time of the time-based approach with the time step
of ten minutes. This is because in the event-based approach, the
action is optimized only for the first event while in the time-
based approach, a day is divided into 144 time stages and the
action has to be optimized for each time stage to minimize the
total cost of all time stages.
In the event-based approach, an optimization problem is

formulated once an event happens. Its response time therefore
equals the computational time. On the contrary, the time-based
approach formulates the optimization problem only at the be-
ginning of each time stage. Its response time therefore includes
not only the computational time but also the time waited to
formulate the problem. The waiting time equals the time length
from the time an event occurs to the beginning of the next time
stage plus. It can be seen from the table that the response time
of the event-based approach is 4.1 s. It is much smaller than 315
s of the time-based approach with the time step of ten minutes.
Due to the faster response, about 0.7% of energy cost is saved
by the event-based approach as compared to the time-based
approach with ten minutes as the time step.
In practice, the response time of a few minutes is still practi-

cally feasible since it might take more than 10 min to satisfy a
given set point of temperature or humidity. The difficulty caused
by the delay in response, however, is that occupants would want
an HVAC system to take prompt actions (e.g., turn on the fan or
increase its speed) once they gave a new set point or when some
other events happened. Otherwise, they might think the system
is not responsive or reliable and take further actions which may
cause energy to be wasted, e.g., keeping on increasing or re-
ducing the set point.
As compared with the time-based approach with the time step

of one minute, the event-based approach, however, consumes
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0.3% more energy cost. This is because in the Q-learning, the
optimal action for an event is applied to control devices with a
probability slightly less than one. In this way, every other fea-
sible action has a positive probability to be applied and their
Q-factors can get a chance to be updated. Although this time-
based approach with 1 min as the time step consumes less en-
ergy cost, it is not applicable in practice since its computational
time is 178 s, much larger than its time step of one minute. That
means when solving the energy cost optimization problem in a
moving window manner, the time-based approach cannot solve
the problem within a time window.
From the above comparison, we can see that, in general, the

event-based approach has a similar level of energy costs to the
time-based approaches, but it saves significant computational
time and has a much faster response to events.

VII. CONCLUSION

In this paper, an innovative event-based approach is developed
within the LR framework. The HVAC energy cost optimization
problem is solved and decisions are executed on an “as needed”
basis to reduce computational requirements, have a faster re-
sponse to events and reduce energy costs. The difficulty is that
the optimal policy is non-stationary because the underlying
process is nonstationary due to the time-varying uncertainties.
Our approach first aggregates the uncertainties into to a few key
factors such as the COP and cooling load, and then augments the
states to include these key factors and other time varying vari-
ables in the definition of events. In this way, the optimal policy
for the planning horizon is assumed stationary for the purpose of
easy computation, although the optimal policy may change over
time when the problem is solved in a moving window manner.
The problem is then solved by using Q-learning, surrogate LR
method, and sample average approximation.
Our approach opens up a new way to solve event-based prob-

lems with nonstationary optimal policies. In addition, if these
problems are solved within the LR framework, our approach is
also applicable by using the event-based method to solve sub-
problems and the surrogate LR method as well as sample av-
erage approximation to solve a dual problem.
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